Struct alloc::vec::Vec 1.0.0[−][src]
pub struct Vec<T> { /* fields omitted */ }A contiguous growable array type, written Vec<T> but pronounced 'vector'.
Examples
let mut vec = Vec::new(); vec.push(1); vec.push(2); assert_eq!(vec.len(), 2); assert_eq!(vec[0], 1); assert_eq!(vec.pop(), Some(2)); assert_eq!(vec.len(), 1); vec[0] = 7; assert_eq!(vec[0], 7); vec.extend([1, 2, 3].iter().cloned()); for x in &vec { println!("{}", x); } assert_eq!(vec, [7, 1, 2, 3]);
The vec! macro is provided to make initialization more convenient:
let mut vec = vec![1, 2, 3]; vec.push(4); assert_eq!(vec, [1, 2, 3, 4]);
It can also initialize each element of a Vec<T> with a given value:
let vec = vec![0; 5]; assert_eq!(vec, [0, 0, 0, 0, 0]);
Use a Vec<T> as an efficient stack:
let mut stack = Vec::new(); stack.push(1); stack.push(2); stack.push(3); while let Some(top) = stack.pop() { // Prints 3, 2, 1 println!("{}", top); }
Indexing
The Vec type allows to access values by index, because it implements the
Index trait. An example will be more explicit:
let v = vec![0, 2, 4, 6]; println!("{}", v[1]); // it will display '2'
However be careful: if you try to access an index which isn't in the Vec,
your software will panic! You cannot do this:
let v = vec![0, 2, 4, 6]; println!("{}", v[6]); // it will panic!
In conclusion: always check if the index you want to get really exists before doing it.
Slicing
A Vec can be mutable. Slices, on the other hand, are read-only objects.
To get a slice, use &. Example:
fn read_slice(slice: &[usize]) { // ... } let v = vec![0, 1]; read_slice(&v); // ... and that's all! // you can also do it like this: let x : &[usize] = &v;
In Rust, it's more common to pass slices as arguments rather than vectors
when you just want to provide a read access. The same goes for String and
&str.
Capacity and reallocation
The capacity of a vector is the amount of space allocated for any future elements that will be added onto the vector. This is not to be confused with the length of a vector, which specifies the number of actual elements within the vector. If a vector's length exceeds its capacity, its capacity will automatically be increased, but its elements will have to be reallocated.
For example, a vector with capacity 10 and length 0 would be an empty vector
with space for 10 more elements. Pushing 10 or fewer elements onto the
vector will not change its capacity or cause reallocation to occur. However,
if the vector's length is increased to 11, it will have to reallocate, which
can be slow. For this reason, it is recommended to use Vec::with_capacity
whenever possible to specify how big the vector is expected to get.
Guarantees
Due to its incredibly fundamental nature, Vec makes a lot of guarantees
about its design. This ensures that it's as low-overhead as possible in
the general case, and can be correctly manipulated in primitive ways
by unsafe code. Note that these guarantees refer to an unqualified Vec<T>.
If additional type parameters are added (e.g. to support custom allocators),
overriding their defaults may change the behavior.
Most fundamentally, Vec is and always will be a (pointer, capacity, length)
triplet. No more, no less. The order of these fields is completely
unspecified, and you should use the appropriate methods to modify these.
The pointer will never be null, so this type is null-pointer-optimized.
However, the pointer may not actually point to allocated memory. In particular,
if you construct a Vec with capacity 0 via Vec::new, vec![],
Vec::with_capacity(0), or by calling shrink_to_fit
on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
types inside a Vec, it will not allocate space for them. Note that in this case
the Vec may not report a capacity of 0. Vec will allocate if and only
if mem::size_of::<T>() * capacity() > 0. In general, Vec's allocation
details are very subtle — if you intend to allocate memory using a Vec
and use it for something else (either to pass to unsafe code, or to build your
own memory-backed collection), be sure to deallocate this memory by using
from_raw_parts to recover the Vec and then dropping it.
If a Vec has allocated memory, then the memory it points to is on the heap
(as defined by the allocator Rust is configured to use by default), and its
pointer points to len initialized, contiguous elements in order (what
you would see if you coerced it to a slice), followed by capacity-len logically uninitialized, contiguous elements.
Vec will never perform a "small optimization" where elements are actually
stored on the stack for two reasons:
-
It would make it more difficult for unsafe code to correctly manipulate a
Vec. The contents of aVecwouldn't have a stable address if it were only moved, and it would be more difficult to determine if aVechad actually allocated memory. -
It would penalize the general case, incurring an additional branch on every access.
Vec will never automatically shrink itself, even if completely empty. This
ensures no unnecessary allocations or deallocations occur. Emptying a Vec
and then filling it back up to the same len should incur no calls to
the allocator. If you wish to free up unused memory, use
shrink_to_fit.
push and insert will never (re)allocate if the reported capacity is
sufficient. push and insert will (re)allocate if
len==capacity. That is, the reported capacity is completely
accurate, and can be relied on. It can even be used to manually free the memory
allocated by a Vec if desired. Bulk insertion methods may reallocate, even
when not necessary.
Vec does not guarantee any particular growth strategy when reallocating
when full, nor when reserve is called. The current strategy is basic
and it may prove desirable to use a non-constant growth factor. Whatever
strategy is used will of course guarantee O(1) amortized push.
vec![x; n], vec![a, b, c, d], and
Vec::with_capacity(n), will all produce a Vec
with exactly the requested capacity. If len==capacity,
(as is the case for the vec! macro), then a Vec<T> can be converted to
and from a Box<[T]> without reallocating or moving the elements.
Vec will not specifically overwrite any data that is removed from it,
but also won't specifically preserve it. Its uninitialized memory is
scratch space that it may use however it wants. It will generally just do
whatever is most efficient or otherwise easy to implement. Do not rely on
removed data to be erased for security purposes. Even if you drop a Vec, its
buffer may simply be reused by another Vec. Even if you zero a Vec's memory
first, that may not actually happen because the optimizer does not consider
this a side-effect that must be preserved. There is one case which we will
not break, however: using unsafe code to write to the excess capacity,
and then increasing the length to match, is always valid.
Vec does not currently guarantee the order in which elements are dropped.
The order has changed in the past and may change again.
Methods
impl<T> Vec<T>[src]
impl<T> Vec<T>pub const fn new() -> Vec<T>[src]
pub const fn new() -> Vec<T>Constructs a new, empty Vec<T>.
The vector will not allocate until elements are pushed onto it.
Examples
let mut vec: Vec<i32> = Vec::new();
pub fn with_capacity(capacity: usize) -> Vec<T>[src]
pub fn with_capacity(capacity: usize) -> Vec<T>Constructs a new, empty Vec<T> with the specified capacity.
The vector will be able to hold exactly capacity elements without
reallocating. If capacity is 0, the vector will not allocate.
It is important to note that although the returned vector has the capacity specified, the vector will have a zero length. For an explanation of the difference between length and capacity, see Capacity and reallocation.
Examples
let mut vec = Vec::with_capacity(10); // The vector contains no items, even though it has capacity for more assert_eq!(vec.len(), 0); // These are all done without reallocating... for i in 0..10 { vec.push(i); } // ...but this may make the vector reallocate vec.push(11);
pub unsafe fn from_raw_parts(
ptr: *mut T,
length: usize,
capacity: usize
) -> Vec<T>[src]
pub unsafe fn from_raw_parts(
ptr: *mut T,
length: usize,
capacity: usize
) -> Vec<T>Creates a Vec<T> directly from the raw components of another vector.
Safety
This is highly unsafe, due to the number of invariants that aren't checked:
ptrneeds to have been previously allocated viaString/Vec<T>(at least, it's highly likely to be incorrect if it wasn't).ptr'sTneeds to have the same size and alignment as it was allocated with.lengthneeds to be less than or equal tocapacity.capacityneeds to be the capacity that the pointer was allocated with.
Violating these may cause problems like corrupting the allocator's
internal data structures. For example it is not safe
to build a Vec<u8> from a pointer to a C char array and a size_t.
The ownership of ptr is effectively transferred to the
Vec<T> which may then deallocate, reallocate or change the
contents of memory pointed to by the pointer at will. Ensure
that nothing else uses the pointer after calling this
function.
Examples
use std::ptr; use std::mem; fn main() { let mut v = vec![1, 2, 3]; // Pull out the various important pieces of information about `v` let p = v.as_mut_ptr(); let len = v.len(); let cap = v.capacity(); unsafe { // Cast `v` into the void: no destructor run, so we are in // complete control of the allocation to which `p` points. mem::forget(v); // Overwrite memory with 4, 5, 6 for i in 0..len as isize { ptr::write(p.offset(i), 4 + i); } // Put everything back together into a Vec let rebuilt = Vec::from_raw_parts(p, len, cap); assert_eq!(rebuilt, [4, 5, 6]); } }
pub fn capacity(&self) -> usize[src]
pub fn capacity(&self) -> usizeReturns the number of elements the vector can hold without reallocating.
Examples
let vec: Vec<i32> = Vec::with_capacity(10); assert_eq!(vec.capacity(), 10);
pub fn reserve(&mut self, additional: usize)[src]
pub fn reserve(&mut self, additional: usize)Reserves capacity for at least additional more elements to be inserted
in the given Vec<T>. The collection may reserve more space to avoid
frequent reallocations. After calling reserve, capacity will be
greater than or equal to self.len() + additional. Does nothing if
capacity is already sufficient.
Panics
Panics if the new capacity overflows usize.
Examples
let mut vec = vec![1]; vec.reserve(10); assert!(vec.capacity() >= 11);
pub fn reserve_exact(&mut self, additional: usize)[src]
pub fn reserve_exact(&mut self, additional: usize)Reserves the minimum capacity for exactly additional more elements to
be inserted in the given Vec<T>. After calling reserve_exact,
capacity will be greater than or equal to self.len() + additional.
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore capacity can not be relied upon to be precisely
minimal. Prefer reserve if future insertions are expected.
Panics
Panics if the new capacity overflows usize.
Examples
let mut vec = vec![1]; vec.reserve_exact(10); assert!(vec.capacity() >= 11);
pub fn try_reserve(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>[src]
pub fn try_reserve(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>🔬 This is a nightly-only experimental API. (try_reserve #48043)
new API
Tries to reserve capacity for at least additional more elements to be inserted
in the given Vec<T>. The collection may reserve more space to avoid
frequent reallocations. After calling reserve, capacity will be
greater than or equal to self.len() + additional. Does nothing if
capacity is already sufficient.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
#![feature(try_reserve)] use std::collections::CollectionAllocErr; fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> { let mut output = Vec::new(); // Pre-reserve the memory, exiting if we can't output.try_reserve(data.len())?; // Now we know this can't OOM in the middle of our complex work output.extend(data.iter().map(|&val| { val * 2 + 5 // very complicated })); Ok(output) }
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>[src]
pub fn try_reserve_exact(
&mut self,
additional: usize
) -> Result<(), CollectionAllocErr>🔬 This is a nightly-only experimental API. (try_reserve #48043)
new API
Tries to reserves the minimum capacity for exactly additional more elements to
be inserted in the given Vec<T>. After calling reserve_exact,
capacity will be greater than or equal to self.len() + additional.
Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it
requests. Therefore capacity can not be relied upon to be precisely
minimal. Prefer reserve if future insertions are expected.
Errors
If the capacity overflows, or the allocator reports a failure, then an error is returned.
Examples
#![feature(try_reserve)] use std::collections::CollectionAllocErr; fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> { let mut output = Vec::new(); // Pre-reserve the memory, exiting if we can't output.try_reserve(data.len())?; // Now we know this can't OOM in the middle of our complex work output.extend(data.iter().map(|&val| { val * 2 + 5 // very complicated })); Ok(output) }
pub fn shrink_to_fit(&mut self)[src]
pub fn shrink_to_fit(&mut self)Shrinks the capacity of the vector as much as possible.
It will drop down as close as possible to the length but the allocator may still inform the vector that there is space for a few more elements.
Examples
let mut vec = Vec::with_capacity(10); vec.extend([1, 2, 3].iter().cloned()); assert_eq!(vec.capacity(), 10); vec.shrink_to_fit(); assert!(vec.capacity() >= 3);
pub fn shrink_to(&mut self, min_capacity: usize)[src]
pub fn shrink_to(&mut self, min_capacity: usize)🔬 This is a nightly-only experimental API. (shrink_to)
new API
Shrinks the capacity of the vector with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
Panics if the current capacity is smaller than the supplied minimum capacity.
Examples
#![feature(shrink_to)] let mut vec = Vec::with_capacity(10); vec.extend([1, 2, 3].iter().cloned()); assert_eq!(vec.capacity(), 10); vec.shrink_to(4); assert!(vec.capacity() >= 4); vec.shrink_to(0); assert!(vec.capacity() >= 3);
ⓘImportant traits for Box<I>pub fn into_boxed_slice(self) -> Box<[T]>[src]
pub fn into_boxed_slice(self) -> Box<[T]>Converts the vector into Box<[T]>.
Note that this will drop any excess capacity.
Examples
let v = vec![1, 2, 3]; let slice = v.into_boxed_slice();
Any excess capacity is removed:
let mut vec = Vec::with_capacity(10); vec.extend([1, 2, 3].iter().cloned()); assert_eq!(vec.capacity(), 10); let slice = vec.into_boxed_slice(); assert_eq!(slice.into_vec().capacity(), 3);
pub fn truncate(&mut self, len: usize)[src]
pub fn truncate(&mut self, len: usize)Shortens the vector, keeping the first len elements and dropping
the rest.
If len is greater than the vector's current length, this has no
effect.
The drain method can emulate truncate, but causes the excess
elements to be returned instead of dropped.
Note that this method has no effect on the allocated capacity of the vector.
Examples
Truncating a five element vector to two elements:
let mut vec = vec![1, 2, 3, 4, 5]; vec.truncate(2); assert_eq!(vec, [1, 2]);
No truncation occurs when len is greater than the vector's current
length:
let mut vec = vec![1, 2, 3]; vec.truncate(8); assert_eq!(vec, [1, 2, 3]);
Truncating when len == 0 is equivalent to calling the clear
method.
let mut vec = vec![1, 2, 3]; vec.truncate(0); assert_eq!(vec, []);
pub fn as_slice(&self) -> &[T]1.7.0[src]
pub fn as_slice(&self) -> &[T]Extracts a slice containing the entire vector.
Equivalent to &s[..].
Examples
use std::io::{self, Write}; let buffer = vec![1, 2, 3, 5, 8]; io::sink().write(buffer.as_slice()).unwrap();
pub fn as_mut_slice(&mut self) -> &mut [T]1.7.0[src]
pub fn as_mut_slice(&mut self) -> &mut [T]Extracts a mutable slice of the entire vector.
Equivalent to &mut s[..].
Examples
use std::io::{self, Read}; let mut buffer = vec![0; 3]; io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
pub unsafe fn set_len(&mut self, len: usize)[src]
pub unsafe fn set_len(&mut self, len: usize)Sets the length of a vector.
This will explicitly set the size of the vector, without actually modifying its buffers, so it is up to the caller to ensure that the vector is actually the specified size.
Examples
use std::ptr; let mut vec = vec!['r', 'u', 's', 't']; unsafe { ptr::drop_in_place(&mut vec[3]); vec.set_len(3); } assert_eq!(vec, ['r', 'u', 's']);
In this example, there is a memory leak since the memory locations
owned by the inner vectors were not freed prior to the set_len call:
let mut vec = vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1]]; unsafe { vec.set_len(0); }
In this example, the vector gets expanded from zero to four items without any memory allocations occurring, resulting in vector values of unallocated memory:
let mut vec: Vec<char> = Vec::new(); unsafe { vec.set_len(4); }
pub fn swap_remove(&mut self, index: usize) -> T[src]
pub fn swap_remove(&mut self, index: usize) -> TRemoves an element from the vector and returns it.
The removed element is replaced by the last element of the vector.
This does not preserve ordering, but is O(1).
Panics
Panics if index is out of bounds.
Examples
let mut v = vec!["foo", "bar", "baz", "qux"]; assert_eq!(v.swap_remove(1), "bar"); assert_eq!(v, ["foo", "qux", "baz"]); assert_eq!(v.swap_remove(0), "foo"); assert_eq!(v, ["baz", "qux"]);
pub fn insert(&mut self, index: usize, element: T)[src]
pub fn insert(&mut self, index: usize, element: T)Inserts an element at position index within the vector, shifting all
elements after it to the right.
Panics
Panics if index > len.
Examples
let mut vec = vec![1, 2, 3]; vec.insert(1, 4); assert_eq!(vec, [1, 4, 2, 3]); vec.insert(4, 5); assert_eq!(vec, [1, 4, 2, 3, 5]);
pub fn remove(&mut self, index: usize) -> T[src]
pub fn remove(&mut self, index: usize) -> TRemoves and returns the element at position index within the vector,
shifting all elements after it to the left.
Panics
Panics if index is out of bounds.
Examples
let mut v = vec![1, 2, 3]; assert_eq!(v.remove(1), 2); assert_eq!(v, [1, 3]);
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&T) -> bool, [src]
pub fn retain<F>(&mut self, f: F) where
F: FnMut(&T) -> bool, Retains only the elements specified by the predicate.
In other words, remove all elements e such that f(&e) returns false.
This method operates in place and preserves the order of the retained
elements.
Examples
let mut vec = vec![1, 2, 3, 4]; vec.retain(|&x| x%2 == 0); assert_eq!(vec, [2, 4]);
pub fn dedup_by_key<F, K>(&mut self, key: F) where
F: FnMut(&mut T) -> K,
K: PartialEq, 1.16.0[src]
pub fn dedup_by_key<F, K>(&mut self, key: F) where
F: FnMut(&mut T) -> K,
K: PartialEq, Removes all but the first of consecutive elements in the vector that resolve to the same key.
If the vector is sorted, this removes all duplicates.
Examples
let mut vec = vec![10, 20, 21, 30, 20]; vec.dedup_by_key(|i| *i / 10); assert_eq!(vec, [10, 20, 30, 20]);
pub fn dedup_by<F>(&mut self, same_bucket: F) where
F: FnMut(&mut T, &mut T) -> bool, 1.16.0[src]
pub fn dedup_by<F>(&mut self, same_bucket: F) where
F: FnMut(&mut T, &mut T) -> bool, Removes all but the first of consecutive elements in the vector satisfying a given equality relation.
The same_bucket function is passed references to two elements from the vector, and
returns true if the elements compare equal, or false if they do not. The elements are
passed in opposite order from their order in the vector, so if same_bucket(a, b) returns
true, a is removed.
If the vector is sorted, this removes all duplicates.
Examples
let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
pub fn push(&mut self, value: T)[src]
pub fn push(&mut self, value: T)Appends an element to the back of a collection.
Panics
Panics if the number of elements in the vector overflows a usize.
Examples
let mut vec = vec![1, 2]; vec.push(3); assert_eq!(vec, [1, 2, 3]);
pub fn pop(&mut self) -> Option<T>[src]
pub fn pop(&mut self) -> Option<T>Removes the last element from a vector and returns it, or None if it
is empty.
Examples
let mut vec = vec![1, 2, 3]; assert_eq!(vec.pop(), Some(3)); assert_eq!(vec, [1, 2]);
pub fn append(&mut self, other: &mut Self)1.4.0[src]
pub fn append(&mut self, other: &mut Self)Moves all the elements of other into Self, leaving other empty.
Panics
Panics if the number of elements in the vector overflows a usize.
Examples
let mut vec = vec![1, 2, 3]; let mut vec2 = vec![4, 5, 6]; vec.append(&mut vec2); assert_eq!(vec, [1, 2, 3, 4, 5, 6]); assert_eq!(vec2, []);
ⓘImportant traits for Drain<'a, T>pub fn drain<R>(&mut self, range: R) -> Drain<T> where
R: RangeBounds<usize>, 1.6.0[src]
pub fn drain<R>(&mut self, range: R) -> Drain<T> where
R: RangeBounds<usize>, Creates a draining iterator that removes the specified range in the vector and yields the removed items.
Note 1: The element range is removed even if the iterator is only partially consumed or not consumed at all.
Note 2: It is unspecified how many elements are removed from the vector
if the Drain value is leaked.
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
Examples
let mut v = vec![1, 2, 3]; let u: Vec<_> = v.drain(1..).collect(); assert_eq!(v, &[1]); assert_eq!(u, &[2, 3]); // A full range clears the vector v.drain(..); assert_eq!(v, &[]);
pub fn clear(&mut self)[src]
pub fn clear(&mut self)Clears the vector, removing all values.
Note that this method has no effect on the allocated capacity of the vector.
Examples
let mut v = vec![1, 2, 3]; v.clear(); assert!(v.is_empty());
pub fn len(&self) -> usize[src]
pub fn len(&self) -> usizeReturns the number of elements in the vector, also referred to as its 'length'.
Examples
let a = vec![1, 2, 3]; assert_eq!(a.len(), 3);
pub fn is_empty(&self) -> bool[src]
pub fn is_empty(&self) -> boolReturns true if the vector contains no elements.
Examples
let mut v = Vec::new(); assert!(v.is_empty()); v.push(1); assert!(!v.is_empty());
pub fn split_off(&mut self, at: usize) -> Self1.4.0[src]
pub fn split_off(&mut self, at: usize) -> SelfSplits the collection into two at the given index.
Returns a newly allocated Self. self contains elements [0, at),
and the returned Self contains elements [at, len).
Note that the capacity of self does not change.
Panics
Panics if at > len.
Examples
let mut vec = vec![1,2,3]; let vec2 = vec.split_off(1); assert_eq!(vec, [1]); assert_eq!(vec2, [2, 3]);
pub fn resize_with<F>(&mut self, new_len: usize, f: F) where
F: FnMut() -> T, [src]
pub fn resize_with<F>(&mut self, new_len: usize, f: F) where
F: FnMut() -> T, Resizes the Vec in-place so that len is equal to new_len.
If new_len is greater than len, the Vec is extended by the
difference, with each additional slot filled with the result of
calling the closure f. The return values from f will end up
in the Vec in the order they have been generated.
If new_len is less than len, the Vec is simply truncated.
This method uses a closure to create new values on every push. If
you'd rather Clone a given value, use resize. If you want
to use the Default trait to generate values, you can pass
Default::default() as the second argument..
Examples
#![feature(vec_resize_with)] let mut vec = vec![1, 2, 3]; vec.resize_with(5, Default::default); assert_eq!(vec, [1, 2, 3, 0, 0]); let mut vec = vec![]; let mut p = 1; vec.resize_with(4, || { p *= 2; p }); assert_eq!(vec, [2, 4, 8, 16]);
impl<T: Clone> Vec<T>[src]
impl<T: Clone> Vec<T>pub fn resize(&mut self, new_len: usize, value: T)1.5.0[src]
pub fn resize(&mut self, new_len: usize, value: T)Resizes the Vec in-place so that len is equal to new_len.
If new_len is greater than len, the Vec is extended by the
difference, with each additional slot filled with value.
If new_len is less than len, the Vec is simply truncated.
This method requires Clone to be able clone the passed value. If
you need more flexibility (or want to rely on Default instead of
Clone), use resize_with.
Examples
let mut vec = vec!["hello"]; vec.resize(3, "world"); assert_eq!(vec, ["hello", "world", "world"]); let mut vec = vec![1, 2, 3, 4]; vec.resize(2, 0); assert_eq!(vec, [1, 2]);
pub fn extend_from_slice(&mut self, other: &[T])1.6.0[src]
pub fn extend_from_slice(&mut self, other: &[T])Clones and appends all elements in a slice to the Vec.
Iterates over the slice other, clones each element, and then appends
it to this Vec. The other vector is traversed in-order.
Note that this function is same as extend except that it is
specialized to work with slices instead. If and when Rust gets
specialization this function will likely be deprecated (but still
available).
Examples
let mut vec = vec![1]; vec.extend_from_slice(&[2, 3, 4]); assert_eq!(vec, [1, 2, 3, 4]);
impl<T: Default> Vec<T>[src]
impl<T: Default> Vec<T>pub fn resize_default(&mut self, new_len: usize)[src]
pub fn resize_default(&mut self, new_len: usize)Resizes the Vec in-place so that len is equal to new_len.
If new_len is greater than len, the Vec is extended by the
difference, with each additional slot filled with Default::default().
If new_len is less than len, the Vec is simply truncated.
This method uses Default to create new values on every push. If
you'd rather Clone a given value, use resize.
Examples
#![feature(vec_resize_default)] let mut vec = vec![1, 2, 3]; vec.resize_default(5); assert_eq!(vec, [1, 2, 3, 0, 0]); let mut vec = vec![1, 2, 3, 4]; vec.resize_default(2); assert_eq!(vec, [1, 2]);
impl<T: PartialEq> Vec<T>[src]
impl<T: PartialEq> Vec<T>pub fn dedup(&mut self)[src]
pub fn dedup(&mut self)Removes consecutive repeated elements in the vector.
If the vector is sorted, this removes all duplicates.
Examples
let mut vec = vec![1, 2, 2, 3, 2]; vec.dedup(); assert_eq!(vec, [1, 2, 3, 2]);
pub fn remove_item(&mut self, item: &T) -> Option<T>[src]
pub fn remove_item(&mut self, item: &T) -> Option<T>🔬 This is a nightly-only experimental API. (vec_remove_item #40062)
recently added
Removes the first instance of item from the vector if the item exists.
Examples
let mut vec = vec![1, 2, 3, 1]; vec.remove_item(&1); assert_eq!(vec, vec![2, 3, 1]);
impl<T> Vec<T>[src]
impl<T> Vec<T>ⓘImportant traits for Splice<'a, I>pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter> where
R: RangeBounds<usize>,
I: IntoIterator<Item = T>, 1.21.0[src]
pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter> where
R: RangeBounds<usize>,
I: IntoIterator<Item = T>, Creates a splicing iterator that replaces the specified range in the vector
with the given replace_with iterator and yields the removed items.
replace_with does not need to be the same length as range.
Note 1: The element range is removed even if the iterator is not consumed until the end.
Note 2: It is unspecified how many elements are removed from the vector,
if the Splice value is leaked.
Note 3: The input iterator replace_with is only consumed
when the Splice value is dropped.
Note 4: This is optimal if:
- The tail (elements in the vector after
range) is empty, - or
replace_withyields fewer elements thanrange’s length - or the lower bound of its
size_hint()is exact.
Otherwise, a temporary vector is allocated and the tail is moved twice.
Panics
Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.
Examples
let mut v = vec![1, 2, 3]; let new = [7, 8]; let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect(); assert_eq!(v, &[7, 8, 3]); assert_eq!(u, &[1, 2]);
ⓘImportant traits for DrainFilter<'a, T, F>pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F> where
F: FnMut(&mut T) -> bool, [src]
pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F> where
F: FnMut(&mut T) -> bool, 🔬 This is a nightly-only experimental API. (drain_filter #43244)
recently added
Creates an iterator which uses a closure to determine if an element should be removed.
If the closure returns true, then the element is removed and yielded. If the closure returns false, the element will remain in the vector and will not be yielded by the iterator.
Using this method is equivalent to the following code:
let mut i = 0; while i != vec.len() { if some_predicate(&mut vec[i]) { let val = vec.remove(i); // your code here } else { i += 1; } }
But drain_filter is easier to use. drain_filter is also more efficient,
because it can backshift the elements of the array in bulk.
Note that drain_filter also lets you mutate every element in the filter closure,
regardless of whether you choose to keep or remove it.
Examples
Splitting an array into evens and odds, reusing the original allocation:
#![feature(drain_filter)] let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]; let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>(); let odds = numbers; assert_eq!(evens, vec![2, 4, 6, 8, 14]); assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
Trait Implementations
impl<T: Ord> From<Vec<T>> for BinaryHeap<T>1.5.0[src]
impl<T: Ord> From<Vec<T>> for BinaryHeap<T>fn from(vec: Vec<T>) -> BinaryHeap<T>[src]
fn from(vec: Vec<T>) -> BinaryHeap<T>Performs the conversion.
impl<T> From<BinaryHeap<T>> for Vec<T>1.5.0[src]
impl<T> From<BinaryHeap<T>> for Vec<T>fn from(heap: BinaryHeap<T>) -> Vec<T>[src]
fn from(heap: BinaryHeap<T>) -> Vec<T>Performs the conversion.
impl<'a, 'b, A: Sized, B> PartialEq<Vec<B>> for VecDeque<A> where
A: PartialEq<B>, 1.17.0[src]
impl<'a, 'b, A: Sized, B> PartialEq<Vec<B>> for VecDeque<A> where
A: PartialEq<B>, fn eq(&self, other: &Vec<B>) -> bool[src]
fn eq(&self, other: &Vec<B>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
#[must_use]
fn ne(&self, other: &Rhs) -> bool[src]
#[must_use]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<T> From<Vec<T>> for VecDeque<T>1.10.0[src]
impl<T> From<Vec<T>> for VecDeque<T>impl<T> From<VecDeque<T>> for Vec<T>1.10.0[src]
impl<T> From<VecDeque<T>> for Vec<T>impl<T> From<Vec<T>> for Arc<[T]>1.21.0[src]
impl<T> From<Vec<T>> for Arc<[T]>impl<T> From<Vec<T>> for Rc<[T]>1.21.0[src]
impl<T> From<Vec<T>> for Rc<[T]>impl<T> Borrow<[T]> for Vec<T>[src]
impl<T> Borrow<[T]> for Vec<T>impl<T> BorrowMut<[T]> for Vec<T>[src]
impl<T> BorrowMut<[T]> for Vec<T>fn borrow_mut(&mut self) -> &mut [T][src]
fn borrow_mut(&mut self) -> &mut [T]Mutably borrows from an owned value. Read more
impl From<String> for Vec<u8>1.14.0[src]
impl From<String> for Vec<u8>impl<T: Clone> Clone for Vec<T>[src]
impl<T: Clone> Clone for Vec<T>fn clone(&self) -> Vec<T>[src]
fn clone(&self) -> Vec<T>Returns a copy of the value. Read more
fn clone_from(&mut self, other: &Vec<T>)[src]
fn clone_from(&mut self, other: &Vec<T>)Performs copy-assignment from source. Read more
impl<T: Hash> Hash for Vec<T>[src]
impl<T: Hash> Hash for Vec<T>fn hash<H: Hasher>(&self, state: &mut H)[src]
fn hash<H: Hasher>(&self, state: &mut H)Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl<T, I> Index<I> for Vec<T> where
I: SliceIndex<[T]>, [src]
impl<T, I> Index<I> for Vec<T> where
I: SliceIndex<[T]>, type Output = I::Output
The returned type after indexing.
fn index(&self, index: I) -> &Self::Output[src]
fn index(&self, index: I) -> &Self::OutputPerforms the indexing (container[index]) operation.
impl<T, I> IndexMut<I> for Vec<T> where
I: SliceIndex<[T]>, [src]
impl<T, I> IndexMut<I> for Vec<T> where
I: SliceIndex<[T]>, fn index_mut(&mut self, index: I) -> &mut Self::Output[src]
fn index_mut(&mut self, index: I) -> &mut Self::OutputPerforms the mutable indexing (container[index]) operation.
impl<T> Deref for Vec<T>[src]
impl<T> Deref for Vec<T>type Target = [T]
The resulting type after dereferencing.
fn deref(&self) -> &[T][src]
fn deref(&self) -> &[T]Dereferences the value.
impl<T> DerefMut for Vec<T>[src]
impl<T> DerefMut for Vec<T>impl<T> FromIterator<T> for Vec<T>[src]
impl<T> FromIterator<T> for Vec<T>fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>[src]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>Creates a value from an iterator. Read more
impl<T> IntoIterator for Vec<T>[src]
impl<T> IntoIterator for Vec<T>type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IntoIter<T>fn into_iter(self) -> IntoIter<T>[src]
fn into_iter(self) -> IntoIter<T>Creates a consuming iterator, that is, one that moves each value out of the vector (from start to end). The vector cannot be used after calling this.
Examples
let v = vec!["a".to_string(), "b".to_string()]; for s in v.into_iter() { // s has type String, not &String println!("{}", s); }
impl<'a, T> IntoIterator for &'a Vec<T>[src]
impl<'a, T> IntoIterator for &'a Vec<T>type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for Iter<'a, T>fn into_iter(self) -> Iter<'a, T>[src]
fn into_iter(self) -> Iter<'a, T>Creates an iterator from a value. Read more
impl<'a, T> IntoIterator for &'a mut Vec<T>[src]
impl<'a, T> IntoIterator for &'a mut Vec<T>type Item = &'a mut T
The type of the elements being iterated over.
type IntoIter = IterMut<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IterMut<'a, T>fn into_iter(self) -> IterMut<'a, T>[src]
fn into_iter(self) -> IterMut<'a, T>Creates an iterator from a value. Read more
impl<T> Extend<T> for Vec<T>[src]
impl<T> Extend<T> for Vec<T>fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)[src]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)Extends a collection with the contents of an iterator. Read more
impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T>1.2.0[src]
impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T>Extend implementation that copies elements out of references before pushing them onto the Vec.
This implementation is specialized for slice iterators, where it uses copy_from_slice to
append the entire slice at once.
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)[src]
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)Extends a collection with the contents of an iterator. Read more
impl<'a, 'b, A: Sized, B> PartialEq<Vec<B>> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<Vec<B>> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &Vec<B>) -> bool[src]
fn eq(&self, other: &Vec<B>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Vec<B>) -> bool[src]
fn ne(&self, other: &Vec<B>) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B]) -> bool[src]
fn eq(&self, other: &&'b [B]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B]) -> bool[src]
fn ne(&self, other: &&'b [B]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b mut [B]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b mut [B]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b mut [B]) -> bool[src]
fn eq(&self, other: &&'b mut [B]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b mut [B]) -> bool[src]
fn ne(&self, other: &&'b mut [B]) -> boolThis method tests for !=.
impl<'a, 'b, A: Clone, B> PartialEq<Vec<B>> for Cow<'a, [A]> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Clone, B> PartialEq<Vec<B>> for Cow<'a, [A]> where
A: PartialEq<B>, fn eq(&self, other: &Vec<B>) -> bool[src]
fn eq(&self, other: &Vec<B>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Vec<B>) -> bool[src]
fn ne(&self, other: &Vec<B>) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 0]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 0]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 0]) -> bool[src]
fn eq(&self, other: &[B; 0]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 0]) -> bool[src]
fn ne(&self, other: &[B; 0]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 0]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 0]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 0]) -> bool[src]
fn eq(&self, other: &&'b [B; 0]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 0]) -> bool[src]
fn ne(&self, other: &&'b [B; 0]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 1]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 1]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 1]) -> bool[src]
fn eq(&self, other: &[B; 1]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 1]) -> bool[src]
fn ne(&self, other: &[B; 1]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 1]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 1]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 1]) -> bool[src]
fn eq(&self, other: &&'b [B; 1]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 1]) -> bool[src]
fn ne(&self, other: &&'b [B; 1]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 2]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 2]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 2]) -> bool[src]
fn eq(&self, other: &[B; 2]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 2]) -> bool[src]
fn ne(&self, other: &[B; 2]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 2]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 2]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 2]) -> bool[src]
fn eq(&self, other: &&'b [B; 2]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 2]) -> bool[src]
fn ne(&self, other: &&'b [B; 2]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 3]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 3]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 3]) -> bool[src]
fn eq(&self, other: &[B; 3]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 3]) -> bool[src]
fn ne(&self, other: &[B; 3]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 3]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 3]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 3]) -> bool[src]
fn eq(&self, other: &&'b [B; 3]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 3]) -> bool[src]
fn ne(&self, other: &&'b [B; 3]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 4]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 4]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 4]) -> bool[src]
fn eq(&self, other: &[B; 4]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 4]) -> bool[src]
fn ne(&self, other: &[B; 4]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 4]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 4]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 4]) -> bool[src]
fn eq(&self, other: &&'b [B; 4]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 4]) -> bool[src]
fn ne(&self, other: &&'b [B; 4]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 5]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 5]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 5]) -> bool[src]
fn eq(&self, other: &[B; 5]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 5]) -> bool[src]
fn ne(&self, other: &[B; 5]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 5]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 5]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 5]) -> bool[src]
fn eq(&self, other: &&'b [B; 5]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 5]) -> bool[src]
fn ne(&self, other: &&'b [B; 5]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 6]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 6]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 6]) -> bool[src]
fn eq(&self, other: &[B; 6]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 6]) -> bool[src]
fn ne(&self, other: &[B; 6]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 6]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 6]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 6]) -> bool[src]
fn eq(&self, other: &&'b [B; 6]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 6]) -> bool[src]
fn ne(&self, other: &&'b [B; 6]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 7]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 7]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 7]) -> bool[src]
fn eq(&self, other: &[B; 7]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 7]) -> bool[src]
fn ne(&self, other: &[B; 7]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 7]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 7]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 7]) -> bool[src]
fn eq(&self, other: &&'b [B; 7]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 7]) -> bool[src]
fn ne(&self, other: &&'b [B; 7]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 8]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 8]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 8]) -> bool[src]
fn eq(&self, other: &[B; 8]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 8]) -> bool[src]
fn ne(&self, other: &[B; 8]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 8]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 8]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 8]) -> bool[src]
fn eq(&self, other: &&'b [B; 8]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 8]) -> bool[src]
fn ne(&self, other: &&'b [B; 8]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 9]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 9]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 9]) -> bool[src]
fn eq(&self, other: &[B; 9]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 9]) -> bool[src]
fn ne(&self, other: &[B; 9]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 9]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 9]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 9]) -> bool[src]
fn eq(&self, other: &&'b [B; 9]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 9]) -> bool[src]
fn ne(&self, other: &&'b [B; 9]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 10]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 10]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 10]) -> bool[src]
fn eq(&self, other: &[B; 10]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 10]) -> bool[src]
fn ne(&self, other: &[B; 10]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 10]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 10]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 10]) -> bool[src]
fn eq(&self, other: &&'b [B; 10]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 10]) -> bool[src]
fn ne(&self, other: &&'b [B; 10]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 11]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 11]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 11]) -> bool[src]
fn eq(&self, other: &[B; 11]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 11]) -> bool[src]
fn ne(&self, other: &[B; 11]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 11]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 11]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 11]) -> bool[src]
fn eq(&self, other: &&'b [B; 11]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 11]) -> bool[src]
fn ne(&self, other: &&'b [B; 11]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 12]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 12]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 12]) -> bool[src]
fn eq(&self, other: &[B; 12]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 12]) -> bool[src]
fn ne(&self, other: &[B; 12]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 12]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 12]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 12]) -> bool[src]
fn eq(&self, other: &&'b [B; 12]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 12]) -> bool[src]
fn ne(&self, other: &&'b [B; 12]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 13]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 13]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 13]) -> bool[src]
fn eq(&self, other: &[B; 13]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 13]) -> bool[src]
fn ne(&self, other: &[B; 13]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 13]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 13]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 13]) -> bool[src]
fn eq(&self, other: &&'b [B; 13]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 13]) -> bool[src]
fn ne(&self, other: &&'b [B; 13]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 14]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 14]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 14]) -> bool[src]
fn eq(&self, other: &[B; 14]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 14]) -> bool[src]
fn ne(&self, other: &[B; 14]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 14]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 14]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 14]) -> bool[src]
fn eq(&self, other: &&'b [B; 14]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 14]) -> bool[src]
fn ne(&self, other: &&'b [B; 14]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 15]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 15]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 15]) -> bool[src]
fn eq(&self, other: &[B; 15]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 15]) -> bool[src]
fn ne(&self, other: &[B; 15]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 15]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 15]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 15]) -> bool[src]
fn eq(&self, other: &&'b [B; 15]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 15]) -> bool[src]
fn ne(&self, other: &&'b [B; 15]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 16]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 16]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 16]) -> bool[src]
fn eq(&self, other: &[B; 16]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 16]) -> bool[src]
fn ne(&self, other: &[B; 16]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 16]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 16]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 16]) -> bool[src]
fn eq(&self, other: &&'b [B; 16]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 16]) -> bool[src]
fn ne(&self, other: &&'b [B; 16]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 17]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 17]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 17]) -> bool[src]
fn eq(&self, other: &[B; 17]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 17]) -> bool[src]
fn ne(&self, other: &[B; 17]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 17]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 17]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 17]) -> bool[src]
fn eq(&self, other: &&'b [B; 17]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 17]) -> bool[src]
fn ne(&self, other: &&'b [B; 17]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 18]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 18]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 18]) -> bool[src]
fn eq(&self, other: &[B; 18]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 18]) -> bool[src]
fn ne(&self, other: &[B; 18]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 18]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 18]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 18]) -> bool[src]
fn eq(&self, other: &&'b [B; 18]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 18]) -> bool[src]
fn ne(&self, other: &&'b [B; 18]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 19]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 19]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 19]) -> bool[src]
fn eq(&self, other: &[B; 19]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 19]) -> bool[src]
fn ne(&self, other: &[B; 19]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 19]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 19]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 19]) -> bool[src]
fn eq(&self, other: &&'b [B; 19]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 19]) -> bool[src]
fn ne(&self, other: &&'b [B; 19]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 20]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 20]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 20]) -> bool[src]
fn eq(&self, other: &[B; 20]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 20]) -> bool[src]
fn ne(&self, other: &[B; 20]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 20]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 20]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 20]) -> bool[src]
fn eq(&self, other: &&'b [B; 20]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 20]) -> bool[src]
fn ne(&self, other: &&'b [B; 20]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 21]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 21]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 21]) -> bool[src]
fn eq(&self, other: &[B; 21]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 21]) -> bool[src]
fn ne(&self, other: &[B; 21]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 21]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 21]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 21]) -> bool[src]
fn eq(&self, other: &&'b [B; 21]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 21]) -> bool[src]
fn ne(&self, other: &&'b [B; 21]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 22]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 22]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 22]) -> bool[src]
fn eq(&self, other: &[B; 22]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 22]) -> bool[src]
fn ne(&self, other: &[B; 22]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 22]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 22]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 22]) -> bool[src]
fn eq(&self, other: &&'b [B; 22]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 22]) -> bool[src]
fn ne(&self, other: &&'b [B; 22]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 23]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 23]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 23]) -> bool[src]
fn eq(&self, other: &[B; 23]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 23]) -> bool[src]
fn ne(&self, other: &[B; 23]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 23]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 23]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 23]) -> bool[src]
fn eq(&self, other: &&'b [B; 23]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 23]) -> bool[src]
fn ne(&self, other: &&'b [B; 23]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 24]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 24]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 24]) -> bool[src]
fn eq(&self, other: &[B; 24]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 24]) -> bool[src]
fn ne(&self, other: &[B; 24]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 24]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 24]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 24]) -> bool[src]
fn eq(&self, other: &&'b [B; 24]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 24]) -> bool[src]
fn ne(&self, other: &&'b [B; 24]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 25]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 25]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 25]) -> bool[src]
fn eq(&self, other: &[B; 25]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 25]) -> bool[src]
fn ne(&self, other: &[B; 25]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 25]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 25]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 25]) -> bool[src]
fn eq(&self, other: &&'b [B; 25]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 25]) -> bool[src]
fn ne(&self, other: &&'b [B; 25]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 26]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 26]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 26]) -> bool[src]
fn eq(&self, other: &[B; 26]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 26]) -> bool[src]
fn ne(&self, other: &[B; 26]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 26]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 26]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 26]) -> bool[src]
fn eq(&self, other: &&'b [B; 26]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 26]) -> bool[src]
fn ne(&self, other: &&'b [B; 26]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 27]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 27]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 27]) -> bool[src]
fn eq(&self, other: &[B; 27]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 27]) -> bool[src]
fn ne(&self, other: &[B; 27]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 27]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 27]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 27]) -> bool[src]
fn eq(&self, other: &&'b [B; 27]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 27]) -> bool[src]
fn ne(&self, other: &&'b [B; 27]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 28]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 28]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 28]) -> bool[src]
fn eq(&self, other: &[B; 28]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 28]) -> bool[src]
fn ne(&self, other: &[B; 28]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 28]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 28]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 28]) -> bool[src]
fn eq(&self, other: &&'b [B; 28]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 28]) -> bool[src]
fn ne(&self, other: &&'b [B; 28]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 29]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 29]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 29]) -> bool[src]
fn eq(&self, other: &[B; 29]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 29]) -> bool[src]
fn ne(&self, other: &[B; 29]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 29]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 29]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 29]) -> bool[src]
fn eq(&self, other: &&'b [B; 29]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 29]) -> bool[src]
fn ne(&self, other: &&'b [B; 29]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 30]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 30]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 30]) -> bool[src]
fn eq(&self, other: &[B; 30]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 30]) -> bool[src]
fn ne(&self, other: &[B; 30]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 30]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 30]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 30]) -> bool[src]
fn eq(&self, other: &&'b [B; 30]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 30]) -> bool[src]
fn ne(&self, other: &&'b [B; 30]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 31]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 31]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 31]) -> bool[src]
fn eq(&self, other: &[B; 31]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 31]) -> bool[src]
fn ne(&self, other: &[B; 31]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 31]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 31]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 31]) -> bool[src]
fn eq(&self, other: &&'b [B; 31]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 31]) -> bool[src]
fn ne(&self, other: &&'b [B; 31]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<[B; 32]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<[B; 32]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &[B; 32]) -> bool[src]
fn eq(&self, other: &[B; 32]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &[B; 32]) -> bool[src]
fn ne(&self, other: &[B; 32]) -> boolThis method tests for !=.
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 32]> for Vec<A> where
A: PartialEq<B>, [src]
impl<'a, 'b, A: Sized, B> PartialEq<&'b [B; 32]> for Vec<A> where
A: PartialEq<B>, fn eq(&self, other: &&'b [B; 32]) -> bool[src]
fn eq(&self, other: &&'b [B; 32]) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &&'b [B; 32]) -> bool[src]
fn ne(&self, other: &&'b [B; 32]) -> boolThis method tests for !=.
impl<T: PartialOrd> PartialOrd for Vec<T>[src]
impl<T: PartialOrd> PartialOrd for Vec<T>Implements comparison of vectors, lexicographically.
fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
#[must_use]
fn lt(&self, other: &Rhs) -> bool[src]
#[must_use]
fn lt(&self, other: &Rhs) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
#[must_use]
fn le(&self, other: &Rhs) -> bool[src]
#[must_use]
fn le(&self, other: &Rhs) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
#[must_use]
fn gt(&self, other: &Rhs) -> bool[src]
#[must_use]
fn gt(&self, other: &Rhs) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
#[must_use]
fn ge(&self, other: &Rhs) -> bool[src]
#[must_use]
fn ge(&self, other: &Rhs) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<T: Eq> Eq for Vec<T>[src]
impl<T: Eq> Eq for Vec<T>impl<T: Ord> Ord for Vec<T>[src]
impl<T: Ord> Ord for Vec<T>Implements ordering of vectors, lexicographically.
fn cmp(&self, other: &Vec<T>) -> Ordering[src]
fn cmp(&self, other: &Vec<T>) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src]
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src]
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more
impl<T> Drop for Vec<T>[src]
impl<T> Drop for Vec<T>impl<T> Default for Vec<T>[src]
impl<T> Default for Vec<T>impl<T: Debug> Debug for Vec<T>[src]
impl<T: Debug> Debug for Vec<T>fn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl<T> AsRef<Vec<T>> for Vec<T>[src]
impl<T> AsRef<Vec<T>> for Vec<T>impl<T> AsMut<Vec<T>> for Vec<T>1.5.0[src]
impl<T> AsMut<Vec<T>> for Vec<T>impl<T> AsRef<[T]> for Vec<T>[src]
impl<T> AsRef<[T]> for Vec<T>impl<T> AsMut<[T]> for Vec<T>1.5.0[src]
impl<T> AsMut<[T]> for Vec<T>impl<'a, T: Clone> From<&'a [T]> for Vec<T>[src]
impl<'a, T: Clone> From<&'a [T]> for Vec<T>impl<'a, T: Clone> From<&'a mut [T]> for Vec<T>1.19.0[src]
impl<'a, T: Clone> From<&'a mut [T]> for Vec<T>impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where
[T]: ToOwned<Owned = Vec<T>>, 1.14.0[src]
impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where
[T]: ToOwned<Owned = Vec<T>>, impl<T> From<Box<[T]>> for Vec<T>1.18.0[src]
impl<T> From<Box<[T]>> for Vec<T>impl<T> From<Vec<T>> for Box<[T]>1.20.0[src]
impl<T> From<Vec<T>> for Box<[T]>impl<'a> From<&'a str> for Vec<u8>[src]
impl<'a> From<&'a str> for Vec<u8>impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]>1.8.0[src]
impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]>impl<'a, T: Clone> From<&'a Vec<T>> for Cow<'a, [T]>1.28.0[src]
impl<'a, T: Clone> From<&'a Vec<T>> for Cow<'a, [T]>