
CUDD: CU Decision Diagram Package

Release 2.7.0

Fabio Somenzi
Department of Electrical, Computer, and Energy Engineering

University of Colorado at Boulder
<Fabio@Colorado.EDU>

June 16, 2025

Contents

1 Introduction 4

2 How to Get CUDD 5
2.1 The CUDD Package . 5
2.2 CUDD Friends . 5

3 User’s Manual 6
3.1 Compiling and Linking . 6
3.2 Basic Data Structures . 6

3.2.1 Nodes . 6
3.2.2 The Manager . 7
3.2.3 Cache . 8

3.3 Initializing and Shutting Down a DdManager 8
3.4 Setting Parameters . 9
3.5 Constant Functions . 9

3.5.1 One, Logic Zero, and Arithmetic Zero 9
3.5.2 Predefined Constants 10
3.5.3 Background . 10
3.5.4 New Constants . 11

3.6 Creating Variables . 11
3.6.1 New BDD and ADD Variables 11
3.6.2 New ZDD Variables 11

3.7 Basic BDD Manipulation . 12

1

3.8 Basic ADD Manipulation . 13
3.9 Basic ZDD Manipulation . 14
3.10 Converting ADDs to BDDs and Vice Versa 15
3.11 Converting BDDs to ZDDs and Vice Versa 15
3.12 Variable Reordering for BDDs and ADDs 16
3.13 Grouping Variables . 19
3.14 Variable Reordering for ZDDs 20
3.15 Keeping Consistent Variable Orders for BDDs and ZDDs . . 21
3.16 Hooks . 21
3.17 Timeouts and Limits . 22
3.18 Writing Decision Diagrams to a File 23
3.19 Saving and Restoring BDDs 23

4 Programmer’s Manual 23
4.1 Compiling and Linking . 23
4.2 Reference Counts . 25

4.2.1 NULL Return Values 26
4.2.2 Cudd RecursiveDeref vs. Cudd Deref 26
4.2.3 When Increasing the Reference Count is Unnecessary 26
4.2.4 Saturating Increments and Decrements 27

4.3 Complement Arcs . 27
4.4 The Cache . 28

4.4.1 Cache Sizing . 29
4.4.2 Local Caches . 29

4.5 The Unique Table . 30
4.6 Allowing Asynchronous Reordering 31
4.7 Debugging . 33
4.8 Gathering and Interpreting Statistics 33

4.8.1 Non Modifiable Parameters 34
4.8.2 Modifiable Parameters 37
4.8.3 Extended Statistics and Reporting 39

4.9 Guidelines for Documentation 39

5 The C++ Interface 40
5.1 Compiling and Linking . 40
5.2 Basic Manipulation . 40

6 Acknowledgments 40

References 41

2

Index 42

3

1 Introduction

The CUDD package provides functions to manipulate Binary Decision Di-
agrams (BDDs) [4, 3], Algebraic Decision Diagrams (ADDs) [1], and Zero-
suppressed Binary Decision Diagrams (ZDDs) [11]. BDDs are used to repre-
sent switching functions; ADDs are used to represent functions from {0, 1}n
to an arbitrary set. ZDDs represent switching functions like BDDs; how-
ever, they are much more efficient than BDDs when the functions to be
represented are characteristic functions of cube sets, or in general, when the
ON-set of the function to be represented is very sparse. They are inferior to
BDDs in other cases.

The package provides a large set of operations on BDDs, ADDs, and
ZDDs, functions to convert BDDs into ADDs or ZDDs and vice versa, and
a large assortment of variable reordering methods.

The CUDD package can be used in three ways:

• As a black box. In this case, the application program that needs
to manipulate decision diagrams only uses the exported functions of
the package. The rich set of functions included in the CUDD package
allows many applications to be written in this way. Section 3 describes
how to use the exported functions of the package. An application
written in terms of the exported functions of the package needs not
concern itself with the details of variable reordering, which may take
place behind the scenes.

• As a clear box. When writing a sophisticated application based on
decision diagrams, efficiency often dictates that some functions be im-
plemented as direct recursive manipulation of the diagrams, instead
of being written in terms of existing primitive functions. Section 4 ex-
plains how to add new functions to the CUDD package. It also details
how to write a recursive function that may be interrupted by dynamic
variable reordering.

• Through an interface. Object-oriented languages like C++ and Perl5
can free the programmer from the burden of memory management. A
C++ interface is included in the distribution of CUDD. It automati-
cally frees decision diagrams that are no longer used by the applica-
tion and overloads operators. Almost all the functionality provided
by the CUDD exported functions is available through the C++ inter-
face, which is especially recommended for fast prototyping. Section 5

4

explains how to use the interface. A Perl5 interface also exists and is
ditributed separately. (See Section 2.2.)

In the following, the reader is supposed to be familiar with the basic ideas
about decision diagrams, as found, for instance, in [3].

2 How to Get CUDD

2.1 The CUDD Package

The CUDD package is available via anonymous FTP from vlsi.Colorado.EDU.
A compressed tar file named cudd-2.7.0.tar.gz can be found in directory
pub. Once you have this file,

gzip -dc cudd-2.7.0.tar.gz | tar xvf -

will create directory cudd-2.7.0 and its subdirectories. These directories
contain the decision diagram package, a few support libraries, and a test
application based on the decision diagram package. There is a README
file with instructions on configuration and installation in cudd-2.7.0. In
short, CUDD uses the GNU Autotools for its build.

Once you have made the libraries and program, you can type make check

to perform a sanity check. Among other things, make check executes com-
mands like

cd nanotrav

nanotrav -p 1 -autodyn -reordering sifting -trav mult32a.blif

This command runs a simple-minded FSM traversal program on a simple
model. (On a reasonable machine, it takes less than 0.5 s.) The output pro-
duced by the program is checked against cudd-2.7.0/nanotrav/mult32a.out.
More information on the nanotrav test program can be found in the file
cudd-2.7.0/nanotrav/README.

If you want to be notified of new releases of the CUDD package, send a
message to Fabio@Colorado.EDU.

2.2 CUDD Friends

Two CUDD extensions are available via anonymous FTP from vlsi.Colorado.EDU.

• PerlDD is an object-oriented Perl5 interface to CUDD. It is organized
as a standard Perl extension module. The Perl interface is at a some-
what higher level than the C++ interface, but it is not as complete.

5

• DDcal is a graphic BDD calculator based on CUDD, Perl-Tk, and dot.
(See Section 3.18 for information on dot.)

3 User’s Manual

This section describes the use of the CUDD package as a black box.

3.1 Compiling and Linking

To build an application that uses the CUDD package, you should add

#include "cudd.h"

to your source files, and should link libcudd.a to your executable.
Keep in mind that whatever flags affect the size of data structures—

for instance the flags used to use 64-bit pointers where available—must be
specified when compiling both CUDD and the files that include its header
files.

3.2 Basic Data Structures

3.2.1 Nodes

BDDs, ADDs, and ZDDs are made of DdNode’s. A DdNode (node for
short) is a structure with several fields. Those that are of interest to the
application that uses the CUDD package as a black box are the variable
index, the reference count, and the value. The remaining fields are pointers
that connect nodes among themselves and that are used to implement the
unique table. (See Section 3.2.2.)

The index field holds the name of the variable that labels the node. The
index of a variable is a permanent attribute that reflects the order of creation.
Index 0 corresponds to the variable created first. On a machine with 32-bit
pointers, the maximum number of variables is the largest value that can be
stored in an unsigned short integer minus 1. The largest index is reserved for
the constant nodes. When 64-bit pointers are used, the maximum number
of variables is the largest value that can be stored in an unsigned integer
minus 1.

When variables are reordered to reduce the size of the decision dia-
grams, the variables may shift in the order, but they retain their indices.
The package keeps track of the variable permutation (and its inverse). The
application is not affected by variable reordering, except in the following
cases.

6

• If the application uses generators (Cudd ForeachCube and Cudd ForeachNode)
and reordering is enabled, then it must take care not to call any oper-
ation that may create new nodes (and hence possibly trigger reorder-
ing). This is because the cubes (i.e., paths) and nodes of a diagram
change as a result of reordering.

• If the application uses Cudd bddConstrain and reordering takes place,
then the property of Cudd bddConstrain of being an image restrictor
is lost.

The CUDD package relies on garbage collection to reclaim the memory
used by diagrams that are no longer in use. The scheme employed for
garbage collection is based on keeping a reference count for each node. The
references that are counted are both the internal references (references from
other nodes) and external references (typically references from the calling
environment). When an application creates a new BDD, ADD, or ZDD,
it must increase its reference count explicitly, through a call to Cudd Ref .
Similarly, when a diagram is no longer needed, the application must call
Cudd RecursiveDeref (for BDDs and ADDs) or Cudd RecursiveDerefZdd
(for ZDDs) to “recycle” the nodes of the diagram.

Terminal nodes carry a value. This is especially important for ADDs.
By default, the value is a double. To change to something different (e.g.,
an integer), the package must be modified and recompiled. Support for this
process is very rudimentary.

3.2.2 The Manager

All nodes used in BDDs, ADDs, and ZDDs are kept in special hash ta-
bles called the unique tables. Specifically, BDDs and ADDs share the same
unique table, whereas ZDDs have their own table. As the name implies, the
main purpose of the unique table is to guarantee that each node is unique;
that is, there is no other node labeled by the same variable and with the
same children. This uniqueness property makes decision diagrams canon-
ical. The unique tables and some auxiliary data structures make up the
DdManager (manager for short). Though the application that uses only the
exported functions needs not be concerned with most details of the manager,
it has to deal with the manager in the following sense. The application must
initialize the manager by calling an appropriate function. (See Section 3.3.)
Subsequently, it must pass a pointer to the manager to all the functions that
operate on decision diagrams.

7

3.2.3 Cache

Efficient recursive manipulation of decision diagrams requires the use of a
table to store computed results. This table is called here the cache because
it is effectively handled like a cache of variable but limited capacity. The
CUDD package starts by default with a small cache, and increases its size
until either no further benefit is achieved, or a limit size is reached. The user
can influence this policy by choosing initial and limit values for the cache
size.

Too small a cache will cause frequent overwriting of useful results. Too
large a cache will cause overhead, because the whole cache is scanned every
time garbage collection takes place. The optimal parameters depend on the
specific application. The default parameters work reasonably well for a large
spectrum of applications.

The cache of the CUDD package is used by most recursive functions
of the package, and can be used by user-supplied functions as well. (See
Section 4.4.)

3.3 Initializing and Shutting Down a DdManager

To use the functions in the CUDD package, one has first to initialize the
package itself by calling Cudd Init . This function takes four parameters:

• numVars: It is the initial number of variables for BDDs and ADDs. If
the total number of variables needed by the application is known, then
it is slightly more efficient to create a manager with that number of
variables. If the number is unknown, it can be set to 0, or to any other
lower bound on the number of variables. Requesting more variables
than are actually needed is not incorrect, but is not efficient.

• numVarsZ: It is the initial number of variables for ZDDs. See Sec-
tions 3.9 and 3.11 for a discussion of the value of this argument.

• numSlots: Determines the initial size of each subtable of the unique
table. There is a subtable for each variable. The size of each sub-
table is dynamically adjusted to reflect the number of nodes. It is
normally O.K. to use the default value for this parameter, which is
CUDD UNIQUE SLOTS.

• cacheSize: It is the initial size (number of entries) of the cache. Its
default value is CUDD CACHE SLOTS.

8

• maxMemory: It is the target value for the maximum memory occupa-
tion (in bytes). The package uses this value to decide two parameters.

– the maximum size to which the cache will grow, regardless of the
hit rate or the size of the unique table.

– the maximum size to which growth of the unique table will be
preferred to garbage collection.

If maxMemory is set to 0, CUDD tries to guess a good value based on
the available memory.

A typical call to Cudd Init may look like this:

manager = Cudd_Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0);

To reclaim all the memory associated with a manager, an application must
call Cudd Quit . This is normally done before exiting.

3.4 Setting Parameters

The package provides several functions to set the parameters that control
various functions. For instance, the package has an automatic way of de-
termining whether a larger unique table would make the application run
faster. In that case, the package enters a “fast growth” mode in which re-
sizing of the unique subtables is favored over garbage collection. When the
unique table reaches a given size, however, the package returns to the normal
“slow growth” mode, even though the conditions that caused the transition
to fast growth still prevail. The limit size for fast growth can be read by
Cudd ReadLooseUpTo and changed by Cudd SetLooseUpTo. Similar pairs
of functions exist for several other parameters. See also Section 4.8.

3.5 Constant Functions

The CUDD Package defines several constant functions. These functions
are created when the manager is initialized, and are accessible through the
manager itself.

3.5.1 One, Logic Zero, and Arithmetic Zero

The constant 1 (returned by Cudd ReadOne) is common to BDDs, ADDs,
and ZDDs. However, its meaning is different for ADDs and BDDs, on the one
hand, and ZDDs, on the other hand. The diagram consisting of the constant

9

1 node only represents the constant 1 function for ADDs and BDDs. For
ZDDs, its meaning depends on the number of variables: It is the conjunction
of the complements of all variables. Conversely, the representation of the
constant 1 function depends on the number of variables. The constant 1
function of n variables is returned by Cudd ReadZddOne.

The constant 0 is common to ADDs and ZDDs, but not to BDDs. The
BDD logic 0 is not associated with the constant 0 function: It is obtained
by complementation (Cudd Not) of the constant 1. (It is also returned by
Cudd ReadLogicZero.) All other constants are specific to ADDs.

3.5.2 Predefined Constants

Besides 0 (returned by Cudd ReadZero) and 1, the following constant func-
tions are created at initialization time.

1. PlusInfinity and MinusInfinity: On computers implementing the IEEE
standard 754 for floating-point arithmetic, these two constants are set
to the signed infinities. The values of these constants are returned by
Cudd ReadPlusInfinity and Cudd ReadMinusInfinity .

2. Epsilon: This constant, initially set to 10−12, is used in comparing
floating point values for equality. Its value is returned by the function
Cudd ReadEpsilon, and it can be modified by calling Cudd SetEpsilon.
Unlike the other constants, it does not correspond to a node.

3.5.3 Background

The background value is a constant typically used to represent non-existing
arcs in graphs. Consider a shortest path problem. Two nodes that are not
connected by an arc can be regarded as being joined by an arc of infinite
length. In shortest path problems, it is therefore convenient to set the
background value to PlusInfinity. In network flow problems, on the other
hand, two nodes not connected by an arc can be regarded as joined by an
arc of 0 capacity. For these problems, therefore, it is more convenient to set
the background value to 0. In general, when representing sparse matrices,
the background value is the value that is assumed implicitly.

At initialization, the background value is set to 0. It can be read with
Cudd ReadBackground , and modified with Cudd SetBackground. The back-
ground value affects procedures that read sparse matrices and graphs (like
Cudd addRead and Cudd addHarwell), procedures that print out sum-of-
product expressions for ADDs (Cudd PrintMinterm), generators of cubes
(Cudd ForeachCube), and procedures that count minterms (Cudd CountMinterm).

10

3.5.4 New Constants

New constant can be created by calling Cudd addConst . This function will
retrieve the ADD for the desired constant, if it already exist, or it will create
a new one. Obviously, new constants should only be used when manipulating
ADDs.

3.6 Creating Variables

Decision diagrams are typically created by combining simpler decision dia-
grams. The simplest decision diagrams, of course, cannot be created in that
way. Constant functions have been discussed in Section 3.5. In this section
we discuss the simple variable functions, also known as projection functions.

3.6.1 New BDD and ADD Variables

The projection functions are distinct for BDDs and ADDs. A projection
function for BDDs consists of an internal node with both outgoing arcs
pointing to the constant 1. The else arc is complemented.

An ADD projection function, on the other hand, has the else pointer
directed to the arithmetic zero function. One should never mix the two types
of variables. BDD variables should be used when manipulating BDDs, and
ADD variables should be used when manipulating ADDs. Three functions
are provided to create BDD variables:

• Cudd bddIthVar : Returns the projection function with index i. If the
function does not exist, it is created.

• Cudd bddNewVar : Returns a new projection function, whose index is
the largest index in use at the time of the call, plus 1.

• Cudd bddNewVarAtLevel : Similar to Cudd bddNewVar . In addition it
allows to specify the position in the variable order at which the new
variable should be inserted. In contrast, Cudd bddNewVar adds the
new variable at the end of the order.

The analogous functions for ADDs are Cudd addIthVar , Cudd addNewVar ,
and Cudd addNewVarAtLevel .

3.6.2 New ZDD Variables

Unlike the projection functions of BDDs and ADDs, the projection functions
of ZDDs have diagrams with n+1 nodes, where n is the number of variables.

11

Therefore the ZDDs of the projection functions change when new variables
are added. This will be discussed in Section 3.9. Here we assume that the
number of variables is fixed. The ZDD of the i-th projection function is
returned by Cudd zddIthVar .

3.7 Basic BDD Manipulation

Common manipulations of BDDs can be accomplished by calling Cudd bddIte.
This function takes three BDDs, f , g, and h, as arguments and computes
f · g + f ′ · h. Like all the functions that create new BDDs or ADDs,
Cudd bddIte returns a result that must be explicitly referenced by the caller.
Cudd bddIte can be used to implement all two-argument Boolean functions.
However, the package also provides Cudd bddAnd as well as the other two-
operand Boolean functions, which are slightly more efficient when a two-
operand function is called for. The following fragment of code illustrates
how to build the BDD for the function f = x′0x

′
1x

′
2x

′
3.

DdManager *manager;

DdNode *f, *var, *tmp;

int i;

...

f = Cudd_ReadOne(manager);

Cudd_Ref(f);

for (i = 3; i >= 0; i--) {

var = Cudd_bddIthVar(manager,i);

tmp = Cudd_bddAnd(manager,Cudd_Not(var),f);

Cudd_Ref(tmp);

Cudd_RecursiveDeref(manager,f);

f = tmp;

}

This example illustrates the following points:

• Intermediate results must be “referenced” and “dereferenced.” How-
ever, var is a projection function, and its reference count is always
greater than 0. Therefore, there is no call to Cudd Ref .

• The new f must be assigned to a temporary variable (tmp in this
example). If the result of Cudd bddAnd were assigned directly to f,
the old f would be lost, and there would be no way to free its nodes.

12

• The statement f = tmp has the same effect as:

f = tmp;

Cudd_Ref(f);

Cudd_RecursiveDeref(manager,tmp);

but is more efficient. The reference is “passed” from tmp to f, and tmp

is now ready to be reutilized.

• It is normally more efficient to build BDDs “bottom-up.” This is why
the loop goes from 3 to 0. Notice, however, that after variable reorder-
ing, higher index does not necessarily mean “closer to the bottom.”
Of course, in this simple example, efficiency is not a concern.

• Had we wanted to conjoin the variables in a bottom-up fashion even
after reordering, we should have used Cudd ReadInvPerm. One has
to be careful, though, to fix the order of conjunction before entering
the loop. Otherwise, if reordering takes place, it is possible to use one
variable twice and skip another variable.

3.8 Basic ADD Manipulation

The most common way to manipulate ADDs is via Cudd addApply . This
function can apply a wide variety of operators to a pair of ADDs. Among the
available operators are addition, multiplication, division, minimum, maxi-
mum, and Boolean operators that work on ADDs whose leaves are restricted
to 0 and 1 (0-1 ADDs).

The following fragment of code illustrates how to build the ADD for the
function f = 5x0x1x2x3.

DdManager *manager;

DdNode *f, *var, *tmp;

int i;

...

f = Cudd_addConst(manager,5);

Cudd_Ref(f);

for (i = 3; i >= 0; i--) {

var = Cudd_addIthVar(manager,i);

Cudd_Ref(var);

13

tmp = Cudd_addApply(manager,Cudd_addTimes,var,f);

Cudd_Ref(tmp);

Cudd_RecursiveDeref(manager,f);

Cudd_RecursiveDeref(manager,var);

f = tmp;

}

This example, contrasted to the example of BDD manipulation, illustrates
the following points:

• The ADD projection function are not maintained by the manager. It
is therefore necessary to reference and dereference them.

• The product of two ADDs is computed by calling Cudd addApply with
Cudd addTimes as parameter. There is no “apply” function for BDDs,
because Cudd bddAnd and Cudd bddXor plus complementation are
sufficient to implement all two-argument Boolean functions.

3.9 Basic ZDD Manipulation

ZDDs are often generated by converting existing BDDs. (See Section 3.11.)
However, it is also possible to build ZDDs by applying Boolean operators to
other ZDDs, starting from constants and projection functions. The following
fragment of code illustrates how to build the ZDD for the function f =
x′0 + x′1 + x′2 + x′3. We assume that the four variables already exist in the
manager when the ZDD for f is built. Note the use of De Morgan’s law.

DdManager *manager;

DdNode *f, *var, *tmp;

int i;

manager = Cudd_Init(0,4,CUDD_UNIQUE_SLOTS,

CUDD_CACHE_SLOTS,0);

...

tmp = Cudd_ReadZddOne(manager,0);

Cudd_Ref(tmp);

for (i = 3; i >= 0; i--) {

var = Cudd_zddIthVar(manager,i);

Cudd_Ref(var);

f = Cudd_zddIntersect(manager,var,tmp);

Cudd_Ref(f);

14

Cudd_RecursiveDerefZdd(manager,tmp);

Cudd_RecursiveDerefZdd(manager,var);

tmp = f;

}

f = Cudd_zddDiff(manager,Cudd_ReadZddOne(manager,0),tmp);

Cudd_Ref(f);

Cudd_RecursiveDerefZdd(manager,tmp);

This example illustrates the following points:

• The projection functions are referenced, because they are not main-
tained by the manager.

• Complementation is obtained by subtracting from the constant 1 func-
tion.

• The result of Cudd ReadZddOne does not require referencing.

CUDD provides functions for the manipulation of covers represented by
ZDDs. For instance, Cudd zddIsop builds a ZDD representing an irredun-
dant sum of products for the incompletely specified function defined by the
two BDDs L and U . Cudd zddWeakDiv performs the weak division of two
covers given as ZDDs. These functions expect the two ZDD variables cor-
responding to the two literals of the function variable to be adjacent. One
has to create variable groups (see Section 3.14) for reordering of the ZDD
variables to work. BDD automatic reordering is safe even without groups: If
realignment of ZDD and ADD/BDD variables is requested (see Section 3.15)
groups will be kept adjacent.

3.10 Converting ADDs to BDDs and Vice Versa

Several procedures are provided to convert ADDs to BDDs, according to dif-
ferent criteria. (Cudd addBddPattern, Cudd addBddInterval , and Cudd addBddThreshold .)
The conversion from BDDs to ADDs (Cudd BddToAdd) is based on the sim-
ple principle of mapping the logical 0 and 1 on the arithmetic 0 and 1. It is
also possible to convert an ADD with integer values (more precisely, floating
point numbers with 0 fractional part) to an array of BDDs by repeatedly
calling Cudd addIthBit .

3.11 Converting BDDs to ZDDs and Vice Versa

Many applications first build a set of BDDs and then derive ZDDs from the
BDDs. These applications should create the manager with 0 ZDD variables

15

and create the BDDs. Then they should call Cudd zddVarsFromBddVars
to create the necessary ZDD variables—whose number is likely to be known
once the BDDs are available. This approach eliminates the difficulties that
arise when the number of ZDD variables changes while ZDDs are being built.

The simplest conversion from BDDs to ZDDs is a simple change of rep-
resentation, which preserves the functions. Simply put, given a BDD for f ,
a ZDD for f is requested. In this case the correspondence between the BDD
variables and ZDD variables is one-to-one. Hence, Cudd zddVarsFromBddVars
should be called with the multiplicity parameter equal to 1. The conversion
proper can then be performed by calling Cudd zddPortFromBdd . The in-
verse transformation is performed by Cudd zddPortToBdd .

ZDDs are quite often used for the representation of covers. This is nor-
mally done by associating two ZDD variables to each variable of the function.
(And hence, typically, to each BDD variable.) One ZDD variable is associ-
ated with the positive literal of the BDD variable, while the other ZDD vari-
able is associated with the negative literal. A call to Cudd zddVarsFromBddVars
with multiplicity equal to 2 will associate to BDD variable i the two ZDD
variables 2i and 2i+ 1.

If a BDD variable group tree exists when Cudd zddVarsFromBddVars is
called (see Section 3.13) the function generates a ZDD variable group tree
consistent to it. In any case, all the ZDD variables derived from the same
BDD variable are clustered into a group.

If the ZDD for f is created and later a new ZDD variable is added to the
manager, the function represented by the existing ZDD changes. Suppose,
for instance, that two variables are initially created, and that the ZDD
for f = x0 + x1 is built. If a third variable is added, say x2, then the ZDD
represents g = (x0+x1)x

′
2 instead. This change in function obviously applies

regardless of what use is made of the ZDD. However, if the ZDD is used
to represent a cover, the cover itself is not changed by the addition of new
variable. (What changes is the characteristic function of the cover.)

3.12 Variable Reordering for BDDs and ADDs

The CUDD package provides a rich set of dynamic reordering algorithms.
Some of them are slight variations of existing techniques [15, 5, 2, 9, 14, 10];
some others have been developed specifically for this package [13, 12].

Reordering affects a unique table. This means that BDDs and ADDs,
which share the same unique table are simultaneously reordered. ZDDs,
on the other hand, are reordered separately. In the following we discuss
the reordering of BDDs and ADDs. Reordering for ZDDs is the subject of

16

Section 3.14.
Reordering of the variables can be invoked directly by the application

by calling Cudd ReduceHeap. Or it can be automatically triggered by the
package when the number of nodes has reached a given threshold. (The
threshold is initialized and automatically adjusted after each reordering by
the package.) To enable automatic dynamic reordering (also called asyn-
chronous dynamic reordering in this document) the application must call
Cudd AutodynEnable. Automatic dynamic reordering can subsequently be
disabled by calling Cudd AutodynDisable.

All reordering methods are available in both the case of direct call to
Cudd ReduceHeap and the case of automatic invocation. For many meth-
ods, the reordering procedure is iterated until no further improvement is
obtained. We call these methods the converging methods. When constraints
are imposed on the relative position of variables (see Section 3.13) the re-
ordering methods apply inside the groups. The groups themselves are re-
ordered by sifting. Each method is identified by a constant of the enumerated
type Cudd ReorderingType defined in cudd.h (the external header file of the
CUDD package):

CUDD REORDER NONE: This method causes no reordering.

CUDD REORDER SAME: If passed to Cudd AutodynEnable, this method
leaves the current method for automatic reordering unchanged. If
passed to Cudd ReduceHeap, this method causes the current method
for automatic reordering to be used.

CUDD REORDER RANDOM: Pairs of variables are randomly cho-
sen, and swapped in the order. The swap is performed by a series
of swaps of adjacent variables. The best order among those obtained
by the series of swaps is retained. The number of pairs chosen for
swapping equals the number of variables in the diagram.

CUDD REORDER RANDOM PIVOT: Same as CUDD REORDER RANDOM,
but the two variables are chosen so that the first is above the variable
with the largest number of nodes, and the second is below that vari-
able. In case there are several variables tied for the maximum number
of nodes, the one closest to the root is used.

CUDD REORDER SIFT: This method is an implementation of Rudell’s
sifting algorithm [15]. A simplified description of sifting is as follows:
Each variable is considered in turn. A variable is moved up and down

17

in the order so that it takes all possible positions. The best position
is identified and the variable is returned to that position.

In reality, things are a bit more complicated. For instance, there is a
limit on the number of variables that will be sifted. This limit can be
read with Cudd ReadSiftMaxVar and set with Cudd SetSiftMaxVar .
In addition, if the diagram grows too much while moving a variable up
or down, that movement is terminated before the variable has reached
one end of the order. The maximum ratio by which the diagram
is allowed to grow while a variable is being sifted can be read with
Cudd ReadMaxGrowth and set with Cudd SetMaxGrowth.

CUDD REORDER SIFT CONVERGE: This is the converging vari-
ant of CUDD REORDER SIFT.

CUDD REORDER SYMM SIFT: This method is an implementation
of symmetric sifting [13]. It is similar to sifting, with one addition:
Variables that become adjacent during sifting are tested for symme-
try. If they are symmetric, they are linked in a group. Sifting then
continues with a group being moved, instead of a single variable. After
symmetric sifting has been run, Cudd SymmProfile can be called to
report on the symmetry groups found. (Both positive and negative
symmetries are reported.)

CUDD REORDER SYMM SIFT CONV: This is the converging vari-
ant of CUDD REORDER SYMM SIFT.

CUDD REORDER GROUP SIFT: This method is an implementation
of group sifting [12]. It is similar to symmetric sifting, but aggregation
is not restricted to symmetric variables.

CUDD REORDER GROUP SIFT CONV: This method repeats un-
til convergence the combination of CUDD REORDER GROUP SIFT
and CUDD REORDER WINDOW4.

CUDD REORDER WINDOW2: This method implements the window
permutation approach of Fujita [7] and Ishiura [9]. The size of the
window is 2.

CUDD REORDER WINDOW3: Similar to CUDD REORDER WINDOW2,
but with a window of size 3.

CUDD REORDER WINDOW4: Similar to CUDD REORDER WINDOW2,
but with a window of size 4.

18

CUDD REORDER WINDOW2 CONV: This is the converging vari-
ant of CUDD REORDER WINDOW2.

CUDD REORDER WINDOW3 CONV: This is the converging vari-
ant of CUDD REORDER WINDOW3.

CUDD REORDER WINDOW4 CONV: This is the converging vari-
ant of CUDD REORDER WINDOW4.

CUDD REORDER ANNEALING: This method is an implementation
of simulated annealing for variable ordering, vaguely resemblant of the
algorithm of [2]. This method is potentially very slow.

CUDD REORDER GENETIC: This method is an implementation of a
genetic algorithm for variable ordering, inspired by the work of Drech-
sler [5]. This method is potentially very slow.

CUDD REORDER EXACT: This method implements a dynamic pro-
gramming approach to exact reordering [8, 6, 9], with improvements
described in [10]. It only stores one BDD at the time. Therefore, it is
relatively efficient in terms of memory. Compared to other reordering
strategies, it is very slow, and is not recommended for more than 16
variables.

So far we have described methods whereby the package selects an order
automatically. A given order of the variables can also be imposed by calling
Cudd ShuffleHeap.

3.13 Grouping Variables

CUDD allows the application to specify constraints on the positions of group
of variables. It is possible to request that a group of contiguous variables be
kept contiguous by the reordering procedures. It is also possible to request
that the relative order of some groups of variables be left unchanged. The
constraints on the order are specified by means of a tree, which is created
in one of two ways:

• By calling Cudd MakeTreeNode.

• By calling the functions of the MTR library (part of the distribution),
and by registering the result with the manager using Cudd SetTree.
The current tree registered with the manager can be read with Cudd ReadTree.

19

Each node in the tree represents a range of variables. The lower bound
of the range is given by the low field of the node, and the size of the group
is given by the size field of the node.1 The variables in each range are kept
contiguous. Furthermore, if a node is marked with the MTR FIXED flag,
then the relative order of the variable ranges associated to its children is not
changed. As an example, suppose the initial variable order is:

x0, y0, z0, x1, y1, z1, ... , x9, y9, z9.

Suppose we want to keep each group of three variables with the same index
(e.g., x3, y3, z3) contiguous, while allowing the package to change the
order of the groups. We can accomplish this with the following code:

for (i = 0; i < 10; i++) {

(void) Cudd_MakeTreeNode(manager,i*3,3,MTR_DEFAULT);

}

If we want to keep the order within each group of variables fixed (i.e., x
before y before z) we need to change MTR DEFAULT into MTR FIXED.

The low parameter passed to Cudd MakeTreeNode is the index of a vari-
able (as opposed to its level or position in the order). The group tree can
be created at any time. The result obviously depends on the variable order
in effect at creation time.

It is possible to create a variable group tree also before the variables
themselves are created. The package assumes in this case that the index of
the variables not yet in existence will equal their position in the order when
they are created. Therefore, applications that rely on Cudd bddNewVarAtLevel
or Cudd addNewVarAtLevel to create new variables have to create the vari-
ables before they group them.

The reordering procedure will skip all groups whose variables are not yet
in existence. For groups that are only partially in existence, the reordering
procedure will try to reorder the variables already instantiated, without
violating the adjacency constraints.

3.14 Variable Reordering for ZDDs

Reordering of ZDDs is done in much the same way as the reordering of
BDDs and ADDs. The functions corresponding to Cudd ReduceHeap and

1When the variables in a group are reordered, the association between the low field
and the index of the first variable in the group is lost. The package updates the tree to
keep track of the changes. However, the application cannot rely on low to determine the
position of variables.

20

Cudd ShuffleHeap are Cudd zddReduceHeap and Cudd zddShuffleHeap. To
enable dynamic reordering, the application must call Cudd AutodynEnableZdd ,
and to disable dynamic reordering, it must call Cudd AutodynDisableZdd .
In the current implementation, however, the choice of reordering methods
for ZDDs is more limited. Specifically, these methods are available:

CUDD REORDER NONE;

CUDD REORDER SAME;

CUDD REORDER RANDOM;

CUDD REORDER RANDOM PIVOT;

CUDD REORDER SIFT;

CUDD REORDER SIFT CONVERGE;

CUDD REORDER SYMM SIFT;

CUDD REORDER SYMM SIFT CONV.

To create ZDD variable groups, the application calls Cudd MakeZddTreeNode.

3.15 Keeping Consistent Variable Orders for BDDs and ZDDs

Several applications that manipulate both BDDs and ZDDs benefit from
keeping a fixed correspondence between the order of the BDD variables and
the order of the ZDD variables. If each BDD variable corresponds to a group
of ZDD variables, then it is often desirable that the groups of ZDD variables
be in the same order as the corresponding BDD variables. CUDD allows
the ZDD order to track the BDD order and vice versa. To have the ZDD
order track the BDD order, the application calls Cudd zddRealignEnable.
The effect of this call can be reversed by calling Cudd zddRealignDisable.
When ZDD realignment is in effect, automatic reordering of ZDDs should
be disabled.

3.16 Hooks

Hooks in CUDD are lists of application-specified functions to be run on
certain occasions. Each hook is identified by a constant of the enumerated
type Cudd HookType. In Version 2.7.0 hooks are defined for these occasions:

• before garbage collection (CUDD PRE GC HOOK);

21

• after garbage collection (CUDD POST GC HOOK);

• before variable reordering (CUDD PRE REORDERING HOOK);

• after variable reordering (CUDD POST REORDERING HOOK).

A function added to a hook receives a pointer to the manager, a pointer to
a constant string, and a pointer to void as arguments; it must return 1 if
successful; 0 otherwise. The second argument is one of “DD,” “BDD,” and
“ZDD.” This allows the hook functions to tell the type of diagram for which
reordering or garbage collection takes place. The third argument varies
depending on the hook. The hook functions called before or after garbage
collection do not use it. The hook functions called before reordering are
passed, in addition to the pointer to the manager, also the method used for
reordering. The hook functions called after reordering are passed the start
time. To add a function to a hook, one uses Cudd AddHook . The function
of a given hook are called in the order in which they were added to the
hook. For sample hook functions, one may look at Cudd StdPreReordHook
and Cudd StdPostReordHook .

3.17 Timeouts and Limits

It is possible to set a time limit for a manager with Cudd SetTimeLimit .
Once set, the time available to the manager can be inspected and modified
through other API functions. (Cudd TimeLimited , Cudd ReadTimeLimit ,
Cudd UnsetTimeLimit , Cudd UpdateTimeLimit , Cudd IncreaseTimeLimit .)
CUDD checks for expiration from time to time. When deadline has expired,
it returns NULL from the call in progress, but it leaves the manager in a
consistent state. The invoking application must be designed to handle the
NULL values returned.

When reordering, if a timout is approaching, CUDD will quit reordering
to give the application a chance to finish some computation.

It is also possible to invoke some functions that return NULL if they can-
not complete without creating more than a set number of nodes. See, for
instance, Cudd bddAndLimit . Only functions that are documented to check
for the number of generated nodes do so. (Their names end in “limit.”)
These functions set the error code to CUDD TOO MANY NODES when
they return NULL because of too many nodes. The error code can be in-
spected with Cudd ReadErrorCode and cleared with Cudd ClearErrorCode.

22

3.18 Writing Decision Diagrams to a File

The CUDD package provides several functions to write decision diagrams to
a file. Cudd DumpBlif writes a file in blif format. It is restricted to BDDs.
The diagrams are written as a network of multiplexers, one multiplexer for
each internal node of the BDD.

Cudd DumpDot produces input suitable to the graph-drawing program
dot written by Eleftherios Koutsofios and Stephen C. North. An example of
drawing produced by dot from the output of Cudd DumpDot is shown in Fig-
ure 1. Cudd DumpDot is restricted to BDDs and ADDs; Cudd zddDumpDot
may be used to draw ZDDs. Cudd zddDumpDot is the analog of Cudd DumpDot
for ZDDs.

Cudd DumpDaVinci produces input suitable to the graph-drawing pro-
gram daVinci developed at the University of Bremen. It is restricted to
BDDs and ADDs.

Functions are also available to produce the input format of DDcal (see
Section 2.2) and factored forms.

3.19 Saving and Restoring BDDs

The dddmp library by Gianpiero Cabodi and Stefano Quer allows a CUDD
application to save BDDs to disk in compact form for later retrieval. See
the library’s own documentation for the details.

4 Programmer’s Manual

This section provides additional detail on the workings of the CUDD package
and on the programming conventions followed in its writing. The additional
detail should help those who want to write procedures that directly manip-
ulate the CUDD data structures.

4.1 Compiling and Linking

If you plan to use the CUDD package as a clear box (for instance, you want
to write a procedure that traverses a decision diagram) you need to add

#include "cuddInt.h"

to your source files. In addition, you should link libcudd.a to your exe-
cutable. Some platforms require specific compiler and linker flags. Refer to
the Makefile in the top level directory of the distribution.

23

http://www.graphviz.org
ftp://ftp.uni-bremen.de/pub/graphics/daVinci
ftp://ftp.polito.it/pub/research/dddmp/

a110

a111

a210

a211

a310

a311

a410

a411

a510

a511

a610

a611

o

a00

9fc 9ff

995 9fb 9fe

95f

994

1

9f7 9fa 9fd

9f6 9f9

95e

993

9f59f2 9f8

9f4

95d

9f1

992

9ed 9f0 9f3

9ec 9ef

95c

954

987 9eb 9ee

9ea

955

Figure 1: A BDD representing a phase constraint for the optimization of
fixed-polarity Reed-Muller forms. The label of each node is the unique part
of the node address. All nodes on the same level correspond to the same
variable, whose name is shown at the left of the diagram. Dotted lines
indicate complement arcs. Dashed lines indicate regular “else” arcs.

24

4.2 Reference Counts

Garbage collection in the CUDD package is based on reference counts. Each
node stores the sum of the external references and internal references. An
internal BDD or ADD node is created by a call to cuddUniqueInter , an in-
ternal ZDD node is created by a call to cuddUniqueInterZdd , and a terminal
node is created by a call to cuddUniqueConst . If the node returned by these
functions is new, its reference count is zero. The function that calls cud-
dUniqueInter , cuddUniqueInterZdd , or cuddUniqueConst is responsible for
increasing the reference count of the node. This is accomplished by calling
Cudd Ref .

When a function is no longer needed by an application, the memory used
by its diagram can be recycled by calling Cudd RecursiveDeref (BDDs and
ADDs) or Cudd RecursiveDerefZdd (ZDDs). These functions decrease the
reference count of the node passed to them. If the reference count becomes
0, then two things happen:

1. The node is declared “dead;” this entails increasing the counters of the
dead nodes. (One counter for the subtable to which the node belongs,
and one global counter for the unique table to which the node belongs.)
The node itself is not affected.

2. The function is recursively called on the two children of the node.

For instance, if the diagram of a function does not share any nodes with other
diagrams, then calling Cudd RecursiveDeref or Cudd RecursiveDerefZdd on
its root will cause all the nodes of the diagram to become dead.

When the number of dead nodes reaches a given level (dynamically de-
termined by the package) garbage collection takes place. During garbage
collection dead nodes are returned to the node free list.

When a new node is created, it is important to increase its reference
count before one of the two following events occurs:

1. A call to cuddUniqueInter , to cuddUniqueInterZdd , to cuddUnique-
Const , or to a function that may eventually cause a call to them.

2. A call to Cudd RecursiveDeref , to Cudd RecursiveDerefZdd , or to a
function that may eventually cause a call to them.

In practice, it is recommended to increase the reference count as soon as the
returned pointer has been tested for not being NULL.

25

4.2.1 NULL Return Values

The interface to the memory management functions (e.g., malloc) used by
CUDD intercepts NULL return values and calls a handler. The default
handler exits with an error message. If the application does not install
another handler, therefore, a NULL return value from an exported function
of CUDD signals an internal error.

If the aplication, however, installs another handler that lets execution
continue, a NULL pointer returned by an exported function typically indi-
cates that the process has run out of memory. Cudd ReadErrorCode can be
used to ascertain the nature of the problem.

An application that tests for the result being NULL can try some reme-
dial action, if it runs out of memory. For instance, it may free some memory
that is not strictly necessary, or try a slower algorithm that takes less space.
As an example, CUDD overrides the default handler when trying to enlarge
the cache or increase the number of slots of the unique table. If the alloca-
tion fails, the package prints out a message and continues without resizing
the cache.

4.2.2 Cudd RecursiveDeref vs. Cudd Deref

It is often the case that a recursive procedure has to protect the result it is
going to return, while it disposes of intermediate results. (See the previous
discussion on when to increase reference counts.) Once the intermediate
results have been properly disposed of, the final result must be returned
to its pristine state, in which the root node may have a reference count of
0. One cannot use Cudd RecursiveDeref (or Cudd RecursiveDerefZdd) for
this purpose, because it may erroneously make some nodes dead. Therefore,
the package provides a different function: Cudd Deref . This function is
not recursive, and does not change the dead node counts. Its use is almost
exclusively the one just described: Decreasing the reference count of the
root of the final result before returning from a recursive procedure.

4.2.3 When Increasing the Reference Count is Unnecessary

When a copy of a predefined constant or of a simple BDD variable is needed
for comparison purposes, then calling Cudd Ref is not necessary, because
these simple functions are guaranteed to have reference counts greater than
0 at all times. If no call to Cudd Ref is made, then no attempt to free the
diagram by calling Cudd RecursiveDeref or Cudd RecursiveDerefZdd should
be made.

26

4.2.4 Saturating Increments and Decrements

On 32-bit machines, the CUDD package stores the reference counts in un-
signed short int’s. For large diagrams, it is possible for some reference counts
to exceed the capacity of an unsigned short int. Therefore, increments and
decrements of reference counts are saturating. This means that once a refer-
ence count has reached the maximum possible value, it is no longer changed
by calls to Cudd Ref, Cudd RecursiveDeref , Cudd RecursiveDerefZdd , or
Cudd Deref . As a consequence, some nodes that have no references may
not be declared dead. This may result in a small waste of memory, which is
normally more than offset by the reduction in size of the node structure.

When using 64-bit pointers, there is normally no memory advantage from
using short int’s instead of int’s in a DdNode. Therefore, increments and
decrements are not saturating in that case. What option is in effect depends
on two macros, SIZEOF VOID P and SIZEOF INT, defined in the configu-
ration header file (config.h). The increments and decrements of the reference
counts are performed using two macros: cuddSatInc and cuddSatDec, whose
definitions depend on SIZEOF VOID P and SIZEOF INT.

4.3 Complement Arcs

If ADDs are restricted to use only the constants 0 and 1, they behave like
BDDs without complement arcs. It is normally easier to write code that
manipulates 0-1 ADDs, than to write code for BDDs. However, comple-
mentation is trivial with complement arcs, and is not trivial without. As a
consequence, with complement arcs it is possible to check for more termi-
nal cases and it is possible to apply De Morgan’s laws to reduce problems
that are essentially identical to a standard form. This in turn increases the
utilization of the cache.

The complement attribute is stored in the least significant bit of the
“else” pointer of each node. An external pointer to a function can also be
complemented. The “then” pointer to a node, on the other hand, is always
regular. It is a mistake to use a complement pointer as it is to address
memory. Instead, it is always necessary to obtain a regular version of it.
This is normally done by calling Cudd Regular . It is also a mistake to
call cuddUniqueInter with a complemented “then” child as argument. The
calling procedure must apply De Morgan’s laws by complementing both
pointers passed to cuddUniqueInter and then taking the complement of the
result.

27

4.4 The Cache

Each entry of the cache consists of five fields: The operator, three pointers
to operands and a pointer to the result. The operator and the three pointers
to the operands are combined to form three words. The combination relies
on two facts:

• Most operations have one or two operands. A few bits are sufficient
to discriminate all three-operands operations.

• All nodes are aligned to 16-byte boundaries. (32-byte boundaries if
64-bit pointers are used.) Hence, there are a few bits available to
distinguish the three-operand operations from te others and to assign
unique codes to them.

The cache does not contribute to the reference counts of the nodes. The
fact that the cache contains a pointer to a node does not imply that the
node is alive. Instead, when garbage collection takes place, all entries of the
cache pointing to dead nodes are cleared.

The cache is also cleared (of all entries) when dynamic reordering takes
place. In both cases, the entries removed from the cache are about to become
invalid.

All operands and results in a cache entry must be pointers to DdNodes.
If a function produces more than one result, or uses more than three argu-
ments, there are currently two solutions:

• Build a separate, local, cache. (Using, for instance, the st library.)

• Combine multiple results, or multiple operands, into a single diagram,
by building a “multiplexing structure” with reserved variables.

Support of the former solution is under development. (See cuddLCache.c..)
Support for the latter solution may be provided in future versions of the
package.

There are three sets of interface functions to the cache. The first set is
for functions with three operands: cuddCacheInsert and cuddCacheLookup.
The second set is for functions with two operands: cuddCacheInsert2 and
cuddCacheLookup2 . The second set is for functions with one operand: cudd-
CacheInsert1 and cuddCacheLookup1 . The second set is slightly faster than
the first, and the third set is slightly faster than the second.

28

4.4.1 Cache Sizing

The size of the cache can increase during the execution of an application.
(There is currently no way to decrease the size of the cache, though it would
not be difficult to do it.) When a cache miss occurs, the package uses the
following criteria to decide whether to resize the cache:

1. If the cache already exceeds the limit given by the maxCache field of
the manager, no resizing takes place. The limit is the minimum of
two values: a value set at initialization time and possibly modified
by the application, which constitutes the hard limit beyond which the
cache will never grow; and a number that depends on the current total
number of slots in the unique table.

2. If the cache is not too large already, resizing is decided based on the
hit rate. The policy adopted by the CUDD package is “reward-based.”
If the cache hit rate is high, then it is worthwhile to increase the size
of the cache.

When resizing takes place, the statistical counters used to compute the hit
rate are reinitialized so as to prevent immediate resizing. The number of
entries is doubled.

The rationale for the “reward-based” policy is as follows. In many
BDD/ADD applications the hit rate is not very sensitive to the size of the
cache: It is primarily a function of the problem instance at hand. If a large
hit rate is observed, chances are that by using a large cache, the results of
large problems (those that would take longer to solve) will survive in the
cache without being overwritten long enough to cause a valuable cache hit.
Notice that when a large problem is solved more than once, so are its recur-
sively generated subproblems. If the hit rate is low, the probability of large
problems being solved more than once is low.

The other observation about the cache sizing policy is that there is little
point in keeping a cache which is much larger than the unique table. Every
time the unique table “fills up,” garbage collection is invoked and the cache
is cleared of all dead entries. A cache that is much larger than the unique
table is therefore less than fully utilized.

4.4.2 Local Caches

Sometimes it may be necessary or convenient to use a local cache. A lo-
cal cache can be lossless (no results are ever overwritten), or it may store

29

objects for which canonical representations are not available. One impor-
tant fact to keep in mind when using a local cache is that local caches are
not cleared during garbage collection or before reordering. Therefore, it is
necessary to increment the reference count of all nodes pointed by a local
cache. (Unless their reference counts are guaranteed positive in some other
way. One such way is by including all partial results in the global result.)
Before disposing of the local cache, all elements stored in it must be passed
to Cudd RecursiveDeref . As consequence of the fact that all results in a
local cache are referenced, it is generally convenient to store in the local
cache also the result of trivial problems, which are not usually stored in the
global cache. Otherwise, after a recursive call, it is difficult to tell whether
the result is in the cache, and therefore referenced, or not in the cache, and
therefore not referenced.

An alternative approach to referencing the results in the local caches is
to install hook functions (see Section 3.16) to be executed before garbage
collection.

4.5 The Unique Table

A recursive procedure typically splits the operands by expanding with re-
spect to the topmost variable. Topmost in this context refers to the variable
that is closest to the roots in the current variable order. The nodes, on the
other hand, hold the index, which is invariant with reordering. Therefore,
when splitting, one must use the permutation array maintained by the pack-
age to get the right level. Access to the permutation array is provided by
the macro cuddI for BDDs and ADDs, and by the macro cuddIZ for ZDDs.

The unique table consists of as many hash tables as there are variables
in use. These has tables are called unique subtables. The sizes of the unique
subtables are determined by two criteria:

1. The collision lists should be short to keep access time down.

2. There should be enough room for dead nodes, to prevent too frequent
garbage collections.

While the first criterion is fairly straightforward to implement, the second
leaves more room to creativity. The CUDD package tries to figure out
whether more dead node should be allowed to increase performance. (See
also Section 3.4.) There are two reasons for not doing garbage collection too
often. The obvious one is that it is expensive. The second is that dead nodes
may be reclaimed, if they are the result of a successful cache lookup. Hence

30

dead nodes may provide a substantial speed-up if they are kept around long
enough. The usefulness of keeping many dead nodes around varies from
application to application, and from problem instance to problem instance.
As in the sizing of the cache, the CUDD package adopts a “reward-based”
policy to decide how much room should be used for the unique table. If
the number of dead nodes reclaimed is large compared to the number of
nodes directly requested from the memory manager, then the CUDD package
assumes that it will be beneficial to allow more room for the subtables,
thereby reducing the frequency of garbage collection. The package does so
by switching between two modes of operation:

1. Fast growth: In this mode, the ratio of dead nodes to total nodes
required for garbage collection is higher than in the slow growth mode
to favor resizing of the subtables.

2. Slow growth: In this mode keeping many dead nodes around is not as
important as keeping memory requirements low.

Switching from one mode to the other is based on the following criteria:

1. If the unique table is already large, only slow growth is possible.

2. If the table is small and many dead nodes are being reclaimed, then
fast growth is selected.

This policy is especially effective when the diagrams being manipulated have
lots of recombination. Notice the interplay of the cache sizing and unique
sizing: Fast growth normally occurs when the cache hit rate is large. The
cache and the unique table then grow in concert, preserving a healthy bal-
ance between their sizes.

4.6 Allowing Asynchronous Reordering

Asynchronous reordering is the reordering that is triggered automatically by
the increase of the number of nodes. Asynchronous reordering takes place
when a new internal node must be created, and the number of nodes has
reached a given threshold. (The threshold is adjusted by the package every
time reordering takes place.)

Those procedures that do not create new nodes (e.g., procedures that
count the number of nodes or minterms) need not worry about asynchronous
reordering: No special precaution is necessary in writing them.

31

Procedures that only manipulate decision diagrams through the exported
functions of the CUDD package also need not concern themselves with asyn-
chronous reordering. (See Section 3.2.1 for the exceptions.)

The remaining class of procedures is composed of functions that visit
the diagrams and may create new nodes. All such procedures in the CUDD
package are written so that they can be interrupted by dynamic reordering.
The general approach followed goes under the name of “abort and retry.” As
the name implies, a computation that is interrupted by dynamic reordering
is aborted and tried again.

A recursive procedure that can be interrupted by dynamic reordering (an
interruptible procedure from now on) is composed of two functions. One is
responsible for the real computation. The other is a simple wrapper, which
tests whether reordering occurred and restarts the computation if it did.

Asynchronous reordering of BDDs and ADDs can only be triggered in-
side cuddUniqueInter , when a new node is about to be created. Likewise,
asynchronous reordering of ZDDs can only be triggered inside cuddUniqueIn-
terZdd . When reordering is triggered, three things happen:

1. cuddUniqueInter returns a NULL value;

2. The flag reordered of the manager is set to 1. (0 means no reordering,
while 2 indicates an error occurred during reordering.)

3. The counter reorderings of the manager is incremented. The counter
is initialized to 0 when the manager is started and can be accessed by
calling Cudd ReadReorderings. By taking two readings of the counter,
an application can determine if variable reordering has taken place
between the first and the second reading. The package itself, however,
does not make use of the counter: It is mentioned here for complete-
ness.

The recursive procedure that receives a NULL value from cuddUniqueIn-
ter must free all intermediate results that it may have computed before, and
return NULL in its turn.

The wrapper function does not decide whether reordering occurred based
on the NULL return value, because the NULL value may be the result of
lack of memory. Instead, it checks the reordered flag.

When a recursive procedure calls another recursive procedure that may
cause reordering, it should bypass the wrapper and call the recursive pro-
cedure directly. Otherwise, the calling procedure will not know whether

32

reordering occurred, and will not be able to restart. This is the main rea-
son why most recursive procedures are internal, rather than static. (The
wrappers, on the other hand, are mostly exported.)

4.7 Debugging

By defining the symbol DD DEBUG during compilation, numerous checks
are added to the code. In addition, the procedures Cudd DebugCheck ,
Cudd CheckKeys, and cuddHeapProfile can be called at any point to ver-
ify the consistency of the data structure. (cuddHeapProfile is an internal
procedure. It is declared in cuddInt.h.) Procedures Cudd DebugCheck
and Cudd CheckKeys are especially useful when CUDD reports that dur-
ing garbage collection the number of nodes actually deleted from the unique
table is different from the count of dead nodes kept by the manager. The
error causing the discrepancy may have occurred much earlier than it is
discovered. A few strategicaly placed calls to the debugging procedures can
considerably narrow down the search for the source of the problem. (For
instance, a call to Cudd RecursiveDeref where one to Cudd Deref was re-
quired may be identified in this way.)

One of the most common problems encountered in debugging code based
on the CUDD package is a missing call to Cudd RecursiveDeref . To help
identify this type of problems, the package provides a function called Cudd CheckZeroRef .
This function should be called immediately before shutting down the man-
ager. Cudd CheckZeroRef checks that the only nodes left with non-zero ref-
erence counts are the predefined constants, the BDD projection functions,
and nodes whose reference counts are saturated.

For this function to be effective the application must explicitly dispose
of all diagrams to which it has pointers before calling it.

4.8 Gathering and Interpreting Statistics

Function Cudd PrintInfo can be called to print out the values of parameters
and statistics for a manager. The output of Cudd PrintInfo is divided in
two sections. The first reports the values of parameters that are under the
application control. The second reports the values of statistical counters
and other non-modifiable parameters. A quick guide to the interpretation
of all these quantities follows. For ease of exposition, we reverse the order
and describe the non-modifiable parameters first. We’ll use a sample run as
example. There is nothing special about this run.

33

4.8.1 Non Modifiable Parameters

The list of non-modifiable parameters starts with:

**** CUDD non-modifiable parameters ****

Memory in use: 32544220

This is the memory used by CUDD for three things mainly: Unique table
(including all DD nodes in use), node free list, and computed table. This
number almost never decreases in the lifetime of a CUDD manager, because
CUDD does not release memory when it frees nodes. Rather, it puts the
nodes on its own free list. This number is in bytes. It does not represent
the peak memory occupation, because it does not include the size of data
structures created temporarily by some functions (e.g., local look-up tables).

Peak number of nodes: 837018

This number is the number of nodes that the manager has allocated. This
is not the largest size of the BDDs, because the manager will normally have
some dead nodes and some nodes on the free list.

Peak number of live nodes: 836894

This is the largest number of live nodes that the manager has held since its
creation.

Number of BDD variables: 198

Number of ZDD variables: 0

These numbers tell us this run was not using ZDDs.

Number of cache entries: 1048576

Current number of slots of the computed table. If one has a performance
problem, this is one of the numbers to look at. The cache size is always a
power of 2.

Number of cache look-ups: 2996536

Number of cache hits: 1187087

These numbers give an indication of the hit rate in the computed table. It
is not unlikely for model checking runs to get hit rates even higher than this
one (39.62%).

34

Number of cache insertions: 1809473

Number of cache collisions: 961208

Number of cache deletions: 0

A collision occurs when a cache entry is overwritten. A deletion occurs
when a cache entry is invalidated (e.g., during garbage collection). If the
number of deletions is high compared to the number of collisions, it means
that garbage collection occurs too often. In this case there were no garbage
collections; hence, no deletions.

Cache used slots = 80.90% (expected 82.19%)

Percentage of cache slots that contain a valid entry. If this number is small,
it may signal one of three conditions:

1. The cache may have been recently resized and it is still filling up.

2. The cache is too large for the BDDs. This should not happen if the
size of the cache is determined by CUDD.

3. The hash function is not working properly. This is accompanied by a
degradation in performance. Conversely, a degradation in performance
may be due to bad hash function behavior.

The expected value is computed assuming a uniformly random distribution
of the accesses. If the difference between the measured value and the ex-
pected value is large (unlike this case), the cache is not working properly.

Soft limit for cache size: 1318912

This number says how large the cache can grow. This limit is based on the
size of the unique table. CUDD uses a reward-based policy for growing the
cache. (See Section 4.4.1.) The default hit rate for resizing is 30% and the
value in effect is reported among the modifiable parameters.

Number of buckets in unique table: 329728

This number is exactly one quarter of the one above. This is indeed how
the soft limit is determined currently, unless the computed table hits the
specified hard limit. (See below.)

Used buckets in unique table: 87.96% (expected 87.93%)

35

Percentage of unique table buckets that contain at least one node. Remarks
analogous to those made about the used cache slots apply.

Number of BDD and ADD nodes: 836894

Number of ZDD nodes: 0

How many nodes are currently in the unique table, either alive or dead.

Number of dead BDD and ADD nodes: 0

Number of dead ZDD nodes: 0

Subtract these numbers from those above to get the number of live nodes.
In this case there are no dead nodes because the application uses delayed
dereferencing Cudd DelayedDerefBdd .

Total number of nodes allocated: 836894

This is the total number of nodes that were requested and obtained from the
free list. It never decreases, and is not an indication of memory occupation
after the first garbage collection. Rather, it is a measure of the package
activity.

Total number of nodes reclaimed: 0

These are the nodes that were resuscitated from the dead. If they are many
more than the allocated nodes, and the total number of slots is low relative to
the number of nodes, then one may want to increase the limit for fast unique
table growth. In this case, the number is 0 because of delayed dereferencing.

Garbage collections so far: 0

Time for garbage collections: 0.00 sec

Reorderings so far: 0

Time for reordering: 0.00 sec

There is a GC for each reordering. Hence the first count will always be at
least as large as the second.

Node swaps in reordering: 0

This is the number of elementary reordering steps. Each step consists of
the re-expression of one node while swapping two adjacent variables. This
number is a good measure of the amount of work done in reordering.

36

4.8.2 Modifiable Parameters

Let us now consider the modifiable parameters, that is, those settings on
which the application or the user has control.

**** CUDD modifiable parameters ****

Hard limit for cache size: 8388608

This number counts entries. Each entry is 16 bytes if CUDD is compiled to
use 32-bit pointers. Two important observations are in order:

1. If the datasize limit is set, CUDD will use it to determine this number
automatically. On a Unix system, one can type “limit” or “ulimit”
to verify if this value is set. If the datasize limit is not set, CUDD
uses a default which is rather small. If you have enough memory
(say 64MB or more) you should seriously consider not using the de-
fault. So, either set the datasize limit, or override the default with
Cudd SetMaxCacheHard .

2. If a process seems to be going nowhere, a small value for this parameter
may be the culprit. One cannot overemphasize the importance of the
computed table in BDD algorithms.

In this case the limit was automatically set for a target maximum memory
occupation of 104 MB.

Cache hit threshold for resizing: 15%

This number can be changed if one suspects performance is hindered by the
small size of the cache, and the cache is not growing towards the soft limit
sufficiently fast. In such a case one can change the default 30% to 15% (as
in this case) or even 1%.

Garbage collection enabled: yes

One can disable it, but there are few good reasons for doing so. It is normally
preferable to raise the limit for fast unique table growth. (See below.)

Limit for fast unique table growth: 1363148

See Section 4.5 and the comments above about reclaimed nodes and hard
limit for the cache size. This value was chosen automatically by CUDD for
a datasize limit of 1 GB.

37

Maximum number of variables sifted per reordering: 1000

Maximum number of variable swaps per reordering: 2000000

Maximum growth while sifting a variable: 1.2

Lowering these numbers will cause reordering to be less accurate and faster.
Results are somewhat unpredictable, because larger BDDs after one reorder-
ing do not necessarily mean the process will go faster or slower.

Dynamic reordering of BDDs enabled: yes

Default BDD reordering method: 4

Dynamic reordering of ZDDs enabled: no

Default ZDD reordering method: 4

These lines tell whether automatic reordering can take place and what
method would be used. The mapping from numbers to methods is in cudd.h.
One may want to try different BDD reordering methods. If variable groups
are used, however, one should not expect to see big differences, because
CUDD uses the reported method only to reorder each leaf variable group
(typically corresponding present and next state variables). For the relative
order of the groups, it always uses the same algorithm, which is effectively
sifting.

As for enabling dynamic reordering or not, a sensible recommendation
is the following: Unless the circuit is rather small or one has a pretty good
idea of what the order should be, reordering should be enabled.

Realignment of ZDDs to BDDs enabled: no

Realignment of BDDs to ZDDs enabled: no

Dead nodes counted in triggering reordering: no

Group checking criterion: 7

Recombination threshold: 0

Symmetry violation threshold: 0

Arc violation threshold: 0

GA population size: 0

Number of crossovers for GA: 0

Parameters for reordering. See the documentation of the functions used to
control these parameters for the details.

Next reordering threshold: 100000

38

When the number of nodes crosses this threshold, reordering will be trig-
gered. (If enabled; in this case it is not.) This parameter is updated by the
package whenever reordering takes place. The application can change it,
for instance at start-up. Another possibility is to use a hook function (see
Section 3.16) to override the default updating policy.

4.8.3 Extended Statistics and Reporting

The following symbols can be defined during compilation to increase the
amount of statistics gathered and the number of messages produced by the
package:

• DD STATS;

• DD CACHE PROFILE;

• DD UNIQUE PROFILE.

• DD VERBOSE;

Defining DD CACHE PROFILE causes each entry of the cache to include an
access counter, which is used to compute simple statistics on the distribution
of the keys.

4.9 Guidelines for Documentation

The documentation of the CUDD functions is extracted automatically from
the sources by doxygen www.doxygen.org.) The following guidelines are
adhered to in CUDD to insure consistent and effective use of automatic
extraction. It is recommended that extensions to CUDD follow the same
documentation guidelines.

• The documentation of an exported procedure should be sufficient to
allow one to use it without reading the code. It is not necessary to
explain how the procedure works; only what it does.

• The see fields should be space-separated lists of function names. The
see field of an exported procedure should only reference other exported
procedures. The see field of an internal procedure may reference other
internal procedures as well as exported procedures, but no static pro-
cedures.

• The return values are detailed in the return field, not in the brief field.

39

http://www.doxygen.org

• The parameters are documented alongside their declarations. Further
comments may appear in the details field.

• The brief field should be about one line long.

5 The C++ Interface

5.1 Compiling and Linking

To build an application that uses the CUDD C++ interface, you should add

#include "cuddObj.hh"

to your source files. In addition to the normal CUDD libraries (see Sec-
tion 3.1) you should link libobj.a to your executable. Refer to the instal-
lation notes in the top level directory of the distribution for further details.

5.2 Basic Manipulation

The following fragment of code illustrates some simple operations on BDDs
using the C++ interface.

Cudd mgr(0,0);

BDD x = mgr.bddVar();

BDD y = mgr.bddVar();

BDD f = x * y;

BDD g = y + !x;

cout << "f is" << (f <= g ? "" : " not")

<< " less than or equal to g\n";

This code creates a manager called mgr and two variables in it. It then
defines two functions f and g in terms of the variables. Finally, it prints
a message based on the comparison of the two functions. No explicit ref-
erencing or dereferencing is required. The operators are overloaded in the
intuitive way. BDDs are freed when execution leaves the scope in which
they are defined or when the variables referring to them are overwritten.

6 Acknowledgments

The contributors: Iris Bahar, Hyunwoo Cho, Erica Frohm, Charlie Gaona,
Cheng Hua, Jae-Young Jang, Seh-Woong Jeong, Balakrishna Kumthekar,
Enrico Macii, Bobbie Manne, In-Ho Moon, Curt Musfeldt, Shipra Panda,

40

Abelardo Pardo, Bernard Plessier, Kavita Ravi, Hyongkyoon Shin, Alan
Shuler, Arun Sivakumaran, Jorgen Sivesind.
The early adopters: Gianpiero Cabodi, Jordi Cortadella, Mario Escobar,
Gayani Gamage, Gary Hachtel, Mariano Hermida, Woohyuk Lee, Enric Pas-
tor, Massimo Poncino, Ellen Sentovich, the students of ECEN5139.

I am also particularly indebted to the following people for in-depth dis-
cussions on BDDs: Armin Biere, Olivier Coudert, Hubert Garavel, Arie
Gurfinkel, Geert Janssen, Don Knuth, David Long, Jean Christophe Madre,
Ken McMillan, Shin-Ichi Minato, Jaehong Park, Rajeev Ranjan, Rick Rudell,
Ellen Sentovich, Tom Shiple, Christian Stangier, and Bwolen Yang.

Special thanks to Norris Ip for guiding my faltering steps in the design
of the C++ interface. Gianpiero Cabodi and Stefano Quer have graciously
agreed to let me distribute their dddmp library with CUDD.

Masahiro Fujita, Gary Hachtel, and Carl Pixley have provided encour-
agement and advice.

The National Science Foundation and the Semiconductor Research Cor-
poration have supported in part the development of this package.

References

[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams and their ap-
plications. In Proceedings of the International Conference on Computer-
Aided Design, pages 188–191, Santa Clara, CA, November 1993.

[2] B. Bollig, M. Löbbing, and I. Wegener. Simulated annealing to improve
variable orderings for OBDDs. Presented at the International Workshop
on Logic Synthesis, Granlibakken, CA, May 1995.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementa-
tion of a BDD package. In Proceedings of the 27th Design Automation
Conference, pages 40–45, Orlando, FL, June 1990.

[4] R. E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers, C-35(8):677–691, August
1986.

[5] R. Drechsler, B. Becker, and N. Göckel. A genetic algorithm for variable
ordering of OBDDs. Presented at the International Workshop on Logic
Synthesis, Granlibakken, CA, May 1995.

41

[6] S. J. Friedman and K. J. Supowit. Finding the optimal variable order-
ing for binary decision diagrams. IEEE Transactions on Computers,
39(5):710–713, May 1990.

[7] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of
binary decision diagrams for the application of multi-level logic synthe-
sis. In Proceedings of the European Conference on Design Automation,
pages 50–54, Amsterdam, February 1991.

[8] M. Held and R. M. Karp. A dynamic programming approach to se-
quencing problems. J. SIAM, 10(1):196–210, 1962.

[9] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision
diagrams based on exchanges of variables. In Proceedings of the Inter-
national Conference on Computer-Aided Design, pages 472–475, Santa
Clara, CA, November 1991.

[10] S.-W. Jeong, T.-S. Kim, and F. Somenzi. An efficient method for opti-
mal BDD ordering computation. In International Conference on VLSI
and CAD (ICVC’93), Taejon, Korea, November 1993.

[11] S.-I. Minato. Zero-suppressed BDDs for set manipulation in combina-
torial problems. In Proceedings of the Design Automation Conference,
pages 272–277, Dallas, TX, June 1993.

[12] S. Panda and F. Somenzi. Who are the variables in your neighborhood.
In Proceedings of the International Conference on Computer-Aided De-
sign, pages 74–77, San Jose, CA, November 1995.

[13] S. Panda, F. Somenzi, and B. F. Plessier. Symmetry detection and
dynamic variable ordering of decision diagrams. In Proceedings of the
International Conference on Computer-Aided Design, pages 628–631,
San Jose, CA, November 1994.

[14] B. F. Plessier. A General Framework for Verification of Sequential Cir-
cuits. PhD thesis, University of Colorado at Boulder, Dept. of Electrical
and Computer Engineering, 1993.

[15] R. Rudell. Dynamic variable ordering for ordered binary decision di-
agrams. In Proceedings of the International Conference on Computer-
Aided Design, pages 42–47, Santa Clara, CA, November 1993.

42

Index

ADD, 2, 5, 9, 11
aggregation, 16
Algebraic Decision Diagram, see ADD
arc

complement, 9, 22, 25
regular, 22, 25

background value, 8
BDD, 2, 5, 8, 10
Binary Decision Diagram, see BDD
box

black, 2
clear, 2, 21

cache, 6, 25, 26
collision, 33
collision list, 28
deletion, 33
local, 26, 27
lossless, 27
reward-based resizing, 27
sizing, 27

cacheSize, 6
canonical, 5, 28
compiling, 4, 21
config.h, 25
configuration, 3
conversion

of ADDs to BDDs, 13
of BDDs to ADDs, 13
of BDDs to ZDDs, 12, 13
of ZDDs to BDDs, 13

cube sets, 2
cudd.h, 4, 15
Cudd addApply, 11, 12
Cudd addBddInterval, 13
Cudd addBddPattern, 13
Cudd addBddThreshold, 13

Cudd addConst, 9
Cudd addHarwell, 8
Cudd AddHook, 20
Cudd addIthBit, 13
Cudd addIthVar, 9
Cudd addNewVar, 9
Cudd addNewVarAtLevel, 9, 18
Cudd addRead, 8
Cudd addTimes, 12
Cudd AutodynDisable, 15
Cudd AutodynDisableZdd, 19
Cudd AutodynEnable, 15
Cudd AutodynEnableZdd, 19
Cudd bddAnd, 10, 12
Cudd bddAndLimit, 20
Cudd bddConstrain, 5
Cudd bddIte, 10
Cudd bddIthVar, 9
Cudd bddNewVar, 9
Cudd bddNewVarAtLevel, 9, 18
Cudd BddToAdd, 13
Cudd bddXor, 12
CUDD CACHE SLOTS, 6
Cudd CheckKeys, 31
Cudd CheckZeroRef, 31
Cudd ClearErrorCode, 20
Cudd CountMinterm, 8
Cudd DebugCheck, 31
Cudd DelayedDerefBdd, 34
Cudd Deref, 24, 25
Cudd DumpBlif, 21
Cudd DumpDaVinci, 21
Cudd DumpDot, 21
Cudd ForeachCube, 4, 8
Cudd ForeachNode, 4
Cudd HookType, 19
Cudd IncreaseTimeLimit, 20

43

Cudd Init, 6, 7
Cudd MakeTreeNode, 17, 18
Cudd MakeZddTreeNode, 19
Cudd Not, 8
Cudd PrintInfo, 31
Cudd PrintMinterm, 8
Cudd Quit, 7
Cudd ReadBackground, 8
Cudd ReadEpsilon, 8
Cudd ReadErrorCode, 20, 24
Cudd ReadInvPerm, 11
Cudd ReadLogicZero, 8
Cudd ReadLooseUpto, 7
Cudd ReadMaxGrowth, 16
Cudd ReadMinusInfinity, 8
Cudd ReadOne, 7
Cudd ReadPlusInfinity, 8
Cudd ReadReorderings, 30
Cudd ReadSiftMaxVar, 16
Cudd ReadTimeLimit, 20
Cudd ReadTree, 17
Cudd ReadZddOne, 8, 13
Cudd ReadZero, 8
Cudd RecursiveDeref, 5, 23–25, 28,

31
Cudd RecursiveDerefZdd, 5, 23–25
Cudd ReduceHeap, 15
Cudd Ref, 5, 10, 23, 24
Cudd Regular, 25
CUDD REORDER ANNEALING, 17
CUDD REORDER EXACT, 17
CUDD REORDER GENETIC, 17
CUDD REORDER GROUP SIFT, 16
CUDD REORDER GROUP SIFT CONV,

16
CUDD REORDER NONE, 15, 19
CUDD REORDER RANDOM, 15, 19
CUDD REORDER RANDOM PIVOT,

15, 19
CUDD REORDER SAME, 15, 19

CUDD REORDER SIFT, 15, 19
CUDD REORDER SIFT CONVERGE,

16, 19
CUDD REORDER SYMM SIFT, 16,

19
CUDD REORDER SYMM SIFT CONV,

16, 19
CUDD REORDER WINDOW2, 16
CUDD REORDER WINDOW2 CONV,

17
CUDD REORDER WINDOW3, 16
CUDD REORDER WINDOW3 CONV,

17
CUDD REORDER WINDOW4, 16
CUDD REORDER WINDOW4 CONV,

17
Cudd SetEpsilon, 8
Cudd SetLooseUpTo, 7
Cudd SetMaxCacheHard, 35
Cudd SetMaxGrowth, 16
Cudd SetSiftMaxVar, 16
Cudd SetTimeLimit, 20
Cudd SetTree, 17
Cudd ShuffleHeap, 17
Cudd StdPostReordHook, 20
Cudd StdPreReordHook, 20
Cudd SymmProfile, 16
Cudd TimeLimited, 20
CUDD TOO MANY NODES, 20
CUDD UNIQUE SLOTS, 6
Cudd UnsetTimeLimit, 20
Cudd UpdateTimeLimit, 20
Cudd zddDumpDot, 21
Cudd zddIsop, 13
Cudd zddIthVar, 10
Cudd zddPortFromBdd, 14
Cudd zddPortToBdd, 14
Cudd zddRealignDisable, 19
Cudd zddRealignEnable, 19
Cudd zddReduceHeap, 19

44

Cudd zddShuffleHeap, 19
Cudd zddVarsFromBddVars, 14
Cudd zddWeakDiv, 13
cuddCacheInsert, 26
cuddCacheInsert1, 26
cuddCacheInsert2, 26
cuddCacheLookup, 26
cuddCacheLookup1, 26
cuddCacheLookup2, 26
cuddHeapProfile, 31
cuddI, 28
cuddInt.h, 31
cuddIZ, 28
cuddSatDec, 25
cuddSatInc, 25
cuddUniqueConst, 23
cuddUniqueInter, 23, 25, 30
cuddUniqueInterZdd, 23, 30

DD CACHE PROFILE, 37
DD DEBUG, 31
DD STATS, 37
DD UNIQUE PROFILE, 37
DD VERBOSE, 37
DdManager, 5, 6
DdNode, 4, 26
debugging, 31
documentation, 37

return, 37
see, 37
brief, 37

dot, see graph, drawing
doxygen, 37

Epsilon, 8
extdoc, see documentation

floating point, 8
double (C type), 5
IEEE Standard 754, 8

free list, 23

FTP, 3
function

characteristic, 2, 14
cover, 13, 14
irredundant, 13

minterms, 8, 29
ON-set, 2
sum of products, 8
switching, 2

garbage collection
hooks, 20

garbage collection, 5–7, 23, 26, 28
generator, 4
graph

arc capacity, 8
arc length, 8
drawing, 21

growth, 7
gzip, 3

header files, 15, 25
hook, 19

infinities, 8
installation, 3
interface

cache, 26

libraries, 3
cudd, 4
dddmp, 21
mtr, 17
obj, 38
st, 26

manager, 5, 7
matrix

sparse, 8
maxCache, 27
maxMemory, 7

45

MinusInfinity, 8
MTR DEFAULT, 18
MTR FIXED, 18

nanotrav, 3
node, 4

constant, 4, 7–9, 23, 24
value, 5

dead, 23, 26, 28
dereference, 12
reclaimed, 28
recycling, 5
reference, 12
reference count, 23
reference count, 4, 5, 10, 11, 23–

26, 28, 31
saturated, 31

terminal, see node, constant
variable index, 4

numSlots, 6
numVars, 6
numVarsZ, 6

PlusInfinity, 8
projection functions, 9, 10, 12, 13, 31

README file, 3
reordering, 2, 4, 26

abort and retry, 30
asynchronous, 15, 29
converging, 15–17
Cudd ReorderingType, 15
dynamic, 2, 14, 19
exact, 17
function wrapper, 30
genetic, 17
group, 15, 16
hooks, 20
interruptible procedure, 30
of BDDs and ADDs, 14
of ZDDs, 13, 18

random, 15
sifting, 15
simulated annealing, 17
symmetric, 16
threshold, 15, 29
window, 16

saturating
decrements, 25
increments, 25

SIZEOF INT, 25
SIZEOF VOID P, 25
statistical counters, 27
statistical counters, 23
statistics, 31
subtable, 6, 23
symmetry, 16

table
computed, 6
growth, 7
hash, 5, 28
unique, 4–7, 14, 23, 27, 28
fast growth, 29
reward-based resizing, 29
slow growth, 29

timeout, 20

variable
groups, 17
order, 4, 9
permutation, 4, 28
tree, 17, 18

ZDD, 2, 5, 9, 12, 13
zero

arithmetic, 7, 9, 13
logical, 7, 13

Zero-suppressed Binary Decision Di-
agram, see ZDD

46

	Introduction
	How to Get CUDD
	The CUDD Package
	CUDD Friends

	User's Manual
	Compiling and Linking
	Basic Data Structures
	Nodes
	The Manager
	Cache

	Initializing and Shutting Down a DdManager
	Setting Parameters
	Constant Functions
	One, Logic Zero, and Arithmetic Zero
	Predefined Constants
	Background
	New Constants

	Creating Variables
	New BDD and ADD Variables
	New ZDD Variables

	Basic BDD Manipulation
	Basic ADD Manipulation
	Basic ZDD Manipulation
	Converting ADDs to BDDs and Vice Versa
	Converting BDDs to ZDDs and Vice Versa
	Variable Reordering for BDDs and ADDs
	Grouping Variables
	Variable Reordering for ZDDs
	Keeping Consistent Variable Orders for BDDs and ZDDs
	Hooks
	Timeouts and Limits
	Writing Decision Diagrams to a File
	Saving and Restoring BDDs

	Programmer's Manual
	Compiling and Linking
	Reference Counts
	NULL Return Values
	Cudd_RecursiveDeref vs. Cudd_Deref
	When Increasing the Reference Count is Unnecessary
	Saturating Increments and Decrements

	Complement Arcs
	The Cache
	Cache Sizing
	Local Caches

	The Unique Table
	Allowing Asynchronous Reordering
	Debugging
	Gathering and Interpreting Statistics
	Non Modifiable Parameters
	Modifiable Parameters
	Extended Statistics and Reporting

	Guidelines for Documentation

	The C++ Interface
	Compiling and Linking
	Basic Manipulation

	Acknowledgments
	References
	Index

