
GNU MARST
GNU Algol-to-C Translator

Version 2.3
User’s Guide
October 2001

Andrew Makhorin

Copyright c© 2000, 2001 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

i

Table of Contents

Acknowledgements . 1

1 Introduction . 2

2 Installation . 4

3 Program Invocation . 5

4 Usage Example . 7

5 Input Language . 8

6 Input/Output . 12

7 Language Extensions . 13
7.1 Modular programming . 13
7.2 Pseudo procedure inline . 13
7.3 Pseudo procedure print . 14

8 Converter Utility . 15

Acknowledgements 1

Acknowledgements

The author thanks Erik Schönfelder <schoenfr@gaertner.de> for a lot of useful advices
and especially for testing MARST with real Algol 60 programs. The author also thanks
Bernhard Treutwein <Bernhard.Treutwein@Verwaltung.Uni-Muenchen.DE> for great help
in preparing MARST documentation.

mailto:schoenfr@gaertner.de
mailto:Bernhard.Treutwein@Verwaltung.Uni-Muenchen.DE

Chapter 1: Introduction 2

1 Introduction

GNU MARST is an Algol-to-C translator. It automatically translates programs written
in the algorithmic language Algol 60 into the ANSI C programming language.

Processing scheme can be understood as the following:

Algol-60 source program
|
V

+-------------+
| MARST |
+-------------+

|
V

C source code
|
V

+-------------+
algol.h ------>| C compiler |<------ Standard headers

+-------------+
|
V

Object code
|
V

+-------------+
ALGLIB ------>| Linker |<------ Standard libraries

+-------------+
|
V

+-------------+
Input data ------>| Executable |-------> Output data

+-------------+

where:

Algol 60 source program
a text file that contains a program written in the algorithmic language Algol 60
(see below about coding requirements);

MARST the MARST translator, a program that converts source Algol program to the
C programming language. This program is a part of GNU MARST;

C source code
a text file that contains the C source code generated by the MARST translator;

algol.h the header file that contains declarations of all objects used by every program
generated by the MARST translator. This file includes some standard headers
(stdio.h, stdlib.h, etc.), however, no other headers are used explicitly in the
generated code. This file is a part of GNU MARST;

Chapter 1: Introduction 3

Standard headers
standard header files (they are used only in the header file algol.h);

C compiler
C compiler, a program that converts C program to machine instructions;

Object code
a binary file that contains object code produced by the C compiler;

ALGLIB the library (archive) file that contains object code for all standard and library
routines used by Algol programs. Some of these routines, which correspond to
standard Algol procedures (ininteger, outreal, etc.) are written in Algol 60 and
translated to the C programming language by means of the MARST translator.
Source code of all library routines is a part of GNU MARST. In this distribution
the library has the name libalgol.a;

Standard libraries
standard C run-time libraries;

Linker linker, a program that resolves external references and produces executable
module;

Executable
a binary file that contains ready-to-run Algol 60 program in the loadable (exe-
cutable) form;

Input data
input text file(s) read by Algol program;

Output data
output text file(s) written by Algol program.

Chapter 2: Installation 4

2 Installation

In order to install GNU MARST under GNU/Linux the standard installation procedure
should be used. For details see the file INSTALL included in the distribution.

As a result of installation the following four components will be installed:

marst as a rule, into usr/local/bin;

macvt as a rule, into usr/local/bin;

algol.h as a rule, into usr/local/include and/or usr/include;

libalgol.a
as a rule, into usr/local/lib.

Chapter 3: Program Invocation 5

3 Program Invocation

In order to invoke the MARST translator the following syntax should be used:

marst [options ...] [filename]

Options:

-d, --debug
run translator in debug mode
If this option is set, the translator emits elementary syntactic units of source
Algol program to the output C code in the form of comments.
This option is useful for localizing syntax errors more precisely. For exam-
ple, Algol 60 allows comments of three kinds: ordinary comments, end-end
comments, and extended parameter delimiters. Therefore it is easy to make
a mistake, for example, forgetting a comma between the end bracket and the
next statement.

-e nnn, --error-max nnn
maximal error allowance
This option sets maximal error allowance. The translator stops processing after
the specified number of errors has been detected. The value of nnn should be
in the range from 0 to 255. If this option is not specified, the default option
-e 0 is used and means that the translation is continued until the end of the
input file.

-h, --help
display help information and exit(0)

-l nnn, --linewidth nnn
desirable output line width
This option sets desirable line width for the output C code produced by the
translator. The value nnn should be in the range from 50 to 255. If this option
is not specified, the default option -l 72 is used.
Note that the actual line width may happen to be greater than nnn, because
the translator is not able to break the output text at any place. However, this
happens relatively seldom.

-o filename, --output filename
name of the output text file, to which the translator sends the produced C code
If this option is not set, the translator uses the standard output by default.

-t, --notimestamp
don’t write the time stamp to the output C code
By default the translator writes date and time of translation to the output C
code as a comment.

-v, --version
display translator version and exit(0)

Chapter 3: Program Invocation 6

-w, --nowarn
don’t display warning messages
By default the translator displays warning messages that reflect potential errors
and non-standard features used in the source Algol program.

In order to translate a program written in Algol 60, it should be prepared as a plain text
file, and the name of this file should be specified in the command line. If the name of the
input text file is not specified, the translator uses the standard input by default.

Note that the translator reads the input file twice, therefore this file should be only
regular file, but not a pipe, terminal input, etc. Thus, if the standard input is used, it
should be redirected to a regular file.

For one run the translator is able to process only one input text file.

Chapter 4: Usage Example 7

4 Usage Example

The following example shows how the MARST translator may be used in most cases.
At first we prepare source Algol 60 program, say, in the text file named ‘hello.alg’:

begin
outstring(1, "Hello, world!\n")

end

Now we translate this program to the C programming language:

marst hello.alg -o hello.c

and get the text file named ‘hello.c’, which then we compile and link in the usual way (we
should remember about Algol and math libraries):

gcc hello.c -lalgol -lm -o hello

Finally, we run executable

./hello

and see what we have. That’s all.

Chapter 5: Input Language 8

5 Input Language

The input language of the MARST translator is hardware representation of the reference
language Algol 60 described in the following IFIP document1:

Modified Report on the Algorithmic Language ALGOL 60. The Computer Journal,
Vol. 19, No. 4, Nov. 1976, pp. 364—79. (This document is an official IFIP standard. It is
not a part of GNU MARST.)

Source Algol 60 program is coded as a plain text file using ASCII character set.
Basic symbols should be coded as follows:

Basic symbol Representation Basic symbol Representation

a, b, . . . , z a, b, . . . , z]]
A,B, . . . , Z A, B, . . . , Z ‘ "
0, 1, . . . , 9 0, 1, . . . , 9 ’ "
+ + array array
− - begin begin
× * Boolean Boolean (boolean)
/ / code code
÷ % comment comment
↑ ^ (**) do do
< < else else
≤ <= end end
= = false false
≥ >= for for
6= != go to go to (goto)
≡ == if if
⊃ -> integer integer
∨ | label label
∧ & own own
¬ ! procedure procedure
, , real real
. . step step

10 # string string
: : switch switch
; ; then then
:= := true true
((until until
)) value value
[[while while

Any symbol can be surrounded by any number of white-space characters (i.e. by spaces,
HT, CR, LF, FF, and VT). However, any multi-character symbol should contain no white-space
characters. Moreover, a letter sequence is recognized as a keyword if and only if there is

1 In order to obtain the verbatim reprint of this document in Postscript or in PDF format please contact
the author.

Chapter 5: Input Language 9

no letter or digit that immediately precedes or follows the sequence (except the keyword
‘go to’ that may contain zero or more spaces between ‘go’ and ‘to’).

For example:

... 123 then abc ...
‘then’ will be recognized as then symbol

... 123then abc ...

... 123 thenabc ...
‘then’ will be recognized as letters t, h, e, n, but not as then symbol

... 123 th en abc ...
‘th en’ will be recognized as letters t, h, e, n

Note that identifiers and numbers can contain white-space characters. This feature may
be used in the case if an identifier is the same as keyword. For example, identifier label may
be coded as ‘la bel’ or ‘lab el’. Note also that white-space characters are non-significant
(except when they are used within character strings), so ‘abc’ and ‘a b c’ denote the same
identifier abc.

Identifiers and numbers can consist of arbitrary number of characters, all of which (except
internal white-space characters) are significant.

All letters are case sensitive (except the first "b" in the keyword Boolean). This means
that ‘abc’ and ‘ABC’ are different identifiers, and ‘Then’ will not be recognized as the keyword
then.

Quoted character string are coded in the C style. For example:

outstring(1, "This\tis a string\n");

outstring(1, "This\tis a st" "ring\n");

outstring(1, "This\tis all one st"
"ring\n");

Within a string (i.e. between double quotes that enclose the string body) escape se-
quences may be used (as ‘\t’ and ‘\n’ in the example above). Double quote and backslash
within string should be coded as ‘\"’ and ‘\\’ respectively. Between parts of a string any
number of white-space characters is allowed.

Except coding character strings there are no other differences between the syntax of the
reference language and the syntax of GNU MARST input language.

Note that there are some differences between the Revised Report on Algol 60 and the
Modified Report on Algol 60, because the latter is a result of application of the following
IFIP document to the former:

R. M. De Morgan, I. D. Hill, and B. A. Whichman. A Supplement to the ALGOL 60
Revised Report. The Computer Journal, Vol. 19, No. 3, 1976, pp. 276—88. (This docu-
ment is an official IFIP standard. It is not a part of GNU MARST.)

In order to illustrate what is the input language of the MARST translator let’s consider
the following procedure, which is written in the reference language:

Chapter 5: Input Language 10

real procedure euler(fct, eps, tim);
value eps, tim;
real procedure fct; real eps; integer tim;
comment euler computes the sum of fct(i) for i from zero up to infinity by means of a
suitably refined euler transformation. The summation is stopped as soon as tim times
in succession the absolute value of the terms of the transformed series are found to be
less than eps. Hence one should provide a function fct with one integer argument, an
upper bound eps, and an integer tim. euler is particularly efficient in the case of a
slowly convergent or divergent alternating series;
begin
integer i, k, n, t;
array m[0:15];
real mn, mp, ds, sum;
n := t := 0;
m[0] := fct(0); sum := m[0]/2;
for i := 1, i + 1 while t < tim do

begin
mn := fct(i);
for k := 0 step 1 until n do

begin
mp := (mn + m[k])/2;
m[k] := mn; mn := mp
end means;

if abs(mn) < abs(m[n]) ∧ n < 15 then
begin
ds := mn/2; n := n + 1;
mn[n] := mn
end accept;

else
ds := mn;

sum := sum + ds;
t := if abs(ds) < eps then t + 1 else 0
end;

euler := sum
end euler;

This procedure may be coded using GNU MARST representation as follows:

real procedure euler(fct, eps, tim);
value eps, tim;
real procedure fct; real eps; integer tim;
comment euler computes the sum of fct(i) for i from zero up to
infinity by means of a suitably refined euler transformation. The
summation is stopped as soon as times in succession the absolute
value of the terms of the transformed series are found to be less
than eps. Hence one should provide a function fct with one integer
argument, an upper bound eps, and an integer tim. euler is

Chapter 5: Input Language 11

particularly efficient in the case of a slowly convergent or
divergent alternating series;
begin
integer i, k, n, t;
array m[0:15];
real mn, mp, ds, sum;
n := t := 0;
m[0] := fct(0); sum := m[0] / 2;
for i := 1, i+1 while t < tim do

begin
mn := fct(i);
for k := 0 step 1 until n do

begin
mp := (mn + m[k]) / 2;
m[k] := mn; mn := mp

end means;
if abs(mn) < abs(m[n]) & n < 15 then

begin
ds := mn / 2; n := n + 1;
m[n] := mn
end accept

else
ds := mn;

sum := sum + ds;
t := if abs(ds) < eps then t + 1 else 0
end;

euler := sum
end euler;

Chapter 6: Input/Output 12

6 Input/Output

All input/output is performed by standard Algol 60 procedures.
GNU MARST implementation provides up to 16 input/output channels, which have

numbers 0, 1, . . . , 15. The channel number 0 is always connected to stdin, so only input
from this channel is allowed. Analogously, the channel number 1 is always connected to
stdout, so only output to this channel is allowed. Other channels allow both input and
output. (The standard procedure fault uses the channel number Σ, which is not available
to the programmer. This latent channel is always connected to stderr.)

Before Algol program startup all channels (except the channels number 0 and 1) are
disconnected, i.e. no files are assigned to them.

If input (output) is required by the Algol program from (to) the channel number n, the
following actions are taken:
1. if the channel number n is connected for output (input), the I/O routine closes the file

assigned to this channel, making it be disconnected;
2. if the channel number n is disconnected, the I/O routine opens the corresponding file

in read (write) mode and assigns this file to the channel, making it be connected;
3. finally, the I/O routine performs an input (an output) operation on the channel number

n. If an end-of-file has been detected, the I/O routine signals an error condition and
terminates execution of the Algol program.

In order to determine the name of file, which should be assigned to the channel number
n, the I/O routine checks for environment variable named ‘FILE_n’. If such variable exists,
its value is used as filename. Otherwise, its name (i.e. the character string "FILE_n") is
used as filename.

Chapter 7: Language Extensions 13

7 Language Extensions

The MARST translator provides some extensions of the reference language in order to
make the package be more convenient for the programmer.

7.1 Modular programming

The feature of modular programming can be illustrated by the following example:

First file Second file

procedure one(a, b); procedure one(a, b);
value a, b; real a, b; value a, b; real a, b;
begin code;
.
end; procedure two(x, y);

value x, y; array x, y;
procedure two(x, y); code;
value x, y; array x, y;
begin begin
. <main program>
end; end;

The procedures one and two in the first file are called precompiled procedures. Decla-
rations of precompiled procedures should be outside of main program block or compound
statement. The procedures one and two in the second file are called code procedures; they
have the keyword code instead a procedure body statement. Declarations of code procedures
also should be outside of main program block or compound statement.

This mechanism allows translating precompiled procedures independently on the main
program. Moreover, precompiled procedures may be programmed in any other C com-
patible programming language. The programmer can consider that directly before Algol
program startup declarations of all precompiled procedures are substituted into the file,
which contains main program (the second file in the example above), instead declarations
of corresponding code procedures.

Each code procedure should have the same procedure heading as the corresponding pre-
compiled procedure (however, names of parameters may be altered). Note that mismatched
procedure headings can’t be detected by the MARST translator, because they are placed
in different files.

7.2 Pseudo procedure inline

The pseudo procedure inline has the following (implicit) heading:

procedure inline(str);
string str;

Chapter 7: Language Extensions 14

A procedure statement that refers to the inline pseudo procedure is translated into the
code, which is the string str without enclosing quotes. For example:

Source program Output C code

.
a := 1; dsa 0->a 5 = 1;
b := 2; dsa 0->b 8 = 2;
inline("printf(\"OK\");"); printf("OK");
c := 3; dsa 0->c 4 = 3;
.

Procedure statement inline may be used anywhere in the program as an oridinary Algol
statement.

7.3 Pseudo procedure print

The pseudo procedure print is intended mainly for test printing (because standard Algol
input/output is out of criticism). This procedure has unspecified heading and variable
parameter list. For example:

real a, b; integer c; Boolean d;
array u, v[1:10], w[-5:5,-10:10];
. . .
print(a, b, u);
print(c);
. . .
print("test shot", (a+b)*c, !d & u[1] > v[1], u, v, w);
. . .

Each actual parameter passed to the pseudo procedure print is sent to the channel
number 1 (stdout) using printable format.

Chapter 8: Converter Utility 15

8 Converter Utility

Algol converter utility is MACVT. It is an auxiliary program, which is intended for
converting Algol 60 programs from some other representation to the MARST representation.
Such conversion is usually needed when existing Algol programs should be adjusted in order
to translate them with GNU MARST.

MACVT is not a translator itself. This program just reads an original code of Algol 60
program from the input text file, converts main symbols to the MARST representation (see
Section 5. Input Language), and writes resulting code to the output text file. It is assumed
that the output code produced by MACVT will be later translated by MARST in usual
way. Note that MACVT performs no syntax checking.

Input language understood by MACVT differs from GNU MARST input language only
in representation of basic symbols. Should note that in this sense GNU MARST input
language is a subset of the MACVT input language.

Representation of basic symbols implemented in MACVT is based mainly on well known
(in 1960s) Algol 60 compiler developed by IBM first for IBM 7090 and later for System/360.
This representation may be considered as non-official standard, because it was widely used
at the time, when Algol 60 was actual programming language.

In order to invoke the MACVT converter the following syntax should be used:
macvt [options ...] [filename]
Options:

-c, --classic
use classic representation
This option is used by default until other representation is chosen. It assumes
that input Algol 60 program is coded using classic representation: all white-
space characters are non-significant (except within quoted character strings)
and keywords should be enclosed by apostrophes. For details see below.

-f, --free-coding
use free representation
If this option is set, it is allowed not to enclose keywords by apostrophes. But
in this case white-space characters should not be used within multi-character
basic symbols. See below for details.

-h, --help
display help information and exit(0)

-i, --ignore-case
convert letters to lower case
If this option is set, all letters (except within comments and character strings)
are converted to lower case, i.e. conversion is case-insensitive.

-m, --more-free
use more free representation
This option is the same as --free-coding, but additionally keywords for arith-
metic, logical, and relational operators can be coded without apostrophes. For
details see below.

Chapter 8: Converter Utility 16

-o filename, --output filename
the name of output text file, to which the converter sends the converted Algol 60
program

If this option is not set, the converter uses the standard output by default.

-s, --old-sc
use old (classic) semicolon representation

This option allows the converter recognizing diphthong ., (point and comma)
as semicolon (including its usage for terminating comment sequences).

-t, --old-ten
use old (classic) ten symbol representation

This option allows the converter recognizing single apostrophe (when it is fol-
lowed by +, -, or digit) as ten symbol.

-v, --version
display the converter version and exit(0)

In order to convert an Algol 60 program, it should be prepared as a plain text file, and
the name of this file should be specified in the command line. If the name of the input text
file is not specified, the converter uses the standard input by default.

For one run the converter is able to process only one input text file.

In the table shown on the next page one or more valid representation are given for each
basic symbol. Thereto the following additional rules are assumed:

1. Classic (apostrophized) form of keywords and some other basic symbols are allowed for
any (i.e. for classic as well as free) representation.

2. In case of classic representation all white-space characters (except their usage within
comments and quoted strings) are ignored anywhere.

3. Basic symbol enclosed by apostrophes may contain white-space characters, which are
ignored. Besides, all letters are case-insensitive.

4. Basic symbols may be coded in the free form (without apostrophes) only if the free
representation (--free-coding or --more-free) is used.

5. In case of free representation any multi-character basic symbol should contain no white-
space characters.

6. Free form of keywords that denote arithmetic, logical, and relational operators (i.e.
greater instead ’greater’) is allowed only if the option --more-free is used.

7. Single apostrophe is recognized as ten symbol only if the option --old-ten is used.
Note that in this case the sequence ’10’ is not recognized as ten symbol.

8. Diphthong ., (point and comma) is recognized as semicolon only in the case if the
option --old-sc is used.

9. If an opening quote is coded as " (double quote), the corresponding closing quote should
be coded as " (double quote). If an opening quote is coded as ‘ (diacritic mark), the
corresponding closing quote should be coded as ’ (single apostrophe).

Chapter 8: Converter Utility 17

Basic symbol Representation Basic symbol Representation

a, b, . . . , z a, b, . . . , z]] /)
A,B, . . . , Z A, B, . . . , Z ‘ " ‘
0, 1, . . . , 9 0, 1, . . . , 9 ’ ’ ’
+ + array ’array’
− - begin ’begin’
× * Boolean ’boolean’
/ / code ’code’
÷ % ’/’ ’div’ comment ’comment’
↑ ^ ** ’power’ ’pow’ do ’do’
< < ’less’ else ’else’
≤ <= ’notgreater’ end ’end’
= = ’equal’ false ’false’
≥ >= ’notless’ for ’for’
6= != ’notequal’ go to ’goto’
≡ == ’equiv’ if ’if’
⊃ -> ’impl’ integer ’integer’
∨ | ’or’ label ’label’
∧ & ’and’ own ’own’
¬ ! ’not’ procedure ’procedure’
, , real ’real’
. . step ’step’

10 # ’ ’10’ string ’string’
: : .. switch ’switch’
; ; ., then ’then’
:= := .= ..= true ’true’
((until ’until’
)) value ’value’
[[(/ while ’while’

In order to illustrate what the MACVT converter does, we can consider the following
Algol 60 procedure, which is coded using old (classic) representation:

’PROCEDURE’EULER(FCT,SUM,EPS,TIM).,’VALUE’EPS,TIM.,
’INTEGER’ TIM., ’REAL’ ’PROCEDURE’ FCT., ’REAL’ SUM, EPS.,
’COMMENT’ EULER COMPUTES THE SUM OF FCT (I) FOR I
FROM ZERO UP TO INFINITY BY MEANS OF A SUITABLY
REFINED EULER TRANSFORMATION. THE SUMMATION IS
STOPPED AS SOON AS TIM TIMES IN SUCCESSION THE ABSOLUTE
VALUE OF THE TERMS OF THE TRANSFORMED SERIES IS
FOUND TO BE LESS THAN EPS, HENCE ONE SHOULD PROVIDE
A FUNCTION FCT WITH ONE INTEGER ARGUMENT, AN UPPER
BOUND EPS, AND AN INTEGER TIM. THE OUTPUT IS THE SUM SUM.
EULER IS PARTICULARLY EFFICIENT IN THE CASE OF A SLOWLY
CONVERGENT OR DIVERGENT ALTERNATING SERIES.,

Chapter 8: Converter Utility 18

’BEGIN’’INTEGER’ I,K,N,T.,’ARRAY’ M(/0..15/).,
’REAL’ MN, MP, DS.,
I.=N.=T.=0.,M(/0/).=FCT(0).,SUM.=M(/0/)/2.,
NEXTTERM..I.=I+1.,MN.=FCT(1).,

’FOR’ K.=0’STEP’1’UNTIL’N’DO’
’BEGIN’ MP.=(MN+M(/K/))/2.,M(/K/).=MN.,

MN.=MP’END’MEANS.,
’IF’ (ABS(MN)’LESS’ ABS (M(/N/))’AND’N’LESS’15)’THEN’

’BEGIN’DS.=MN/2.,N.=N+1.,
M(/N/).=MN’END’ ACCEPT

’ELSE’ DS.=MN.,
SUM.=SUM+DS.,
’IF’ ABS(DS)’LESS’EPS’THEN’T.=T+1’ELSE’T.=0.,
’IF’T’LESS’TIM’THEN’’GOTO’NEXTTERM
’END’EULER;

This code can be converted to the GNU MARST input language using the following
command:

macvt -i -s euler.txt -o euler.alg

The verbatim result of conversion is the following:

procedure euler(fct,sum,eps,tim);value eps,tim;
integer tim; real procedure fct; real sum, eps;
comment EULER COMPUTES THE SUM OF FCT (I) FOR I
FROM ZERO UP TO INFINITY BY MEANS OF A SUITABLY
REFINED EULER TRANSFORMATION .THE SUMMATION IS
STOPPED AS SOON AS TIM TIMES IN SUCCESSION THE ABSOLUTE
VALUE OF THE TERMS OF THE TRANSFORMED SERIES IS
FOUND TO BE LESS THAN EPS, HENCE ONE SHOULD PROVIDE
A FUNCTION FCT WITH ONE INTEGER ARGUMENT, AN UPPER
BOUND EPS, AND AN INTEGER TIM .THE OUTPUT IS THE SUM SUM
.EULER IS PARTICULARLY EFFICIENT IN THE CASE OF A SLOWLY
CONVERGENT OR DIVERGENT ALTERNATING SERIES;
begin integer i,k,n,t;array m[0:15];
real mn, mp, ds;
i:=n:=t:=0;m[0]:=fct(0);sum:=m[0]/2;
nextterm:i:=i+1;mn:=fct(1);

for k:=0 step 1 until n do
begin mp:=(mn+m[k])/2;m[k]:=mn;

mn:=mp end means;
if (abs(mn)< abs (m[n])&n<15)then

begin ds:=mn/2;n:=n+1;
m[n]:=mn end accept

else ds:=mn;
sum:=sum+ds;
if abs(ds)<eps then t:=t+1 else t:=0;
if t<tim then go to nextterm
end euler;

	Acknowledgements
	Introduction
	Installation
	Program Invocation
	Usage Example
	Input Language
	Input/Output
	Language Extensions
	Modular programming
	Pseudo procedure inline
	Pseudo procedure print

	Converter Utility

