Primitive Type f641.0.0[−]
The 64-bit floating point type.
Methods
impl f64[src]
impl f64pub fn is_nan(self) -> bool[src]
pub fn is_nan(self) -> boolReturns true if this value is NaN and false otherwise.
use std::f64; let nan = f64::NAN; let f = 7.0_f64; assert!(nan.is_nan()); assert!(!f.is_nan());Run
pub fn is_infinite(self) -> bool[src]
pub fn is_infinite(self) -> boolReturns true if this value is positive infinity or negative infinity and
false otherwise.
use std::f64; let f = 7.0f64; let inf = f64::INFINITY; let neg_inf = f64::NEG_INFINITY; let nan = f64::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run
pub fn is_finite(self) -> bool[src]
pub fn is_finite(self) -> boolReturns true if this number is neither infinite nor NaN.
use std::f64; let f = 7.0f64; let inf: f64 = f64::INFINITY; let neg_inf: f64 = f64::NEG_INFINITY; let nan: f64 = f64::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run
pub fn is_normal(self) -> bool[src]
pub fn is_normal(self) -> boolReturns true if the number is neither zero, infinite,
subnormal, or NaN.
use std::f64; let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 let max = f64::MAX; let lower_than_min = 1.0e-308_f64; let zero = 0.0f64; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f64::NAN.is_normal()); assert!(!f64::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run
pub fn classify(self) -> FpCategory[src]
pub fn classify(self) -> FpCategoryReturns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f64; let num = 12.4_f64; let inf = f64::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run
pub fn is_sign_positive(self) -> bool[src]
pub fn is_sign_positive(self) -> boolReturns true if and only if self has a positive sign, including +0.0, NaNs with
positive sign bit and positive infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run
pub fn is_sign_negative(self) -> bool[src]
pub fn is_sign_negative(self) -> boolReturns true if and only if self has a negative sign, including -0.0, NaNs with
negative sign bit and negative infinity.
let f = 7.0_f64; let g = -7.0_f64; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run
pub fn recip(self) -> f64[src]
pub fn recip(self) -> f64Takes the reciprocal (inverse) of a number, 1/x.
let x = 2.0_f64; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference < 1e-10);Run
pub fn to_degrees(self) -> f64[src]
pub fn to_degrees(self) -> f64Converts radians to degrees.
use std::f64::consts; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn to_radians(self) -> f64[src]
pub fn to_radians(self) -> f64Converts degrees to radians.
use std::f64::consts; let angle = 180.0_f64; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference < 1e-10);Run
pub fn max(self, other: f64) -> f64[src]
pub fn max(self, other: f64) -> f64Returns the maximum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.max(y), y);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn min(self, other: f64) -> f64[src]
pub fn min(self, other: f64) -> f64Returns the minimum of the two numbers.
let x = 1.0_f64; let y = 2.0_f64; assert_eq!(x.min(y), x);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn to_bits(self) -> u641.20.0[src]
pub fn to_bits(self) -> u64Raw transmutation to u64.
This is currently identical to transmute::<f64, u64>(self) on all platforms.
See from_bits for some discussion of the portability of this operation
(there are almost no issues).
Note that this function is distinct from as casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! assert_eq!((12.5f64).to_bits(), 0x4029000000000000); Run
pub fn from_bits(v: u64) -> f641.20.0[src]
pub fn from_bits(v: u64) -> f64Raw transmutation from u64.
This is currently identical to transmute::<u64, f64>(v) on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favours preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn't NaN, then there is no portability concern.
If you don't care about signalingness (very likely), then there is no portability concern.
Note that this function is distinct from as casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
use std::f64; let v = f64::from_bits(0x4029000000000000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);Run
impl f64[src]
impl f64pub fn floor(self) -> f64[src]
pub fn floor(self) -> f64Returns the largest integer less than or equal to a number.
Examples
let f = 3.99_f64; let g = 3.0_f64; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run
pub fn ceil(self) -> f64[src]
pub fn ceil(self) -> f64Returns the smallest integer greater than or equal to a number.
Examples
let f = 3.01_f64; let g = 4.0_f64; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run
pub fn round(self) -> f64[src]
pub fn round(self) -> f64Returns the nearest integer to a number. Round half-way cases away from
0.0.
Examples
let f = 3.3_f64; let g = -3.3_f64; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run
pub fn trunc(self) -> f64[src]
pub fn trunc(self) -> f64Returns the integer part of a number.
Examples
let f = 3.3_f64; let g = -3.7_f64; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run
pub fn fract(self) -> f64[src]
pub fn fract(self) -> f64Returns the fractional part of a number.
Examples
let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
pub fn abs(self) -> f64[src]
pub fn abs(self) -> f64Computes the absolute value of self. Returns NAN if the
number is NAN.
Examples
use std::f64; let x = 3.5_f64; let y = -3.5_f64; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10); assert!(f64::NAN.abs().is_nan());Run
pub fn signum(self) -> f64[src]
pub fn signum(self) -> f64Returns a number that represents the sign of self.
1.0if the number is positive,+0.0orINFINITY-1.0if the number is negative,-0.0orNEG_INFINITYNANif the number isNAN
Examples
use std::f64; let f = 3.5_f64; assert_eq!(f.signum(), 1.0); assert_eq!(f64::NEG_INFINITY.signum(), -1.0); assert!(f64::NAN.signum().is_nan());Run
pub fn mul_add(self, a: f64, b: f64) -> f64[src]
pub fn mul_add(self, a: f64, b: f64) -> f64Fused multiply-add. Computes (self * a) + b with only one rounding
error, yielding a more accurate result than an unfused multiply-add.
Using mul_add can be more performant than an unfused multiply-add if
the target architecture has a dedicated fma CPU instruction.
Examples
let m = 10.0_f64; let x = 4.0_f64; let b = 60.0_f64; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference < 1e-10);Run
pub fn div_euc(self, rhs: f64) -> f64[src]
pub fn div_euc(self, rhs: f64) -> f64Calculates Euclidean division, the matching method for mod_euc.
This computes the integer n such that
self = n * rhs + self.mod_euc(rhs).
In other words, the result is self / rhs rounded to the integer n
such that self >= n * rhs.
Examples
#![feature(euclidean_division)] let a: f64 = 7.0; let b = 4.0; assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0 assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0 assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0 assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0Run
pub fn mod_euc(self, rhs: f64) -> f64[src]
pub fn mod_euc(self, rhs: f64) -> f64Calculates the Euclidean modulo (self mod rhs), which is never negative.
In particular, the return value r satisfies 0.0 <= r < rhs.abs() in
most cases. However, due to a floating point round-off error it can
result in r == rhs.abs(), violating the mathematical definition, if
self is much smaller than rhs.abs() in magnitude and self < 0.0.
This result is not an element of the function's codomain, but it is the
closest floating point number in the real numbers and thus fulfills the
property self == self.div_euc(rhs) * rhs + self.mod_euc(rhs)
approximatively.
Examples
#![feature(euclidean_division)] let a: f64 = 7.0; let b = 4.0; assert_eq!(a.mod_euc(b), 3.0); assert_eq!((-a).mod_euc(b), 1.0); assert_eq!(a.mod_euc(-b), 3.0); assert_eq!((-a).mod_euc(-b), 1.0); // limitation due to round-off error assert!((-std::f64::EPSILON).mod_euc(3.0) != 0.0);Run
pub fn powi(self, n: i32) -> f64[src]
pub fn powi(self, n: i32) -> f64Raises a number to an integer power.
Using this function is generally faster than using powf
Examples
let x = 2.0_f64; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference < 1e-10);Run
pub fn powf(self, n: f64) -> f64[src]
pub fn powf(self, n: f64) -> f64Raises a number to a floating point power.
Examples
let x = 2.0_f64; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference < 1e-10);Run
pub fn sqrt(self) -> f64[src]
pub fn sqrt(self) -> f64Takes the square root of a number.
Returns NaN if self is a negative number.
Examples
let positive = 4.0_f64; let negative = -4.0_f64; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference < 1e-10); assert!(negative.sqrt().is_nan());Run
pub fn exp(self) -> f64[src]
pub fn exp(self) -> f64Returns e^(self), (the exponential function).
Examples
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn exp2(self) -> f64[src]
pub fn exp2(self) -> f64Returns 2^(self).
Examples
let f = 2.0_f64; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn ln(self) -> f64[src]
pub fn ln(self) -> f64Returns the natural logarithm of the number.
Examples
let one = 1.0_f64; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log(self, base: f64) -> f64[src]
pub fn log(self, base: f64) -> f64Returns the logarithm of the number with respect to an arbitrary base.
The result may not be correctly rounded owing to implementation details;
self.log2() can produce more accurate results for base 2, and
self.log10() can produce more accurate results for base 10.
Examples
let five = 5.0_f64; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log2(self) -> f64[src]
pub fn log2(self) -> f64Returns the base 2 logarithm of the number.
Examples
let two = 2.0_f64; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn log10(self) -> f64[src]
pub fn log10(self) -> f64Returns the base 10 logarithm of the number.
Examples
let ten = 10.0_f64; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn abs_sub(self, other: f64) -> f64[src]
pub fn abs_sub(self, other: f64) -> f64: you probably meant (self - other).abs(): this operation is (self - other).max(0.0) (also known as fdim in C). If you truly need the positive difference, consider using that expression or the C function fdim, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other:0:0 - Else:
self - other
Examples
let x = 3.0_f64; let y = -3.0_f64; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x < 1e-10); assert!(abs_difference_y < 1e-10);Run
pub fn cbrt(self) -> f64[src]
pub fn cbrt(self) -> f64Takes the cubic root of a number.
Examples
let x = 8.0_f64; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn hypot(self, other: f64) -> f64[src]
pub fn hypot(self, other: f64) -> f64Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x and y.
Examples
let x = 2.0_f64; let y = 3.0_f64; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference < 1e-10);Run
pub fn sin(self) -> f64[src]
pub fn sin(self) -> f64Computes the sine of a number (in radians).
Examples
use std::f64; let x = f64::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn cos(self) -> f64[src]
pub fn cos(self) -> f64Computes the cosine of a number (in radians).
Examples
use std::f64; let x = 2.0*f64::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn tan(self) -> f64[src]
pub fn tan(self) -> f64Computes the tangent of a number (in radians).
Examples
use std::f64; let x = f64::consts::PI/4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference < 1e-14);Run
pub fn asin(self) -> f64[src]
pub fn asin(self) -> f64Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
Examples
use std::f64; let f = f64::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn acos(self) -> f64[src]
pub fn acos(self) -> f64Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
Examples
use std::f64; let f = f64::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn atan(self) -> f64[src]
pub fn atan(self) -> f64Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
Examples
let f = 1.0_f64; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn atan2(self, other: f64) -> f64[src]
pub fn atan2(self, other: f64) -> f64Computes the four quadrant arctangent of self (y) and other (x) in radians.
x = 0,y = 0:0x >= 0:arctan(y/x)->[-pi/2, pi/2]y >= 0:arctan(y/x) + pi->(pi/2, pi]y < 0:arctan(y/x) - pi->(-pi, -pi/2)
Examples
use std::f64; let pi = f64::consts::PI; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0_f64; let y1 = -3.0_f64; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0_f64; let y2 = 3.0_f64; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 < 1e-10); assert!(abs_difference_2 < 1e-10);Run
pub fn sin_cos(self) -> (f64, f64)[src]
pub fn sin_cos(self) -> (f64, f64)Simultaneously computes the sine and cosine of the number, x. Returns
(sin(x), cos(x)).
Examples
use std::f64; let x = f64::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 < 1e-10); assert!(abs_difference_1 < 1e-10);Run
pub fn exp_m1(self) -> f64[src]
pub fn exp_m1(self) -> f64Returns e^(self) - 1 in a way that is accurate even if the
number is close to zero.
Examples
let x = 7.0_f64; // e^(ln(7)) - 1 let abs_difference = (x.ln().exp_m1() - 6.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn ln_1p(self) -> f64[src]
pub fn ln_1p(self) -> f64Returns ln(1+n) (natural logarithm) more accurately than if
the operations were performed separately.
Examples
use std::f64; let x = f64::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference < 1e-10);Run
pub fn sinh(self) -> f64[src]
pub fn sinh(self) -> f64Hyperbolic sine function.
Examples
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference < 1e-10);Run
pub fn cosh(self) -> f64[src]
pub fn cosh(self) -> f64Hyperbolic cosine function.
Examples
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference < 1.0e-10);Run
pub fn tanh(self) -> f64[src]
pub fn tanh(self) -> f64Hyperbolic tangent function.
Examples
use std::f64; let e = f64::consts::E; let x = 1.0_f64; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn asinh(self) -> f64[src]
pub fn asinh(self) -> f64Inverse hyperbolic sine function.
Examples
let x = 1.0_f64; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn acosh(self) -> f64[src]
pub fn acosh(self) -> f64Inverse hyperbolic cosine function.
Examples
let x = 1.0_f64; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference < 1.0e-10);Run
pub fn atanh(self) -> f64[src]
pub fn atanh(self) -> f64Trait Implementations
impl<'a, 'b> Add<&'a f64> for &'b f64[src]
impl<'a, 'b> Add<&'a f64> for &'b f64type Output = <f64 as Add<f64>>::Output
The resulting type after applying the + operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output[src]
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::OutputPerforms the + operation.
impl<'a> Add<f64> for &'a f64[src]
impl<'a> Add<f64> for &'a f64type Output = <f64 as Add<f64>>::Output
The resulting type after applying the + operator.
fn add(self, other: f64) -> <f64 as Add<f64>>::Output[src]
fn add(self, other: f64) -> <f64 as Add<f64>>::OutputPerforms the + operation.
impl<'a> Add<&'a f64> for f64[src]
impl<'a> Add<&'a f64> for f64type Output = <f64 as Add<f64>>::Output
The resulting type after applying the + operator.
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::Output[src]
fn add(self, other: &'a f64) -> <f64 as Add<f64>>::OutputPerforms the + operation.
impl Add<f64> for f64[src]
impl Add<f64> for f64type Output = f64
The resulting type after applying the + operator.
fn add(self, other: f64) -> f64[src]
fn add(self, other: f64) -> f64Performs the + operation.
impl From<u32> for f641.6.0[src]
impl From<u32> for f64Converts u32 to f64 losslessly.
impl From<i32> for f641.6.0[src]
impl From<i32> for f64Converts i32 to f64 losslessly.
impl From<u8> for f641.6.0[src]
impl From<u8> for f64Converts u8 to f64 losslessly.
impl From<i8> for f641.6.0[src]
impl From<i8> for f64Converts i8 to f64 losslessly.
impl From<i16> for f641.6.0[src]
impl From<i16> for f64Converts i16 to f64 losslessly.
impl From<f32> for f641.6.0[src]
impl From<f32> for f64Converts f32 to f64 losslessly.
impl From<u16> for f641.6.0[src]
impl From<u16> for f64Converts u16 to f64 losslessly.
impl<'a> RemAssign<&'a f64> for f641.22.0[src]
impl<'a> RemAssign<&'a f64> for f64fn rem_assign(&mut self, other: &'a f64)[src]
fn rem_assign(&mut self, other: &'a f64)Performs the %= operation.
impl RemAssign<f64> for f641.8.0[src]
impl RemAssign<f64> for f64fn rem_assign(&mut self, other: f64)[src]
fn rem_assign(&mut self, other: f64)Performs the %= operation.
impl DivAssign<f64> for f641.8.0[src]
impl DivAssign<f64> for f64fn div_assign(&mut self, other: f64)[src]
fn div_assign(&mut self, other: f64)Performs the /= operation.
impl<'a> DivAssign<&'a f64> for f641.22.0[src]
impl<'a> DivAssign<&'a f64> for f64fn div_assign(&mut self, other: &'a f64)[src]
fn div_assign(&mut self, other: &'a f64)Performs the /= operation.
impl<'a> MulAssign<&'a f64> for f641.22.0[src]
impl<'a> MulAssign<&'a f64> for f64fn mul_assign(&mut self, other: &'a f64)[src]
fn mul_assign(&mut self, other: &'a f64)Performs the *= operation.
impl MulAssign<f64> for f641.8.0[src]
impl MulAssign<f64> for f64fn mul_assign(&mut self, other: f64)[src]
fn mul_assign(&mut self, other: f64)Performs the *= operation.
impl<'a> SubAssign<&'a f64> for f641.22.0[src]
impl<'a> SubAssign<&'a f64> for f64fn sub_assign(&mut self, other: &'a f64)[src]
fn sub_assign(&mut self, other: &'a f64)Performs the -= operation.
impl SubAssign<f64> for f641.8.0[src]
impl SubAssign<f64> for f64fn sub_assign(&mut self, other: f64)[src]
fn sub_assign(&mut self, other: f64)Performs the -= operation.
impl<'a> Sum<&'a f64> for f641.12.0[src]
impl<'a> Sum<&'a f64> for f64fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, [src]
fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more
impl Sum<f64> for f641.12.0[src]
impl Sum<f64> for f64fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = f64>, [src]
fn sum<I>(iter: I) -> f64 where
I: Iterator<Item = f64>, Method which takes an iterator and generates Self from the elements by "summing up" the items. Read more
impl<'a> AddAssign<&'a f64> for f641.22.0[src]
impl<'a> AddAssign<&'a f64> for f64fn add_assign(&mut self, other: &'a f64)[src]
fn add_assign(&mut self, other: &'a f64)Performs the += operation.
impl AddAssign<f64> for f641.8.0[src]
impl AddAssign<f64> for f64fn add_assign(&mut self, other: f64)[src]
fn add_assign(&mut self, other: f64)Performs the += operation.
impl Neg for f64[src]
impl Neg for f64type Output = f64
The resulting type after applying the - operator.
fn neg(self) -> f64[src]
fn neg(self) -> f64Performs the unary - operation.
impl<'a> Neg for &'a f64[src]
impl<'a> Neg for &'a f64type Output = <f64 as Neg>::Output
The resulting type after applying the - operator.
fn neg(self) -> <f64 as Neg>::Output[src]
fn neg(self) -> <f64 as Neg>::OutputPerforms the unary - operation.
impl Clone for f64[src]
impl Clone for f64fn clone(&self) -> f64[src]
fn clone(&self) -> f64Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl Debug for f64[src]
impl Debug for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter. Read more
impl PartialOrd<f64> for f64[src]
impl PartialOrd<f64> for f64fn partial_cmp(&self, other: &f64) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &f64) -> bool[src]
fn lt(&self, other: &f64) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &f64) -> bool[src]
fn le(&self, other: &f64) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn ge(&self, other: &f64) -> bool[src]
fn ge(&self, other: &f64) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
fn gt(&self, other: &f64) -> bool[src]
fn gt(&self, other: &f64) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
impl<'a> Sub<f64> for &'a f64[src]
impl<'a> Sub<f64> for &'a f64type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the - operator.
fn sub(self, other: f64) -> <f64 as Sub<f64>>::Output[src]
fn sub(self, other: f64) -> <f64 as Sub<f64>>::OutputPerforms the - operation.
impl<'a, 'b> Sub<&'a f64> for &'b f64[src]
impl<'a, 'b> Sub<&'a f64> for &'b f64type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the - operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output[src]
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::OutputPerforms the - operation.
impl Sub<f64> for f64[src]
impl Sub<f64> for f64type Output = f64
The resulting type after applying the - operator.
fn sub(self, other: f64) -> f64[src]
fn sub(self, other: f64) -> f64Performs the - operation.
impl<'a> Sub<&'a f64> for f64[src]
impl<'a> Sub<&'a f64> for f64type Output = <f64 as Sub<f64>>::Output
The resulting type after applying the - operator.
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::Output[src]
fn sub(self, other: &'a f64) -> <f64 as Sub<f64>>::OutputPerforms the - operation.
impl FromStr for f64[src]
impl FromStr for f64type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f64, ParseFloatError>[src]
fn from_str(src: &str) -> Result<f64, ParseFloatError>Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Arguments
- src - A string
Return value
Err(ParseFloatError) if the string did not represent a valid
number. Otherwise, Ok(n) where n is the floating-point
number represented by src.
impl PartialEq<f64> for f64[src]
impl PartialEq<f64> for f64fn eq(&self, other: &f64) -> bool[src]
fn eq(&self, other: &f64) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &f64) -> bool[src]
fn ne(&self, other: &f64) -> boolThis method tests for !=.
impl Copy for f64[src]
impl Copy for f64impl UpperExp for f64[src]
impl UpperExp for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter.
impl<'a> Rem<f64> for &'a f64[src]
impl<'a> Rem<f64> for &'a f64type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the % operator.
fn rem(self, other: f64) -> <f64 as Rem<f64>>::Output[src]
fn rem(self, other: f64) -> <f64 as Rem<f64>>::OutputPerforms the % operation.
impl<'a, 'b> Rem<&'a f64> for &'b f64[src]
impl<'a, 'b> Rem<&'a f64> for &'b f64type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the % operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output[src]
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::OutputPerforms the % operation.
impl<'a> Rem<&'a f64> for f64[src]
impl<'a> Rem<&'a f64> for f64type Output = <f64 as Rem<f64>>::Output
The resulting type after applying the % operator.
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::Output[src]
fn rem(self, other: &'a f64) -> <f64 as Rem<f64>>::OutputPerforms the % operation.
impl Rem<f64> for f64[src]
impl Rem<f64> for f64type Output = f64
The resulting type after applying the % operator.
fn rem(self, other: f64) -> f64[src]
fn rem(self, other: f64) -> f64Performs the % operation.
impl<'a> Mul<&'a f64> for f64[src]
impl<'a> Mul<&'a f64> for f64type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the * operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output[src]
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::OutputPerforms the * operation.
impl Mul<f64> for f64[src]
impl Mul<f64> for f64type Output = f64
The resulting type after applying the * operator.
fn mul(self, other: f64) -> f64[src]
fn mul(self, other: f64) -> f64Performs the * operation.
impl<'a, 'b> Mul<&'a f64> for &'b f64[src]
impl<'a, 'b> Mul<&'a f64> for &'b f64type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the * operator.
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::Output[src]
fn mul(self, other: &'a f64) -> <f64 as Mul<f64>>::OutputPerforms the * operation.
impl<'a> Mul<f64> for &'a f64[src]
impl<'a> Mul<f64> for &'a f64type Output = <f64 as Mul<f64>>::Output
The resulting type after applying the * operator.
fn mul(self, other: f64) -> <f64 as Mul<f64>>::Output[src]
fn mul(self, other: f64) -> <f64 as Mul<f64>>::OutputPerforms the * operation.
impl Default for f64[src]
impl Default for f64impl LowerExp for f64[src]
impl LowerExp for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter.
impl<'a> Product<&'a f64> for f641.12.0[src]
impl<'a> Product<&'a f64> for f64fn product<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, [src]
fn product<I>(iter: I) -> f64 where
I: Iterator<Item = &'a f64>, Method which takes an iterator and generates Self from the elements by multiplying the items. Read more
impl Product<f64> for f641.12.0[src]
impl Product<f64> for f64fn product<I>(iter: I) -> f64 where
I: Iterator<Item = f64>, [src]
fn product<I>(iter: I) -> f64 where
I: Iterator<Item = f64>, Method which takes an iterator and generates Self from the elements by multiplying the items. Read more
impl Display for f64[src]
impl Display for f64fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>[src]
fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error>Formats the value using the given formatter. Read more
impl<'a> Div<&'a f64> for f64[src]
impl<'a> Div<&'a f64> for f64type Output = <f64 as Div<f64>>::Output
The resulting type after applying the / operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output[src]
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::OutputPerforms the / operation.
impl Div<f64> for f64[src]
impl Div<f64> for f64type Output = f64
The resulting type after applying the / operator.
fn div(self, other: f64) -> f64[src]
fn div(self, other: f64) -> f64Performs the / operation.
impl<'a, 'b> Div<&'a f64> for &'b f64[src]
impl<'a, 'b> Div<&'a f64> for &'b f64type Output = <f64 as Div<f64>>::Output
The resulting type after applying the / operator.
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::Output[src]
fn div(self, other: &'a f64) -> <f64 as Div<f64>>::OutputPerforms the / operation.
impl<'a> Div<f64> for &'a f64[src]
impl<'a> Div<f64> for &'a f64type Output = <f64 as Div<f64>>::Output
The resulting type after applying the / operator.
fn div(self, other: f64) -> <f64 as Div<f64>>::Output[src]
fn div(self, other: f64) -> <f64 as Div<f64>>::OutputPerforms the / operation.
impl Float for f64[src]
impl Float for f64type Int = u64
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
A uint of the same with as the float
type SignedInt = i64
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
A int of the same with as the float
const ZERO: f64
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
ZERO: f64 = 0.0
const ONE: f64
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
ONE: f64 = 1.0
const BITS: u32
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
BITS: u32 = 64
The bitwidth of the float type
const SIGNIFICAND_BITS: u32
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
SIGNIFICAND_BITS: u32 = 52
The bitwidth of the significand
const SIGN_MASK: <f64 as Float>::Int
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
SIGN_MASK: <f64 as Float>::Int = 1 << <Self>::BITS - 1
A mask for the sign bit
const SIGNIFICAND_MASK: <f64 as Float>::Int
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
SIGNIFICAND_MASK: <f64 as Float>::Int = (1 << <Self>::SIGNIFICAND_BITS) - 1
A mask for the significand
const IMPLICIT_BIT: <f64 as Float>::Int
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
IMPLICIT_BIT: <f64 as Float>::Int = 1 << <Self>::SIGNIFICAND_BITS
const EXPONENT_MASK: <f64 as Float>::Int
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
EXPONENT_MASK: <f64 as Float>::Int = !(<Self>::SIGN_MASK | <Self>::SIGNIFICAND_MASK)
A mask for the exponent
fn repr(self) -> <f64 as Float>::Int[src]
fn repr(self) -> <f64 as Float>::Int🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
Returns self transmuted to Self::Int
fn signed_repr(self) -> <f64 as Float>::SignedInt[src]
fn signed_repr(self) -> <f64 as Float>::SignedInt🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
Returns self transmuted to Self::SignedInt
fn from_repr(a: <f64 as Float>::Int) -> f64[src]
fn from_repr(a: <f64 as Float>::Int) -> f64🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
Returns a Self::Int transmuted back to Self
fn from_parts(
sign: bool,
exponent: <f64 as Float>::Int,
significand: <f64 as Float>::Int
) -> f64[src]
fn from_parts(
sign: bool,
exponent: <f64 as Float>::Int,
significand: <f64 as Float>::Int
) -> f64🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
Constructs a Self from its parts. Inputs are treated as bits and shifted into position.
fn normalize(significand: <f64 as Float>::Int) -> (i32, <f64 as Float>::Int)[src]
fn normalize(significand: <f64 as Float>::Int) -> (i32, <f64 as Float>::Int)🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
Returns (normalized exponent, normalized significand)
const EXPONENT_BITS: u32
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
EXPONENT_BITS: u32 = /// The bitwidth of the exponent const EXPONENT_BITS: u32 = <Self>::BITS - <Self>::SIGNIFICAND_BITS - 1;
The bitwidth of the exponent
const EXPONENT_MAX: u32
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
EXPONENT_MAX: u32 = /// The maximum value of the exponent const EXPONENT_MAX: u32 = (1 << <Self>::EXPONENT_BITS) - 1;
The maximum value of the exponent
const EXPONENT_BIAS: u32
🔬 This is a nightly-only experimental API. (compiler_builtins_lib)
Compiler builtins. Will never become stable.
EXPONENT_BIAS: u32 = /// The exponent bias value const EXPONENT_BIAS: u32 = <Self>::EXPONENT_MAX >> 1;
The exponent bias value