

Specification of the Exim Mail
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright © 2024 The Exim Maintainers

Revision 4.98.2 25 Mar 2025

Contents

1. Introduction .. 1

 1.1 Exim documentation .. 1
 1.2 FTP site and websites ... 2
 1.3 Mailing lists .. 2
 1.4 Bug reports .. 3
 1.5 Where to find the Exim distribution .. 3
 1.6 Limitations ... 4
 1.7 Runtime configuration .. 4
 1.8 Calling interface .. 4
 1.9 Terminology ... 4

2. Incorporated code .. 6

3. How Exim receives and delivers mail ... 8

 3.1 Overall philosophy .. 8
 3.2 Policy control ... 8
 3.3 User filters ... 8
 3.4 Message identification ... 9
 3.5 Receiving mail .. 9
 3.6 Handling an incoming message .. 10
 3.7 Life of a message ... 10
 3.8 Processing an address for delivery ... 11
 3.9 Processing an address for verification .. 12
 3.10 Running an individual router .. 12
 3.11 Duplicate addresses .. 13
 3.12 Router preconditions ... 13
 3.13 Delivery in detail ... 14
 3.14 Retry mechanism ... 15
 3.14.1 Temporary delivery failure ... 15
 3.14.2 Permanent delivery failure .. 16
 3.14.3 Failures to deliver bounce messages ... 16

4. Building and installing Exim ... 17

 4.1 Unpacking ... 17
 4.2 Multiple machine architectures and operating systems ... 17
 4.3 PCRE2 library ... 17
 4.4 DBM libraries .. 17
 4.5 Pre-building configuration ... 19
 4.6 Support for iconv() ... 19
 4.7 Including TLS/SSL encryption support ... 20
 4.8 Use of tcpwrappers .. 20
 4.9 Including support for IPv6 ... 21
 4.10 Dynamically loaded lookup module support .. 21
 4.11 The building process ... 21
 4.12 Output from “make” ... 22
 4.13 Overriding build-time options for Exim .. 22
 4.14 OS-specific header files .. 24
 4.15 Overriding build-time options for the monitor .. 24
 4.16 Installing Exim binaries and scripts ... 24
 4.17 Installing info documentation ... 25
 4.18 Setting up the spool directory .. 25
 4.19 Testing ... 26

iii

 4.20 Replacing another MTA with Exim .. 27
 4.21 Running the daemon ... 27
 4.22 Upgrading Exim .. 27
 4.23 Stopping the Exim daemon on Solaris ... 27

5. The Exim command line ... 29

 5.1 Setting options by program name .. 29
 5.2 Trusted and admin users .. 29
 5.3 Command line options .. 30

6. The Exim runtime configuration file .. 53

 6.1 Using a different configuration file ... 53
 6.2 Configuration file format .. 54
 6.3 File inclusions in the configuration file .. 55
 6.4 Macros in the configuration file .. 55
 6.5 Macro substitution .. 55
 6.6 Redefining macros ... 56
 6.7 Overriding macro values ... 56
 6.8 Example of macro usage .. 56
 6.9 Builtin macros ... 56
 6.10 Conditional skips in the configuration file ... 57
 6.11 Common option syntax ... 57
 6.12 Boolean options ... 57
 6.13 Integer values ... 58
 6.14 Octal integer values ... 58
 6.15 Fixed point numbers .. 58
 6.16 Time intervals ... 58
 6.17 String values ... 58
 6.18 Expanded strings ... 59
 6.19 User and group names ... 59
 6.20 List construction ... 59
 6.21 Changing list separators ... 60
 6.22 Empty items in lists .. 60
 6.23 Format of driver configurations .. 60

7. The default configuration file .. 62

 7.1 Macros ... 62
 7.2 Main configuration settings ... 62
 7.3 ACL configuration ... 65
 7.4 Router configuration .. 68
 7.5 Transport configuration .. 71
 7.6 Default retry rule ... 73
 7.7 Rewriting configuration .. 73
 7.8 Authenticators configuration ... 73

8. Regular expressions .. 75

9. File and database lookups ... 76

 9.1 Examples of different lookup syntax ... 76
 9.2 Lookup types .. 77
 9.3 Single-key lookup types .. 77
 9.3.1 cdb .. 77
 9.3.2 dbm ... 78
 9.3.3 dbmjz .. 78

iv

 9.3.4 dbmnz .. 78
 9.3.5 dsearch .. 78
 9.3.6 iplsearch .. 79
 9.3.7 json ... 79
 9.3.8 lmdb .. 79
 9.3.9 lsearch .. 79
 9.3.10 nis ... 80
 9.3.11 (n)wildlsearch .. 80
 9.3.12 spf ... 81
 9.4 Query-style lookup types .. 81
 9.4.1 dnsdb .. 81
 9.4.2 ibase ... 81
 9.4.3 ldap ... 81
 9.4.4 mysql .. 81
 9.4.5 nisplus .. 81
 9.4.6 oracle .. 81
 9.4.7 passwd ... 81
 9.4.8 pgsql ... 81
 9.4.9 redis .. 82
 9.4.10 sqlite ... 82
 9.4.11 testdb ... 82
 9.4.12 whoson .. 82
 9.5 Temporary errors in lookups ... 82
 9.6 Default values in single-key lookups ... 82
 9.7 Partial matching in single-key lookups .. 83
 9.8 Lookup caching .. 84
 9.9 Quoting lookup data .. 84
 9.10 More about dnsdb .. 85
 9.10.1 Dnsdb lookup modifiers .. 85
 9.10.2 Pseudo dnsdb record types .. 86
 9.10.3 Multiple dnsdb lookups .. 87
 9.11 More about LDAP .. 87
 9.11.1 Format of LDAP queries ... 87
 9.11.2 LDAP quoting .. 88
 9.11.3 LDAP connections .. 89
 9.11.4 LDAP authentication and control information .. 89
 9.11.5 Format of data returned by LDAP .. 91
 9.12 More about NIS+ .. 91
 9.13 SQL lookups ... 92
 9.13.1 More about MySQL, PostgreSQL, Oracle, InterBase, and Redis 92
 9.13.2 Specifying the server in the query ... 93
 9.13.3 Special MySQL features ... 94
 9.13.4 Special PostgreSQL features ... 94
 9.13.5 More about SQLite ... 94
 9.13.6 More about Redis ... 95

10. Domain, host, address, and local part lists .. 96

 10.1 Results of list checking ... 96
 10.2 Expansion of lists ... 96
 10.2.1 Negated items in lists .. 97
 10.2.2 File names in lists .. 97
 10.2.3 An lsearch file is not an out-of-line list .. 97
 10.2.4 Named lists ... 98
 10.2.5 Named lists compared with macros .. 99
 10.2.6 Named list caching .. 99
 10.3 Domain lists .. 99
 10.4 Host lists .. 102

v

 10.4.1 Special host list patterns ... 102
 10.4.2 Host list patterns that match by IP address ... 102
 10.4.3 Host list patterns for single-key lookups by host address 103
 10.4.4 Host list patterns that match by host name ... 104
 10.4.5 Behaviour when an IP address or name cannot be found 105
 10.4.6 Mixing wildcarded host names and addresses in host lists 105
 10.4.7 Temporary DNS errors when looking up host information 106
 10.4.8 Host list patterns for single-key lookups by host name 106
 10.4.9 Host list patterns for query-style lookups ... 106
 10.5 Address lists ... 106
 10.5.1 Case of letters in address lists ... 109
 10.6 Local part lists .. 109

11. String expansions .. 110

 11.1 Literal text in expanded strings .. 110
 11.2 Character escape sequences in expanded strings .. 110
 11.3 Testing string expansions ... 110
 11.4 Forced expansion failure .. 111
 11.5 Expansion items .. 111
 11.6 Expansion operators ... 124
 11.7 Expansion conditions .. 131
 11.8 Combining expansion conditions .. 138
 11.9 Expansion variables .. 138

12. Embedded Perl .. 161

 12.1 Setting up so Perl can be used ... 161
 12.2 Calling Perl subroutines .. 161
 12.3 Calling Exim functions from Perl ... 162
 12.4 Use of standard output and error by Perl ... 162

13. Starting the daemon and the use of network interfaces ... 163

 13.1 Starting a listening daemon ... 163
 13.2 Special IP listening addresses .. 164
 13.3 Overriding local_interfaces and daemon_smtp_ports ... 164
 13.4 Support for the submissions (aka SSMTP or SMTPS) protocol 164
 13.5 IPv6 address scopes ... 165
 13.6 Disabling IPv6 .. 165
 13.7 Examples of starting a listening daemon ... 165
 13.8 Recognizing the local host ... 166
 13.9 Delivering to a remote host .. 166

14. Main configuration ... 167

 14.1 Miscellaneous .. 167
 14.2 Exim parameters .. 167
 14.3 Privilege controls ... 167
 14.4 Logging .. 168
 14.5 Frozen messages .. 168
 14.6 Data lookups .. 168
 14.7 Message ids ... 168
 14.8 Embedded Perl Startup .. 168
 14.9 Daemon ... 169
 14.10 Resource control ... 169
 14.11 Policy controls .. 169
 14.12 Callout cache ... 170

vi

 14.13 TLS .. 170
 14.14 Local user handling ... 171
 14.15 All incoming messages (SMTP and non-SMTP) .. 171
 14.16 Non-SMTP incoming messages ... 171
 14.17 Incoming SMTP messages .. 171
 14.18 SMTP extensions .. 172
 14.19 Processing messages .. 172
 14.20 System filter .. 172
 14.21 Routing and delivery ... 172
 14.22 Bounce and warning messages .. 173
 14.23 Alphabetical list of main options .. 173

15. Generic options for routers ... 225

16. The accept router ... 240

17. The dnslookup router ... 241

 17.1 Problems with DNS lookups .. 241
 17.2 Declining addresses by dnslookup ... 241
 17.3 Private options for dnslookup .. 242
 17.4 Effect of qualify_single and search_parents ... 244

18. The ipliteral router ... 245

19. The iplookup router ... 246

20. The manualroute router .. 248

 20.1 Private options for manualroute .. 248
 20.2 Routing rules in route_list ... 249
 20.3 Routing rules in route_data .. 250
 20.4 Format of the list of hosts ... 250
 20.5 Format of one host item .. 251
 20.6 How the list of hosts is used .. 251
 20.7 How the options are used ... 252
 20.8 Manualroute examples .. 252

21. The queryprogram router ... 255

22. The redirect router ... 257

 22.1 Redirection data ... 257
 22.2 Forward files and address verification .. 258
 22.3 Interpreting redirection data ... 258
 22.4 Items in a non-filter redirection list .. 258
 22.5 Redirecting to a local mailbox .. 258
 22.6 Special items in redirection lists .. 259
 22.7 Duplicate addresses .. 261
 22.8 Repeated redirection expansion ... 261
 22.9 Errors in redirection lists ... 261
 22.10 Private options for the redirect router ... 262

23. Environment for running local transports ... 270

 23.1 Concurrent deliveries .. 270
 23.2 Uids and gids .. 270
 23.3 Current and home directories .. 271

vii

 23.4 Expansion variables derived from the address ... 271

24. Generic options for transports ... 272

25. Address batching in local transports ... 279

26. The appendfile transport .. 281

 26.1 The file and directory options .. 281
 26.2 Private options for appendfile .. 282
 26.3 Operational details for appending ... 292
 26.4 Operational details for delivery to a new file .. 293
 26.5 Maildir delivery ... 294
 26.6 Using tags to record message sizes ... 295
 26.7 Using a maildirsize file .. 295
 26.8 Mailstore delivery ... 295
 26.9 Non-special new file delivery ... 296

27. The autoreply transport .. 297

 27.1 Private options for autoreply .. 297

28. The lmtp transport ... 300

29. The pipe transport ... 302

 29.1 Concurrent delivery ... 302
 29.2 Returned status and data ... 302
 29.3 How the command is run .. 303
 29.4 Environment variables .. 304
 29.5 Private options for pipe ... 304
 29.6 Using an external local delivery agent ... 309

30. The smtp transport .. 311

 30.1 Multiple messages on a single connection .. 311
 30.2 Use of the $host and $host_address variables ... 311
 30.3 Use of $tls_cipher and $tls_peerdn .. 311
 30.4 Private options for smtp .. 311
 30.5 How the limits for the number of hosts to try are used .. 325

31. Address rewriting ... 326

 31.1 Explicitly configured address rewriting ... 326
 31.2 When does rewriting happen? ... 326
 31.3 Testing the rewriting rules that apply on input ... 327
 31.4 Rewriting rules ... 327
 31.5 Rewriting patterns .. 328
 31.6 Rewriting replacements .. 329
 31.6.1 Rewriting flags .. 329
 31.6.2 Flags specifying which headers and envelope addresses to rewrite 329
 31.6.3 The SMTP-time rewriting flag .. 329
 31.6.4 Flags controlling the rewriting process ... 330
 31.7 Rewriting examples ... 330

32. Retry configuration .. 332

 32.1 Changing retry rules .. 332

viii

 32.2 Format of retry rules .. 332
 32.3 Choosing which retry rule to use for address errors .. 333
 32.4 Choosing which retry rule to use for host and message errors 333
 32.5 Retry rules for specific errors ... 334
 32.6 Retry rules for specified senders .. 335
 32.7 Retry parameters ... 336
 32.8 Retry rule examples .. 336
 32.9 Timeout of retry data ... 337
 32.10 Long-term failures ... 337
 32.11 Deliveries that work intermittently ... 338

33. SMTP authentication ... 339

 33.1 Generic options for authenticators .. 340
 33.2 The AUTH parameter on MAIL commands ... 342
 33.3 Authentication on an Exim server ... 342
 33.4 Testing server authentication ... 343
 33.5 Authentication by an Exim client ... 344

34. The plaintext authenticator ... 346

 34.1 Avoiding cleartext use ... 346
 34.2 Plaintext server options .. 346
 34.3 Using plaintext in a server .. 346
 34.4 The PLAIN authentication mechanism ... 347
 34.5 The LOGIN authentication mechanism .. 348
 34.6 Support for different kinds of authentication .. 348
 34.7 Using plaintext in a client .. 348

35. The cram_md5 authenticator .. 350

 35.1 Using cram_md5 as a server ... 350
 35.2 Using cram_md5 as a client ... 350

36. The cyrus_sasl authenticator ... 352

 36.1 Using cyrus_sasl as a server ... 352

37. The dovecot authenticator ... 354

38. The gsasl authenticator .. 355

 38.1 gsasl auth variables ... 357

39. The heimdal_gssapi authenticator .. 359

 39.1 heimdal_gssapi auth variables .. 359

40. The spa authenticator ... 360

 40.1 Using spa as a server ... 360
 40.2 Using spa as a client ... 360

41. The external authenticator ... 362

 41.1 External options ... 362
 41.2 Using external in a server .. 362
 41.3 Using external in a client .. 363

ix

42. The tls authenticator ... 364

43. Encrypted SMTP connections using TLS/SSL ... 365

 43.1 Support for the “submissions” (aka “ssmtp” and “smtps”) protocol 365
 43.2 OpenSSL vs GnuTLS ... 365
 43.3 GnuTLS parameter computation ... 366
 43.4 Requiring specific ciphers in OpenSSL .. 367
 43.5 Requiring specific ciphers or other parameters in GnuTLS 368
 43.6 Configuring an Exim server to use TLS ... 369
 43.6.1 Requesting and verifying client certificates ... 370
 43.6.2 Caching of static server configuration items .. 371
 43.7 Configuring an Exim client to use TLS ... 371
 43.7.1 Caching of static client configuration items ... 372
 43.8 Use of TLS Server Name Indication ... 373
 43.8.1 ALPN .. 374
 43.9 Multiple messages on the same encrypted TCP/IP connection 374
 43.10 Certificates and all that ... 375
 43.10.1 Certificate chains ... 375
 43.10.2 Self-signed certificates ... 375
 43.10.3 Revoked certificates .. 376
 43.11 TLS Resumption .. 377
 43.12 DANE ... 378
 43.12.1 DNS records ... 378
 43.12.2 Interaction with OCSP ... 379
 43.12.3 Client configuration .. 379
 43.12.4 Observability ... 380
 43.12.5 General .. 380

44. Access control lists ... 382

 44.1 Testing ACLs .. 382
 44.2 Specifying when ACLs are used ... 382
 44.2.1 The non-SMTP ACLs .. 383
 44.2.2 The SMTP connect ACL ... 383
 44.2.3 The EHLO/HELO ACL .. 383
 44.2.4 The DATA ACLs .. 383
 44.2.5 The SMTP DKIM ACL ... 384
 44.2.6 The SMTP MIME ACL ... 384
 44.2.7 The SMTP PRDR ACL .. 384
 44.2.8 The SMTP WELLKNOWN ACL ... 385
 44.2.9 The QUIT ACL .. 385
 44.2.10 The not-QUIT ACL ... 386
 44.3 Finding an ACL to use .. 386
 44.4 ACL return codes ... 387
 44.5 Unset ACL options ... 387
 44.6 Data for message ACLs .. 387
 44.7 Data for non-message ACLs .. 388
 44.8 Format of an ACL .. 388
 44.9 ACL verbs ... 388
 44.10 ACL variables ... 390
 44.11 Condition and modifier processing ... 391
 44.12 ACL modifiers ... 392
 44.13 Use of the control modifier ... 396
 44.14 Summary of message fixup control .. 400
 44.15 Adding header lines in ACLs ... 400
 44.16 Removing header lines in ACLs .. 402

x

 44.17 ACL conditions ... 403
 44.18 Using DNS lists .. 407
 44.18.1 Specifying the IP address for a DNS list lookup ... 408
 44.18.2 DNS lists keyed on domain names ... 408
 44.18.3 Multiple explicit keys for a DNS list ... 409
 44.18.4 Data returned by DNS lists .. 409
 44.18.5 Variables set from DNS lists .. 410
 44.18.6 Additional matching conditions for DNS lists ... 410
 44.18.7 Negated DNS matching conditions ... 411
 44.18.8 Handling multiple DNS records from a DNS list ... 411
 44.18.9 Detailed information from merged DNS lists ... 412
 44.18.10 DNS lists and IPv6 .. 413
 44.19 Previously seen user and hosts .. 413
 44.20 Rate limiting incoming messages ... 414
 44.20.1 Ratelimit options for what is being measured ... 415
 44.20.2 Ratelimit update modes .. 415
 44.20.3 Ratelimit options for handling fast clients .. 416
 44.20.4 Limiting the rate of different events ... 416
 44.20.5 Using rate limiting .. 417
 44.21 Address verification ... 417
 44.22 Callout verification ... 418
 44.22.1 Additional parameters for callouts ... 419
 44.22.2 Callout caching .. 422
 44.23 Quota caching .. 422
 44.24 Sender address verification reporting .. 423
 44.25 Redirection while verifying ... 423
 44.26 Client SMTP authorization (CSA) ... 423
 44.27 Bounce address tag validation .. 424
 44.28 Using an ACL to control relaying .. 425
 44.29 Checking a relay configuration .. 426

45. Content scanning at ACL time .. 427

 45.1 Scanning for viruses .. 427
 45.2 Scanning with SpamAssassin and Rspamd .. 432
 45.3 Calling SpamAssassin from an Exim ACL ... 433
 45.4 Scanning MIME parts ... 434
 45.5 Scanning with regular expressions ... 437

46. Adding a local scan function to Exim ... 438

 46.1 Building Exim to use a local scan function .. 438
 46.2 API for local_scan() ... 438
 46.3 Configuration options for local_scan() .. 439
 46.4 Available Exim variables ... 441
 46.5 Structure of header lines .. 442
 46.6 Structure of recipient items .. 442
 46.7 Available Exim functions ... 443
 46.8 More about Exim’s memory handling ... 447

47. System-wide message filtering .. 448

 47.1 Specifying a system filter .. 448
 47.2 Testing a system filter ... 448
 47.3 Contents of a system filter .. 448
 47.4 Additional variable for system filters ... 449
 47.5 Defer, freeze, and fail commands for system filters ... 449
 47.6 Adding and removing headers in a system filter ... 450

xi

 47.7 Setting an errors address in a system filter ... 450
 47.8 Per-address filtering .. 451

48. Message processing ... 452

 48.1 Submission mode for non-local messages .. 452
 48.2 Line endings ... 453
 48.3 Unqualified addresses .. 453
 48.4 The UUCP From line ... 454
 48.5 Header lines ... 454
 48.5.1 Resent- header lines ... 454
 48.5.2 Auto-Submitted: ... 455
 48.5.3 Bcc: .. 455
 48.5.4 Date: .. 455
 48.5.5 Delivery-date: ... 455
 48.5.6 Envelope-to: .. 455
 48.5.7 From: .. 455
 48.5.8 Message-ID: ... 456
 48.5.9 Received: .. 456
 48.5.10 References: .. 456
 48.5.11 Return-path: ... 456
 48.5.12 Sender: .. 456
 48.6 Adding and removing header lines in routers and transports 457
 48.7 Constructed addresses ... 458
 48.8 Case of local parts ... 459
 48.9 Dots in local parts .. 459
 48.10 Rewriting addresses ... 459

49. SMTP processing ... 460

 49.1 Outgoing SMTP and LMTP over TCP/IP ... 460
 49.1.1 Errors in outgoing SMTP .. 461
 49.2 Incoming SMTP messages over TCP/IP ... 462
 49.2.1 Unrecognized SMTP commands ... 464
 49.2.2 Syntax and protocol errors in SMTP commands .. 464
 49.2.3 Use of non-mail SMTP commands ... 464
 49.2.4 The VRFY and EXPN commands ... 464
 49.2.5 The ETRN command .. 464
 49.3 Incoming local SMTP .. 465
 49.4 Outgoing batched SMTP .. 465
 49.5 Incoming batched SMTP .. 466

50. Customizing bounce and warning messages .. 467

 50.1 Customizing bounce messages .. 467
 50.2 Customizing warning messages ... 468

51. Some common configuration settings ... 469

 51.1 Sending mail to a smart host ... 469
 51.2 Using Exim to handle mailing lists .. 469
 51.3 Syntax errors in mailing lists .. 469
 51.4 Re-expansion of mailing lists ... 470
 51.5 Closed mailing lists .. 470
 51.6 Variable Envelope Return Paths (VERP) ... 471
 51.7 Virtual domains .. 472
 51.8 Multiple user mailboxes .. 473
 51.9 Simplified vacation processing .. 474

xii

 51.10 Taking copies of mail ... 474
 51.11 Intermittently connected hosts .. 474
 51.12 Exim on the upstream server host .. 474
 51.13 Exim on the intermittently connected client host .. 475

52. Using Exim as a non-queueing client ... 476

53. Log files .. 478

 53.1 Where the logs are written ... 478
 53.2 Logging to local files that are periodically “cycled” ... 479
 53.3 Datestamped log files ... 479
 53.4 Logging to syslog ... 480
 53.5 Log line flags .. 481
 53.6 Logging message reception ... 481
 53.7 Logging deliveries .. 482
 53.8 Discarded deliveries .. 483
 53.9 Deferred deliveries .. 483
 53.10 Delivery failures ... 483
 53.11 Fake deliveries ... 484
 53.12 Completion ... 484
 53.13 Summary of Fields in Log Lines ... 484
 53.14 Other log entries .. 485
 53.15 Reducing or increasing what is logged .. 485
 53.16 Message log ... 490

54. Exim utilities .. 491

 54.1 Finding out what Exim processes are doing (exiwhat) .. 491
 54.2 Selective queue listing (exiqgrep) ... 492
 54.3 Summarizing the queue (exiqsumm) .. 493
 54.4 Extracting specific information from the log (exigrep) .. 493
 54.5 Selecting messages by various criteria (exipick) .. 494
 54.6 Cycling log files (exicyclog) .. 494
 54.7 Mail statistics (eximstats) ... 494
 54.8 Checking access policy (exim_checkaccess) ... 495
 54.9 Making DBM files (exim_dbmbuild) .. 496
 54.10 Finding individual retry times (exinext) ... 496
 54.11 Hints database maintenance ... 497
 54.12 exim_dumpdb ... 497
 54.13 exim_tidydb .. 498
 54.14 exim_fixdb ... 498
 54.15 Mailbox maintenance (exim_lock) ... 498
 54.16 Message Ids for humans (exim_msgdate) .. 500

55. The Exim monitor ... 501

 55.1 Running the monitor .. 501
 55.2 The stripcharts ... 501
 55.3 Main action buttons ... 502
 55.4 The log display ... 502
 55.5 The queue display ... 503
 55.6 The queue menu .. 503

56. Security considerations ... 506

 56.1 Building a more “hardened” Exim ... 506
 56.2 Root privilege ... 506

xiii

 56.3 Running Exim without privilege ... 508
 56.4 Delivering to local files .. 509
 56.5 Running local commands ... 509
 56.6 Trust in configuration data .. 509
 56.7 IPv4 source routing ... 510
 56.8 The VRFY, EXPN, and ETRN commands in SMTP ... 510
 56.9 Privileged users ... 510
 56.10 Spool files ... 510
 56.11 Use of argv[0] ... 511
 56.12 Use of %f formatting ... 511
 56.13 Embedded Exim path ... 511
 56.14 Dynamic module directory ... 511
 56.15 Use of sprintf() ... 511
 56.16 Use of debug_printf() and log_write() .. 511
 56.17 Use of strcat() and strcpy() .. 511

57. Format of spool files ... 512

 57.1 Format of the -H file ... 512
 57.2 Format of the -D file ... 516

58. DKIM, SPF, SRS and DMARC .. 517

 58.1 DKIM (DomainKeys Identified Mail) .. 517
 58.1.1 Signing outgoing messages ... 517
 58.1.2 Verifying DKIM signatures in incoming mail .. 520
 58.2 SPF (Sender Policy Framework) ... 523
 58.2.1 SRS (Sender Rewriting Scheme) .. 525
 58.3 DMARC ... 527
 58.3.1 Configuration .. 527
 58.3.2 Controls ... 527
 58.3.3 ACL .. 528
 58.3.4 Logging .. 528
 58.3.5 Example .. 529

59. Proxies .. 530

 59.1 Inbound proxies ... 530
 59.2 Outbound proxies .. 530
 59.3 Logging .. 531

60. Internationalisation .. 532

 60.1 MTA operations .. 532
 60.2 MDA operations ... 533

61. Events ... 534

62. Adding new drivers or lookup types ... 536

Options index .. 537

Variables index ... 544

Concept index ... 546

xiv

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-
UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and UnixWare. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply, or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of Exim, which revolve around the free provision of a service that
enhances the quality of personal communications. The author of Exim regards indiscriminate mass-
mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. I am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which I have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.98.2 of Exim. Substantive changes from the
4.97 edition are marked in some renditions of this document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
this manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server (second edition, 2007), pub-
lished by UIT Cambridge (https://www.uit.co.uk/exim-book/).

The book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have
changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the file /usr/share/doc/exim4-base/README.Debian. The command man update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As Exim develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStuff in the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the file doc/experimental.txt.

All changes to Exim (whether new features, bug fixes, or other kinds of change) are noted briefly in
the file called doc/ChangeLog.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other files in the doc directory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries
exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filter.txt specification of the filter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4
openssl.txt installing a current OpenSSL release

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Section 1.5 below tells you how to get hold of these.

1.2 FTP site and websites

The primary site for Exim source distributions is the exim.org FTP site, available over HTTPS, HTTP
and FTP. These services, and the exim.org website, are hosted at the University of Cambridge.

As well as Exim distribution tar files, the Exim website contains a number of differently formatted
versions of the documentation. A recent addition to the online information is the Exim wiki
(https://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users. The wiki site should always
redirect to the correct place, which is currently provided by GitHub, and is open to editing by anyone
with a GitHub account.

An Exim Bugzilla exists at https://bugs.exim.org. You can use this to report bugs, and also to add
items to the wish list. Please search first to check that you are not duplicating a previous entry. Please
do not ask for configuration help in the bug-tracker.

1.3 Mailing lists

The following Exim mailing lists exist:

exim-
announce@lists.exim.org

Moderated, low volume announcements list

exim-users@lists.exim.org General discussion list
exim-users-de@lists.exim.org General discussion list in German language
exim-dev@lists.exim.org Discussion of bugs, enhancements, etc.
exim-cvs@lists.exim.org Automated commit messages from the VCS

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailing list pkg-exim4-users@lists.alioth.debian.org via
this web page:

https://alioth-lists.debian.net/cgi-bin/mailman/listinfo/pkg-exim4-users

Please ask Debian-specific questions on that list and not on the general Exim lists.

2 Introduction (1)

1.4 Bug reports

Reports of obvious bugs can be emailed to bugs@exim.org or reported via the Bugzilla
(https://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do is to post a message to the exim-dev mailing list and have it discussed.

1.5 Where to find the Exim distribution

The master distribution site for the Exim distribution is

https://downloads.exim.org/

The service is available over HTTPS, HTTP and FTP. We encourage people to migrate to HTTPS.

The content served at https://downloads.exim.org/ is identical to the content served at
https://ftp.exim.org/pub/exim and ftp://ftp.exim.org/pub/exim.

If accessing via a hostname containing ftp, then the file references that follow are relative to the exim
directories at these sites. If accessing via the hostname downloads then the subdirectories described
here are top-level directories.

There are now quite a number of independent mirror sites around the world. Those that I know about
are listed in the file called Mirrors.

Within the top exim directory there are subdirectories called exim3 (for previous Exim 3 distri-
butions), exim4 (for the latest Exim 4 distributions), and Testing for testing versions. In the exim4
subdirectory, the current release can always be found in files called

exim-n.nn.tar.xz
exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The three files contain identical data;
the only difference is the type of compression. The .xz file is usually the smallest, while the .gz file is
the most portable to old systems.

The distributions will be PGP signed by an individual key of the Release Coordinator. This key will
have a uid containing an email address in the exim.org domain and will have signatures from other
people, including other Exim maintainers. We expect that the key will be in the "strong set" of PGP
keys. There should be a trust path to that key from the Exim Maintainer’s PGP keys, a version of
which can be found in the release directory in the file Exim-Maintainers-Keyring.asc. All keys used
will be available in public keyserver pools, such as pool.sks-keyservers.net.

At the time of the last update, releases were being made by Jeremy Harris and signed with key
0xBCE58C8CE41F32DF. Other recent keys used for signing are those of Heiko Schlittermann,
0x26101B62F69376CE, and of Phil Pennock, 0x4D1E900E14C1CC04.

The signatures for the tar bundles are in:

exim-n.nn.tar.xz.asc
exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made available in a separate file in the directory
ChangeLogs so that it is possible to find out what has changed without having to download the entire
distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

3 Introduction (1)

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 and .xz forms.

1.6 Limitations

• Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

• Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

• The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

• Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

• Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.7 Runtime configuration

Exim’s runtime configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chapter 7 below.

1.8 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages in the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapter 5 documents all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages in the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.9 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The term bounce is commonly used for this action, and
the error reports are often called bounce messages. This is a convenient shorthand for “delivery failure

4 Introduction (1)

error report”. Such messages have an empty sender address in the message’s envelope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to the part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on are remote.

Return path is another name that is used for the sender address in a message’s envelope.

The term queue is used to refer to the set of messages awaiting delivery because this term is in
widespread use in the context of MTAs. However, in Exim’s case, the reality is more like a pool than
a queue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs and also relates to the
command runq, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages in its queue – that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

• Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE2 library, copyright © University of Cambridge. The source to PCRE2 is
not longer shipped with Exim, so you will need to use the version of PCRE2 shipped with your
system, or obtain and install the full version of the library from
https://github.com/PhilipHazel/pcre2/releases.

• Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained from https://cr.yp.to/cdb.html. This implementation borrows
some code from Dan Bernstein’s implementation (which has no license restrictions
applied to it).

• Client support for Microsoft’s Secure Password Authentication is provided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

• Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890
(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University (https://www.cmu.edu/computing/.”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

• The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

• The DMARC implementation uses the OpenDMARC library which is Copyrighted by The Trusted
Domain Project. Portions of Exim source which use OpenDMARC derived code are indicated in
the respective source files. The full OpenDMARC license is provided in the LICENSE.opendmarc
file contained in the distributed source code.

• Many people have contributed code fragments, some large, some small, that were not covered by
any specific license requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs from being abused as “open relays” by misguided individuals
who send out vast amounts of unsolicited junk and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

• Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control Lists (ACLs). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or rejecting individual
recipients or the entire message, respectively, at these two points (see chapter 44). Denial of access
results in an SMTP error code.

• An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

• When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

• When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function called local_scan() can be run to
inspect the message and decide whether to accept it or not (see chapter 46). If the message is
accepted, the list of recipients can be modified by the function.

• Using the local_scan() mechanism is another way of calling external scanner software. The SA-
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

• After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter 47). This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
.forward files in their home directories. See chapter 22 (about the redirect router) for the configuration
needed to support this, and the separate document entitled Exim’s interfaces to mail filtering for user
details. Two different kinds of filtering are available:

• Sieve filters are written in the standard filtering language that is defined by RFC 3028.

• Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is given a message id which is 23 characters long. It is divided into
three parts, separated by hyphens, for example 16VDhn-000000001bo-D342. Each part is a
sequence of letters and digits, normally encoding numbers in base 62. However, in the Darwin
operating system (Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding
the use of lower case letters) is used instead, because the message id is used to construct filenames,
and the names of files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

• The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

• After the first hyphen, the next eleven characters are the id of the process that received the
message.

• There are two different possibilities for the final four characters:

(1) If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of microseconds. but for systems that must use base 36 instead of base 62
(because of case-insensitive file systems), the units are 2 us.

(2) If localhost_number is set, it is multiplied by 500000 (250000) and added to the fractional
part of the time, which in this case is in units of 2 us (4 us).

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

The exim_msgdate utility (see section 54.16) can be used to display the date, and optionally the
process id, of an Exim Message ID.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’s MUA), there are several possibilities:

• If the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

• If the process runs Exim with the -bS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

• If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

• A local process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

9 Receiving and delivering mail (3)

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted
users”) to specify a different sender addresses unconditionally, or all users to specify certain forms of
different sender address. The -f option or the SMTP MAIL command is used to specify these different
addresses. See section 5.2 for details of trusted users, and the untrusted_set_sender option for a way
of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL if one is defined. Messages received using SMTP (either over TCP/IP or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients or the entire message can be rejected if local policy requirements
are not met. The local_scan() function (see chapter 46) is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followed by -H for the file
containing the envelope and header, and -D for the data file.

By default, all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter 57.

Address rewriting that is specified in the rewrite section of the configuration (see chapter 31) is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters 15 and 24).

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed – for example when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries are
attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

10 Receiving and delivering mail (3)

There are options called ignore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to all frozen
messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter
53). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed by -J. At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool file (the -H file) is updated to indicate which
these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or Exim crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Runtime options specify which
ones are actually used for delivering messages.

Each driver that is specified in the runtime configuration is an instance of that particular driver type.
Multiple instances are allowed; for example, you can set up several different smtp transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A router is a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specifically by the local host. Typically these are addresses for arbitrary domains
on the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typically, this
is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If

11 Receiving and delivering mail (3)

it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection – also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,
the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,
or it may look up the local part in a file or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

• accept: The router accepts the address, and either assigns it to a transport or generates one or more
“child” addresses. Processing the original address ceases unless the unseen option is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). When unseen is set, the address is passed to the next router.
Normally, however, an accept return marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting the redirect_router option to specify
which router to start at for child addresses. Unlike pass_router (see below) the router specified by
redirect_router may be anywhere in the router configuration.

• pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default, the address is passed to the next router, but this can be
changed by setting the pass_router option. However, (unlike redirect_router) the named router
must be below the current router (to avoid loops).

• decline: The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting the no_more option.
When no_more is set, all the remaining routers are skipped. In effect, no_more converts decline
into fail.

• fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original address unless unseen is set on the router.

• defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

12 Receiving and delivering mail (3)

• error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you
can set your own message by making use of the cannot_route_message option. This can be set for
any router; the value from the last router that “saw” the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a “fail”
facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports
and discards any duplicates that it finds. During this check, local parts are treated case-sensitively.
This happens only when actually delivering a message; when testing routers with -bt, all the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter 15.

(1) The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or
suffix) is not present, the router is skipped. These conditions are tested first. When an affix is
present, it is removed from the local part before further processing, including the evaluation of
any other conditions.

(2) Routers can be designated for use only when not verifying an address, that is, only when routing
it for delivery (or testing its delivery routing). If the verify option is set false, the router is
skipped when Exim is verifying an address. Setting the verify option actually sets two options,
verify_sender and verify_recipient, which independently control the use of the router for
sender and recipient verification. You can set these options directly if you want a router to be
used for only one type of verification. Note that cutthrough delivery is classed as a recipient
verification for this purpose.

(3) If the address_test option is set false, the router is skipped when Exim is run with the -bt option
to test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

(4) Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this. Again, cutthrough delivery counts as a
verification.

(5) Individual routers can be explicitly skipped when running the routers to check an address given
in the SMTP EXPN command (see the expn option).

(6) If the domains option is set, the domain of the address must be in the set of domains that it
defines. A match verifies the variable $domain (which carries tainted data) and assigns an
untainted value to the $domain_data variable. Such an untainted value is often needed in the
transport. For specifics of the matching operation and the resulting untainted value, refer to
section 10.3.

When an untainted value is wanted, use this option rather than the generic condition option.

(7) If the local_parts option is set, the local part of the address must be in the set of local parts that
it defines. A match verifies the variable $local_part (which carries tainted data) and assigns an
untainted value to the $local_part_data variable. Such an untainted value is often needed in the

13 Receiving and delivering mail (3)

transport. For specifics of the matching operation and the resulting untainted value, refer to
section 10.6.

When an untainted value is wanted, use this option rather than the generic condition option.

If local_part_prefix or local_part_suffix is in use, the prefix or suffix is removed from the local
part before this check. If you want to do precondition tests on local parts that include affixes,
you can do so by using a condition option (see below) that uses the variables $local_part,
$local_part_prefix, $local_part_prefix_v, $local_part_suffix and $local_part_suffix_v as
necessary.

(8) If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
$local_user_gid and the user’s home directory is placed in $home; these values can be used in
the remaining preconditions.

(9) If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of $home. If this expansion were left till later, the value of $home as set by check_local_
user would be used in subsequent tests. Having two different values of $home in the same router
could lead to confusion.

(10) If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

(11) If the require_files option is set, the existence or non-existence of specified files is tested.

(12) If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter
11.

Note that while using this option for address matching technically works, it does not set any
de-tainted values. Such values are often needed, either for router-specific options or for transport
options. Using the domains and local_parts options is usually the most convenient way to
obtain them.

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.13 Delivery in detail

When a message is to be delivered, the sequence of events is as follows:

(1) If a system-wide filter file is specified, the message is passed to it. The filter may add recipients
to the message, replace the recipients, discard the message, cause a new message to be gener-
ated, or cause the message delivery to fail. The format of the system filter file is the same as for
Exim user filter files, described in the separate document entitled Exim’s interfaces to mail
filtering. (Note: Sieve cannot be used for system filter files.)

Some additional features are available in system filters – see chapter 47 for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can
be used to detect the first run of the system filter.

(2) Each recipient address is offered to each configured router, in turn, subject to its preconditions,
until one is able to handle it. If no router can handle the address, that is, if they all decline, the
address is failed. Because routers can be targeted at particular domains, several locally handled
domains can be processed entirely independently of each other.

(3) A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular

14 Receiving and delivering mail (3)

transport, which will be run later. Alternatively, the router may generate one or more new
addresses (typically from alias, forward, or filter files). New addresses are fed back into this
process from the top, but in order to avoid loops, a router ignores any address which has an
identically-named ancestor that was processed by itself.

(4) When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

(5) Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries
can be run in parallel. The maximum number of simultaneous remote deliveries for any one
message is set by the remote_max_parallel option. The order in which deliveries are done is
not defined, except that all local deliveries happen before any remote deliveries.

(6) When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry
time for the address is reached. However, this happens only for delivery attempts that are part of
a queue run. Local deliveries are always attempted when delivery immediately follows message
reception, even if retry times are set for them. This makes for better behaviour if one particular
message is causing problems (for example, causing quota overflow, or provoking an error in a
filter file).

(7) Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter 32 for details of retry strategies.

(8) If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

(9) If one or more addresses suffered a temporary failure, the message is left on the queue, to be
tried again later. Delivery of these addresses is said to be deferred.

(10) When all the recipient addresses have either been delivered or bounced, handling of the message
is complete. The spool files and message log are deleted, though the message log can optionally
be preserved if required.

3.14 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue runners at regular intervals or use some other means (such as cron) to start them. If you do
not arrange for queue runners to be run, messages that fail temporarily at the first attempt will remain
in your queue forever. A queue runner process works its way through the queue, one message at a
time, trying each delivery that has passed its retry time. You can run several queue runners at once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
32). These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.14.1 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most

15 Receiving and delivering mail (3)

common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.14.2 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter 50 for details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.
However, when an address is expanded via a forward or alias file, an alternative address can be
specified for delivery failures of the generated addresses. For a mailing list expansion (see section
51.2) it is common to direct bounce messages to the manager of the list.

3.14.3 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left in the queue, but it is frozen, awaiting the attention of an
administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (see timeout_frozen_after and ignore_bounce_errors_after).

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for example, exim-4.98.2) into which the following files are placed:

 ACKNOWLEDGMENTS contains some acknowledgments
 CHANGES contains a reference to where changes are documented
 LICENCE the GNU General Public Licence
 Makefile top-level make file
 NOTICE conditions for the use of Exim
 README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

 Local an empty directory for local configuration files
 OS OS-specific files
 doc documentation files
 exim_monitor source files for the Exim monitor
 scripts scripts used in the build process
 src remaining source files
 util independent utilities

The main utility programs are contained in the src directory and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary. A C99-capable compiler will be required for the build.

4.3 PCRE2 library

Exim no longer has an embedded regular-expression library as the vast majority of modern systems
include PCRE2 as a system library, although you may need to install the PCRE2 package or the
PCRE2 development package for your operating system. If your system has a normal PCRE2 instal-
lation the Exim build process will need no further configuration. If the library or the headers are in an
unusual location you will need to either set the PCRE2_LIBS and INCLUDE directives appropriately,
or set PCRE2_CONFIG=yes to use the installed pcre-config command. If your operating system has
no PCRE2 support then you will need to obtain and build the current PCRE2 from
https://github.com/PhilipHazel/pcre2/releases. More information on PCRE2 is available at
https://www.pcre.org/.

4.4 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they

17 Building and installing Exim (4)

contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are several possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the filename is used unmodified.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer’s interface is somewhat different to the traditional ndbm interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a while,
but the latest versions when Exim last revamped support were numbered 5.x. Maintenance of
some of the earlier releases has ceased, and Exim no longer supports versions before 3.x. All
versions of Berkeley DB could be obtained from http://www.sleepycat.com/, which is now a
redirect to their new owner’s page with far newer versions listed. It is probably wise to plan to
move your storage configurations away from Berkeley DB format, as today there are smaller and
simpler alternatives more suited to Exim’s usage model.

(6) Yet another DBM library, called tdb, is available from
https://sourceforge.net/projects/tdb/files/. It has its own interface, and also operates on a
single file.

(7) It is possible to use sqlite3 (https://www.sqlite.org/index.html) for the DBM library.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefile). For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, for tdb you set USE_TDB, and for sqlite3 you set USE_
SQLITE. An error is diagnosed if you set more than one of these. You can set USE_NDBM if needed
to override an operating system default.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you set in Local/Makefile, however, over-
rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -ldb
DBMLIB = -ltdb
DBMLIB = -lsqlite3
DBMLIB = -lgdbm -lgdbm_compat

The last of those was for a Linux having GDBM provide emulated NDBM facilities. Settings like that
will work if the DBM library is installed in the standard place. Sometimes it is not, and the library’s
header file may also not be in the default path. You may need to set INCLUDE to specify where the
header file is, and to specify the path to the library more fully in DBMLIB, as in this example:

18 Building and installing Exim (4)

INCLUDE=-I/usr/local/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/libdb.a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

4.5 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
src/EDITME, and it contains full descriptions of all the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/Makefile, then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the runtime configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of
filenames; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at runtime, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them in Local/Makefile instead of at runtime, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes

in your Local/Makefile. For details of the facilities themselves, see chapter 45.

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default
or by operating-system-specific configuration files, for example, to change the C compiler, which
defaults to gcc. See section 4.13 below for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and translates them into a specified character set (default is set at build

time). The translation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from https://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not supply iconv() at all.
After installing libiconv, you should add

HAVE_ICONV=yes

to your Local/Makefile and rebuild Exim.

19 Building and installing Exim (4)

4.7 Including TLS/SSL encryption support

Exim is usually built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support clients that expect to start a TLS session immediately on connection to
a non-standard port (see the tls_on_connect_ports runtime option and the -tls-on-connect command
line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If you do not want TLS support you should set

DISABLE_TLS=yes

in Local/Makefile.

If OpenSSL is installed, you should set

USE_OPENSL=yes
TLS_LIBS=-lssl -lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

USE_OPENSSL=yes
TLS_LIBS=-L/usr/local/openssl/lib -lssl -lcrypto
TLS_INCLUDE=-I/usr/local/openssl/include/

If you have pkg-config available, then instead you can just use:

USE_OPENSSL=yes
USE_OPENSSL_PC=openssl

If GnuTLS is installed, you should set

USE_GNUTLS=yes
TLS_LIBS=-lgnutls -ltasn1 -lgcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files. For
example:

USE_GNUTLS=yes
TLS_LIBS=-L/usr/gnu/lib -lgnutls -ltasn1 -lgcrypt
TLS_INCLUDE=-I/usr/gnu/include

If you have pkg-config available, then instead you can just use:

USE_GNUTLS=yes
USE_GNUTLS_PC=gnutls

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter 43.

4.8 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time,
and also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS_EXIM. For example, if tcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-O -I/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib -lwrap

in Local/Makefile. The daemon name to use in the tcpwrappers control files is “exim”. For example,
the line

20 Building and installing Exim (4)

exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. The daemon name
used by tcpwrappers can be changed at build time by setting TCP_WRAPPERS_DAEMON_NAME
in Local/Makefile, or by setting tcp_wrappers_daemon_name in the configure file. Consult the
tcpwrappers documentation for further details.

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for IPv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. Exim used to have a compile
option for including A6 record support but this has now been withdrawn.

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
users to install all of those dependencies. Most, but not all, lookup types can be built this way.

Set LOOKUP_MODULE_DIR to the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need to set CFLAGS_DYNAMIC if
not already defined for your OS; see OS/Makefile-Linux for an example. Some other requirements for
adjusting EXTRALIBS may also be necessary, see src/EDITME for details.

Then, for each module to be loaded dynamically, define the relevant LOOKUP_<lookup_type> flags to
have the value "2" instead of "yes". For example, this will build in lsearch but load sqlite and mysql
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLITE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The command make makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

21 Building and installing Exim (4)

4.12 Output from “make”

The output produced by the make process for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling make like this:

FULLECHO='' make -e

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make. When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make instruc-
tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile-<ostype>
Local/Makefile
Local/Makefile-<ostype>
Local/Makefile-<archtype>
Local/Makefile-<ostype>-<archtype>
OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in OS/Makefile-
<ostype>, or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropriate Local file. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is called cc rather than gcc. Also, the
compiler must be called with the option -std1, to make it recognize some of the features of Standard
C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file called Local/Makefile-OSF1 containing the lines

CC=cc
CFLAGS=-std1

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

22 Building and installing Exim (4)

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_LDAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

and similar settings apply to the other lookup types. They are all listed in src/EDITME. In many cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause runtime configuration errors.

Many systems now use a tool called pkg-config to encapsulate information about how to compile
against a library; Exim has some initial support for being able to use pkg-config for lookups and
authenticators. For any given makefile variable which starts LOOKUP_ or AUTH_, you can add a new
variable with the _PC suffix in the name and assign as the value the name of the package to be
queried. The results of querying via the pkg-config command will be added to the appropriate
Makefile variables with += directives, so your version of make will need to support that syntax. For
instance:

LOOKUP_SQLITE=yes
LOOKUP_SQLITE_PC=sqlite3
AUTH_GSASL=yes
AUTH_GSASL_PC=libgsasl
AUTH_HEIMDAL_GSSAPI=yes
AUTH_HEIMDAL_GSSAPI_PC=heimdal-gssapi

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM_PERL=perl.o

must be defined in Local/Makefile. Details of this facility are given in chapter 12.

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default:

X11=/usr/X11R6
XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X11=/usr/openwin
XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib -R$(X11)/lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile-<ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also section 4.4). Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

23 Building and installing Exim (4)

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.14 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are
system-specific C header files that should not normally need to be changed. There is a list of macro
settings that are recognized in the file OS/os.configuring, which should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
OS/eximon.conf-<ostype>
Local/eximon.conf
Local/eximon.conf-<ostype>
Local/eximon.conf-<archtype>
Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at runtime.

4.16 Installing Exim binaries and scripts

The command make install runs the exim_install script with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting in Local/Makefile. The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and have the setuid bit set, for
normal configurations. Therefore, you must run make install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter 56 for
details).

Exim’s runtime configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If
this names a single file, and the file does not exist, the default configuration file src/configure.default
is copied there by the installation script. If a runtime configuration file already exists, it is left alone. If
CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE in Local/Makefile (/etc/aliases by default). If the system aliases file
does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

24 Building and installing Exim (4)

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Running make install does not copy the Exim 4 conversion script convert4r4. You will probably run
this only once if you are upgrading from Exim 3. None of the documentation files in the doc directory
are copied, except for the info files when you have set INFO_DIRECTORY, as described in section
4.17 below.

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example, exim-4.98.2-1. The script then arranges for a symbolic
link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make INSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)

There are two other options that can be supplied to the installation script.

• -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

• -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.

INSTALL_ARG can be used to pass these options to the script. For example:

make INSTALL_ARG=-no_symlink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL_ARG='-no_symlink exim' install

4.17 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the FTP site (see section 1.5).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documen-
tation is found in the source tree, running make install automatically builds the info files and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

25 Building and installing Exim (4)

4.19 Testing

Having installed Exim, you can check that the runtime configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim -bV

If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username>

should verify that it recognizes a local mailbox, and

exim -bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user@your.domain.example
To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
^D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim -d -M <exim-message-id>

You must be root or an “admin user” in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapter 5 for more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fcntl() locking instead. However, you should
do this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter 26.

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -oX option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the runtime configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

26 Building and installing Exim (4)

4.20 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is either /usr/sbin/sendmail, or
/usr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail /usr/exim/bin/exim
send-mail /usr/exim/bin/exim
mailq /usr/exim/bin/exim -bp
newaliases /usr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim’s interface
to mail filtering available to them.

4.21 Running the daemon

The most common command line for launching the Exim daemon looks like

exim -bd -q5m

This starts a daemon which

• listens for incoming smtp connections, launching handler processes for each new one

• starts a queue-runner process every five minutes, to inspect queued messages and run delivery
attempts on any that have arrived at their retry time

Should a queue run take longer than the time between queue-runner starts, they will run in parallel.
Numbers of jobs of the various types are subject to policy controls defined in the configuration.

4.22 Upgrading Exim

If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.

4.23 Stopping the Exim daemon on Solaris

The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop

If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text “sendmail”; this is not present because the actual
program name (that is, “exim”) is given by the ps command with these options. A solution is to
replace the line that finds the process id with something like

pid=`cat /var/spool/exim/exim-daemon.pid`

27 Building and installing Exim (4)

to obtain the daemon’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

28 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailq, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked to /usr/sbin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name runq it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be
started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group
options. These do not necessarily have to use the name “exim”.

• The trusted users are root, the Exim user, any user listed in the trusted_users configuration option,
and any user whose current group or any supplementary group is one of those listed in the trusted_
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading “From ” line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). See the untrusted_set_sender option for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents of the From: header line, and a Sender:
line is never added. Furthermore, any existing Sender: line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other values
that are available to trusted users.

• The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in the admin_groups configuration option. The current group does not have to be one
of these groups.

29 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin users
unless queue_list_requires_admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter 6.

5.3 Command line options

Exim’s command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command line, -bm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

-- --
This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
This option is an alias for -bV and causes version information to be displayed.

-Ac
-Am

These options are used by Sendmail for selecting configuration files and are ignored by Exim.

-B <type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd option
is combined with the -q<time> option, to specify that the daemon should also initiate periodic
queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter 13 contains a description of the options that control this.

When a listening daemon is started without the use of -oX (that is, without overriding the normal
configuration), it writes its process id to a file called exim-daemon.pid in Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH in Local/Makefile. The file is written
while Exim is still running as root.

30 The Exim command line (5)

When -oX is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. However, -oP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means of the .include
facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

Either a SIGTERM or a SIGINT signal should be used to cause the daemon to cleanly shut down.
Subprocesses handling recceiving or delivering messages, or for scanning the queue, will not be
affected by the termination of the daemon process.

-bdf
This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes in Local/Makefile, it tries to load the libreadline
library dynamically whenever the -be option is used without command line arguments. If success-
ful, it uses the readline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s runtime configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for example, $qualify_domain) are available, but no
message-specific values (such as $message_exim_id) are set, because no message is being pro-
cessed (but see -bem and -Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

Macro processing is done on lines before string-expansion: new macros can be defined and macros
will be expanded. Because macros in the config file are often used for secrets, those are only
available to admin users.

The word “set” at the start of a line, followed by a single space, is recognised specially as defining
a value for a variable.

If the sequence “,t” is inserted before the space, the value is marked as tainted.

The syntax is otherwise the same as the ACL modifier “set =”.

-bem <filename>
This option operates like -be except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables such as $message_size and
$header_from: are available. However, no Received: header is added to the message. If the -t
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipients variable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (just like -be).

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

31 The Exim command line (5)

-bf <filename>
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, use -bF instead of -bf. You can use both -bF and -bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /user/filter </test/message

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Exim filter
Sieve filter

it is taken to be a normal .forward file, and is tested for validity under that interpretation. See
sections 22.4 to 22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitled Exim’s interfaces to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a “From ” line at
the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domain>
This sets the domain of the recipient address when a filter file is being tested by means of the -bf
option. The default is the value of $qualify_domain.

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by means of the -bf
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty prefix.

-bfs <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty suffix.

-bh <IP address>
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
fe80:0000:0000:0a00:20ff:fe86:a061.5678.

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls using -bh.

32 The Exim command line (5)

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the -oMt option. However, Exim cannot actually perform an ident callout when testing
using -bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section 44.22) are also skipped when testing using
-bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. The -oMi option can be used to specify a specific IP interface and port if this
is important, and -oMaa and -oMai can be used to set parameters as if the SMTP session were
authenticated.

The exim_checkaccess utility is a “packaged” version of -bh whose output just states whether a
given recipient address from a given host is acceptable or not. See section 54.8.

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested with -bh. Instead, you should use a specialized SMTP test program such as swaks
[https://www.jetmore.org/john/code/swaks/].

-bhc <IP address>
This option operates in the same way as -bh, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

-bi
Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/usr/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -oA option is used, its value is passed to the
command as an argument. The command set by bi_command may not contain arguments. The
command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if this is
required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bI:help
We shall provide various options starting -bI: for querying Exim for information. The output of
many of these will be intended for machine consumption. This one is not. The -bI:help option
asks Exim for a synopsis of supported options beginning -bI:. Use of any of these options shall
cause Exim to exit after producing the requested output.

-bI:dscp
This option causes Exim to emit an alphabetically sorted list of all recognised DSCP names.

-bI:sieve
This option causes Exim to emit an alphabetically sorted list of all supported Sieve protocol
extensions on stdout, one per line. This is anticipated to be useful for ManageSieve (RFC 5804)
implementations, in providing that protocol’s SIEVE capability response line. As the precise list
may depend upon compile-time build options, which this option will adapt to, this is the only way
to guarantee a correct response.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the standard input. The recipients are given as the command arguments (except when -t is also
present – see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. The -bnq option (see below)
provides a way of suppressing this for special cases.

33 The Exim command line (5)

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See section 44.2.1 for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the -oex option setting – see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this
line. Exim recognizes it by matching against the regular expression defined by the uucp_from_
pattern option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument to the -f option, but if a -f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bmalware <filename>
This debugging option causes Exim to scan the given file or directory (depending on the used
scanner interface), using the malware scanning framework. The option of av_scanner influences
this option, so if av_scanner’s value is dependent upon an expansion then the expansion should
have defaults which apply to this invocation. ACLs are not invoked, so if av_scanner references
an ACL variable then that variable will never be populated and -bmalware will fail.

Exim will have changed working directory before resolving the filename, so using fully qualified
pathnames is advisable. Exim will be running as the Exim user when it tries to open the file, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for file-scanning. This option exists to help administrators verify their Exim and AV scanner
configuration.

-bnq
By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses using qualify_recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

-bP
If this option is given with no arguments, it causes the values of all Exim’s main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word “hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysql_servers = <value not displayable>

If config is given as an argument, the config is output, as it was parsed, any include file resolved,
any comment removed.

34 The Exim command line (5)

If config_file is given as an argument, the name of the runtime configuration file is output.
(configure_file works too, for backward compatibility.) If a list of configuration files was supplied,
the value that is output here is the name of the file that was actually used.

If the -n flag is given, then for most modes of -bP operation the name will not be output.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory called log, and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded by +, for example,

exim -bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the words router_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by using routers, transports, or authenticators.

If environment is given as an argument, the set of environment variables is output, line by line.
Using the -n flag suppresses the value of the variables.

If invoked by an admin user, then macro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line. For the "-bP macro <name>" form, if no such macro is found
the exit status will be nonzero.

-bp
This option requests a listing of the contents of the mail queue on the standard output. If the -bp
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However, the queue_list_requires_admin option can be set
false to allow any user to see the queue.

Each message in the queue is displayed as in the following example:

25m 2.9K 0t5C6f-0000c8-00 <alice@wonderland.fict.example>
 red.king@looking-glass.fict.example
 <other addresses>

The first line contains the length of time the message has been in the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>”. If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen ***” is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

-bpa
This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

35 The Exim command line (5)

-bpc
This option counts the number of messages in the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires_admin is set false.

-bpi
This option operates like -bp, but only outputs message ids (one per line).

-bpr
This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages in the queue, and is particularly useful
if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra
This option is a combination of -bpr and -bpa.

-bpri
This option is a combination of -bpr and -bpi.

-bpru
This option is a combination of -bpr and -bpu.

-bpu
This option operates like -bp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router with the one_time option set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter 32 for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the form local_part@domain, or it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts – if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota_3d
Retry rule: *@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapter 31 for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trusted, or untrusted_
set_sender is set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see section 44.2.1). Unqualified addresses are automatically

36 The Exim command line (5)

qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is 0 if no error was detected; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section 49.5.

-bs
This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter 44) are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

The -bs option is also used to run Exim from inetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called from inetd, the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

-bt
This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as root and there are security issues.

Each address is handled as if it were the recipient address of a message (compare the -bv option).
It is passed to the routers and the result is written to the standard output. However, any router that
has no_address_test set is bypassed. This can make -bt easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can use the -f option to set an appropriate sender
when running -bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditions using -bt. The -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of the exim binary to the standard output. It also lists the DBM library that is being

37 The Exim command line (5)

used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the runtime configuration file that is in use.

As part of its operation, -bV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot rely on -bV
alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The -bh and -N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence processing a verify condition in
an ACL (see chapter 44). If you want to test an entire ACL, possibly including callouts, see the
-bh and -bhc options.

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as exim and there are security issues.

Verification differs from address testing (the -bt option) in that routers that have no_verify set are
skipped, and if the address is accepted by a router that has fail_verify set, verification fails. The
address is verified as a recipient if -bv is used; to test verification for a sender address, -bvs should
be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Without -v, generating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When -v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use the -f option to set an appropriate sender when running -bv tests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts like -bv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-bw
This option runs Exim as a daemon, awaiting incoming SMTP connections, similarly to the -bd
option. All port specifications on the command-line and in the configuration file are ignored.
Queue-running may not be specified.

In this mode, Exim expects to be passed a socket as fd 0 (stdin) which is listening for connections.
This permits the system to start up and have inetd (or equivalent) listen on the SMTP ports,
starting an Exim daemon for each port only when the first connection is received.

If the option is given as -bw<time> then the time is a timeout, after which the daemon will exit,
which should cause inetd to listen once more.

38 The Exim command line (5)

-C <filelist>
This option causes Exim to find the runtime configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single filename, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED_CONFIG_LIST file is defined in
Local/Makefile, that file contains a list of full pathnames, one per line, for configuration files which
are trusted. Root privilege is retained for any configuration file so listed, as long as the caller is the
Exim user (or the user specified in the CONFIGURE_OWNER option, if any), and as long as the
configuration file is not writeable by inappropriate users or groups.

Leaving TRUSTED_CONFIG_LIST unset precludes the possibility of testing a configuration
using -C right through message reception and delivery, even if the caller is root. The reception
works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message in the queue, using -odq, and
another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the filename must not contain the
sequence /../. However, if the value of the -C option is identical to the value of CONFIGURE_
FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any filename can be used with -C.

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section 6.4).
However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is defined in Local/Makefile, the use of -D is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is defined in Local/Makefile then it should be a colon-separated list
of macros which are considered safe and, if -D only supplies macros from this list, and the values
are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the regexp: ^[A-Za-z0-9_/.-
]*$

The entire option (including equals sign if present) must all be within one command line item. -D
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim -DABC ...
exim -DABC= ...

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim '-D ABC = something' ...

-D may be repeated up to 10 times on a command line. Only macro names up to 22 letters long can
be set.

39 The Exim command line (5)

-d<debug options>
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin user uses -d,
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When -d is used, -v is assumed. If -d is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For example, -d+filter adds filter debugging,
whereas -d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

 acl ACL interpretation
 auth authenticators
 deliver general delivery logic
 dns DNS lookups (see also resolver)
 dnsbl DNS black list (aka RBL) code
 exec arguments for execv() calls
 expand detailed debugging for string expansions
 filter filter handling
 hints_lookup hints data lookups
 host_lookup all types of name-to-IP address handling
 ident ident lookup
 interface lists of local interfaces
 lists matching things in lists
 load system load checks
 local_scan can be used by local_scan() (see chapter 46)
 lookup general lookup code and all lookups
 memory memory handling
 noutf8 modifier: avoid UTF-8 line-drawing
 pid modifier: add pid to debug output lines
 process_info setting info for the process log
 queue_run queue runs
 receive general message reception logic
 resolver turn on the DNS resolver’s debugging output
 retry retry handling
 rewrite address rewriting"
 route address routing
 timestamp modifier: add timestamp to debug output lines
 tls TLS logic
 transport transports
 uid changes of uid/gid and looking up uid/gid
 verify address verification logic
 all almost all of the above (see below), and also -v

The all option excludes memory when used as +all, but includes it for -all. The reason for
this is that +all is something that people tend to use when generating debug output for Exim
maintainers. If +memory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. However, -all does turn everything off.

The resolver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omits expand, filter, interface, load, memory, pid,
resolver, and timestamp. However, the pid selector is forced when debugging is turned on
for a daemon, which then passes it on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

40 The Exim command line (5)

The timestamp selector causes the current time to be inserted at the start of all debug output
lines. This can be useful when trying to track down delays in processing.

The noutf8 selector disables the use of UTF-8 line-drawing characters to group related infor-
mation. When disabled. ascii-art is used instead. Using the +all option does not set this modifier,

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v is used.

-dd<debug options>
This option behaves exactly like -d except when used on a command that starts a daemon process.
In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr
This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 48.2.

-E
This option specifies that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its
only effect is to stop Exim generating certain messages to the postmaster, as otherwise message
cascades could occur in some situations. As part of the same option, a message id may follow the
characters -E. If it does, the log entry for the receipt of the new message contains the id, following
“R=”, as a cross-reference.

-ex
There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq. Exim
treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>
This option sets the sender’s full name for use when a locally-generated message is being
accepted. In the absence of this option, the user’s gecos entry from the password data is used. As
users are generally permitted to alter their gecos entries, no security considerations are involved.
White space between -F and the <string> is optional.

-f <address>
This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted user, but untrusted_set_
sender can be set to allow untrusted users to use it.

Processes running as root or the Exim user are always trusted. Other trusted users are defined by
the trusted_users or trusted_groups options. In the absence of -f, or if the caller is not trusted,
the sender of a local message is set to the caller’s login name at the default qualify domain.

There is one exception to the restriction on the use of -f: an empty sender can be specified by any
user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
specified either as an empty string, or as a pair of angle brackets with nothing between them, as in
these examples of shell commands:

exim -f '<>' user@domain
exim -f "" user@domain

In addition, the use of -f is not restricted when testing a filter file with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that the From: header refers to the local user, and if it does not,
it adds a Sender: header, though this can be overridden by setting no_local_from_check.

White space between -f and the <address> is optional (that is, they can be given as two arguments
or one combined argument). The sender of a locally-generated message can also be set (when

41 The Exim command line (5)

permitted) by an initial “From ” line in the message – see the description of -bm above – but if -f
is also present, it overrides “From ”.

-G
This option is equivalent to an ACL applying:

control = suppress_local_fixups

for every message received. Note that Sendmail will complain about such bad formatting, where
Exim silently just does not fix it up. This may change in future.

As this affects audit information, the caller must be a trusted user to use this option.

-h <number>
This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the “hop count” obtained by counting Received: headers.)

-i
This option, which has the same effect as -oi, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Solaris 2.4 (SunOS 5.4) Sendmail has a similar -i
processing option https://docs.oracle.com/cd/E19457-01/801-6680-1M/801-6680-1M.pdf, p.
1M-529), and therefore a -oi command line option, which both are used by its mailx command.

-L <tag>
This option is equivalent to setting syslog_processname in the config file and setting log_file_
path to syslog. Its use is restricted to administrators. The configuration file has to be read and
parsed, to determine access rights, before this is set and takes effect, so early configuration file
errors will not honour this flag.

The tag should not be longer than 32 characters.

-M <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domains, queue_smtp_domains, and hold_domains are ignored.

Retry hints for any of the addresses are overridden – Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have finished. No output is produced unless there is a serious error. If you
want to see what is happening, use the -v option as well, or inspect Exim’s main log.

-Mar <message id> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (“ar” for
“add recipients”). The first argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not altered.
This option can be used only by an admin user.

-MC <transport> <hostname> <host IP> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in chapter 49. This must be the final option, and
the caller must be root or the Exim user in order to use it.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the connection to the remote host has been authenticated.

-MCD
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the remote host supports the ESMTP DSN extension.

42 The Exim command line (5)

-MCd
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -d option to pass on an information string on the purpose of the process.

-MCG <queue name>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that an alternate queue is used, named by the following argument.

-MCK
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that a remote host supports the ESMTP CHUNKING extension.

-MCL
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the server to which Exim is connected advertised limits on
numbers of mails, recipients or recipient domains. The limits are given by the following three
arguments.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the server to which Exim is connected supports pipelining.

-MCp
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option. It signifies that the connection t a remote server is via a SOCKS proxy, using
addresses and ports given by the following four arguments.

-MCQ <process id> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option when the original delivery was started by a queue runner. It passes on the
process id of the queue runner, together with the file descriptor number of an open pipe. Closure of
the pipe signals the final completion of the sequence of processes that are passing messages
through the same SMTP connection.

-MCq <recipient address> <size>
This option is not intended for use by external callers. It is used internally by Exim to implement
quota checking for local users.

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the ESMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the host to which Exim is connected supports
TLS encryption.

-MCr <SNI>
-MCs <SNI>

These options are not intended for use by external callers. It is used internally by Exim in conjunc-
tion with the -MCt option, and passes on the fact that a TLS Server Name Indication was sent as
part of the channel establishment. The argument gives the SNI string. The "r" variant indicates a
DANE-verified connection.

-MCt <IP address> <port> <cipher>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the connection is being proxied by a parent
process for handling TLS encryption. The arguments give the local address and port being proxied,
and the TLS cipher.

-Mc <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message, in turn, but unlike the -M
option, it does check for retry hints, and respects any that are found. This option is not very useful

43 The Exim command line (5)

to external callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see chapter 56). However, -Mc can be useful when
testing, in order to run a delivery that respects retry times and other options such as hold_domains
that are overridden when -M is used. Such a delivery does not count as a queue run. If you want to
run a specific delivery as if in a queue run, you should use -q with a message id argument. A
distinction between queue run deliveries and other deliveries is made in one or two places.

-Mes <message id> <address>
This option requests Exim to change the sender address in the message to the given address, which
must be a fully qualified address or “<>” (“es” for “edit sender”). There must be exactly two
arguments. The first argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message id> <message id> ...
This option requests Exim to mark each listed message as “frozen”. This prevents any delivery
attempts taking place until the message is “thawed”, either manually or as a result of the auto_
thaw configuration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender. Bounce messages are just discarded. This
option can be used only by an admin user.

-MG <queue name> <message id> <message id> ...
This option requests that each listed message be moved from its current queue to the given named
queue. The destination queue name argument is required, but can be an empty string to define the
default queue. If the messages are not currently located in the default queue, a -qG<name> option
will be required to define the source queue.

-Mmad <message id> <message id> ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(“mad” for “mark all delivered”). However, if any message is active (in the middle of a delivery
attempt), its status is not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as already delivered (“md” for “mark
delivered”). The first argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their status is
not altered. This option can be used only by an admin user or by the user who originally caused
the message to be placed in the queue.

-Mset <message id>
This option is useful only in conjunction with -be (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
specific variables such as $message_size and the header variables. The $recipients variable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. See also -bem.

-Mt <message id> <message id> ...
This option requests Exim to “thaw” any of the listed messages that are “frozen”, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

44 The Exim command line (5)

-Mvb <message id>
This option causes the contents of the message body (-D) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvc <message id>
This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message id>
This option causes the contents of the message headers (-H) spool file to be written to the standard
output. This option can be used only by an admin user.

-Mvl <message id>
This option causes the contents of the message log spool file to be written to the standard output.
This option can be used only by an admin user.

-m
This is a synonym for -om that is accepted by Sendmail (https://docs.oracle.com/cd/E19457-
01/801-6680-1M/801-6680-1M.pdf p. 1M-258), so Exim treats it that way too.

-N
This is a debugging option that inhibits delivery of a message at the transport level. It implies -v.
Exim goes through many of the motions of delivery – it just doesn’t actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates
to the retry database, and the log entries for deliveries are flagged with “*>” rather than “=>”.

Because -N discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails when -N is set, an
address may be deferred because of a configuration problem on a transport, or a routing problem.
Once -N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

-n
This option is interpreted by Sendmail to mean “no aliasing”. For normal modes of operation, it is
ignored by Exim. When combined with -bP it makes the output more terse (suppresses option
names, environment values and config pretty printing).

-O <data>
This option is interpreted by Sendmail to mean set option. It is ignored by Exim.

-oA <file name>
This option is used by Sendmail in conjunction with -bi to specify an alternative alias filename.
Exim handles -bi differently; see the description above.

-oB <n>
This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in any smtp transport. If <n> is omitted, the
limit is set to 1.

-odb
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests “background” delivery of such messages, which means that the accepting
process automatically starts a delivery process for each message received, but does not wait for the
delivery processes to finish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to finish in their own time. The standard output and error streams are closed at the start of
each delivery process. This is the default action if none of the -od options are present.

If one of the queueing options in the configuration file (queue_only or queue_only_file, for
example) is in effect, -odb overrides it if queue_only_override is set true, which is the default
setting. If queue_only_override is set false, -odb has no effect.

45 The Exim command line (5)

-odf
This option requests “foreground” (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not finish until the delivery process for the final message
has ended. The standard error stream is left open during deliveries.

However, like -odb, this option has no effect if queue_only_override is false and one of the
queueing options in the configuration file is in effect.

If there is a temporary delivery error during foreground delivery, the message is left in the queue
for later delivery, and the original reception process exits. See chapter 52 for a way of setting up a
restricted configuration that never queues messages.

-odi
This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odq
This option applies to all modes in which Exim accepts incoming messages, including the listen-
ing daemon. It specifies that the accepting process should not automatically start a delivery process
for each message received. Messages are placed in the queue, and remain there until a subsequent
queue runner process encounters them. There are several configuration options (such as queue_
only) that can be used to queue incoming messages under certain conditions. This option overrides
all of them and also -odqs. It always forces queueing.

-odqs
This option is a hybrid between -odb/-odi and -odq. However, like -odb and -odi, this option has
no effect if queue_only_override is false and one of the queueing options in the configuration file
is in effect.

When -odqs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground if -odi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains in the queue until a subsequent queue runner
process encounters it. Because routing was done, Exim knows which messages are waiting for
which hosts, and so a number of messages for the same host can be sent in a single SMTP
connection. The queue_smtp_domains configuration option has the same effect for specific
domains. See also the -qq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in a mail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the original message has no
recipients, or 1 for any other error. This is the default -oex option if Exim is called as rmail.

-oem
This is the same as -oee, except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the default -oex option, unless Exim is called as
rmail.

-oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error file (stderr). The return code is 1 for all errors.

-oeq
This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-oew
This option is supported for compatibility with Sendmail, but has the same effect as -oem.

46 The Exim command line (5)

-oi
This option, which has the same effect as -i, specifies that a dot on a line by itself should not
terminate an incoming, non-SMTP message. Otherwise, a single dot does terminate, though Exim
does no special processing for other lines that start with a dot. This option is set by default if Exim
is called as rmail. See also -ti.

-oitrue
This option is treated as synonymous with -oi.

-oMa <host address>
A number of options starting with -oM can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they are ignored unless the caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim -bs -oMa 10.9.8.7.1234

An alternative syntax is to enclose the IP address in square brackets, followed by a colon and the
port number:

exim -bs -oMa [10.9.8.7]:1234

The IP address is placed in the $sender_host_address variable, and the port, if present, in $sender_
host_port. If both -oMa and -bh are present on the command line, the sender host IP address is
taken from whichever one is last.

-oMaa <name>
See -oMa above for general remarks about the -oM options. The -oMaa option sets the value of
$sender_host_authenticated (the authenticator name). See chapter 33 for a discussion of SMTP
authentication. This option can be used with -bh and -bs to set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See -oMa above for general remarks about the -oM options. The -oMai option sets the value of
$authenticated_id (the id that was authenticated). This overrides the default value (the caller’s
login id, except with -bh, where there is no default) for messages from local sources. See chapter
33 for a discussion of authenticated ids.

-oMas <address>
See -oMa above for general remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_sender. It overrides the sender address that is created
from the caller’s login id for messages from local sources, except when -bh is used, when there is
no default. For both -bh and -bs, an authenticated sender that is specified on a MAIL command
overrides this value. See chapter 33 for a discussion of authenticated senders.

-oMi <interface address>
See -oMa above for general remarks about the -oM options. The -oMi option sets the IP interface
address value. A port number may be included, using the same syntax as for -oMa. The interface
address is placed in $received_ip_address and the port number, if present, in $received_port.

-oMm <message reference>
See -oMa above for general remarks about the -oM options. The -oMm option sets the message
reference, e.g. message-id, and is logged during delivery. This is useful when some kind of audit
trail is required to tie messages together. The format of the message reference is checked and will
abort if the format is invalid. The option will only be accepted if exim is running in trusted mode,
not as any regular user.

The best example of a message reference is when Exim sends a bounce message. The message
reference is the message-id of the original message for which Exim is sending the bounce.

47 The Exim command line (5)

-oMr <protocol name>
See -oMa above for general remarks about the -oM options. The -oMr option sets the received
protocol value that is stored in $received_protocol. However, it does not apply (and is ignored)
when -bh or -bs is used. For -bh, the protocol is forced to one of the standard SMTP protocol
names (see the description of $received_protocol in section 11.9). For -bs, the protocol is always
“local-” followed by one of those same names. For -bS (batched SMTP) however, the protocol can
be set by -oMr. Repeated use of this option is not supported.

-oMs <host name>
See -oMa above for general remarks about the -oM options. The -oMs option sets the sender host
name in $sender_host_name. When this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-oMt <ident string>
See -oMa above for general remarks about the -oM options. The -oMt option sets the sender ident
value in $sender_ident. The default setting for local callers is the login id of the calling process,
except when -bh is used, when there is no default.

-om
In Sendmail, this option means “me too”, indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-oo
This option is ignored. In Sendmail it specifies “old style headers”, whatever that means.

-oP <path>
This option is useful only in conjunction with -bd or -q with a time value. The option specifies the
file to which the process id of the daemon is written. When -oX is used with -bd, or when -q with
a time is used without -bd, this is the only way of causing Exim to write a pid file, because in
those cases, the normal pid file is not used.

-oPX
This option is not intended for general use. The daemon uses it when terminating due to a
SIGTEM, possibly in combination with -oP <path>. It causes the pid file to be removed.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set by the receive_timeout option. The
format used for specifying times is described in section 6.16.

-os <time>
This option sets a timeout value for incoming SMTP messages. The timeout applies to each SMTP
command and block of data. The value can also be set by the smtp_receive_timeout option; it
defaults to 5 minutes. The format used for specifying times is described in section 6.16.

-ov
This option has exactly the same effect as -v.

-oX <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
configuration file options, are given in chapter 13. When -oX is used to start a daemon, no pid file
is written unless -oP is also present to specify a pid filename.

-oY
This option controls the creation of an inter-process communications endpoint by the Exim
daemon. It is only relevant when the -bd (start listening daemon) option is also given. Normally
the daemon creates this socket, unless a -oX and no -oP option is also present. If this option is
given then the socket will not be created. This is required if the system is running multiple
daemons, in which case it should be used on all. The features supported by the socket will not be
available in such cases.

The socket is currently used for

48 The Exim command line (5)

• fast ramp-up of queue runner processes

• caching compiled regexes

• obtaining a current queue size

-pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

-ps
This option applies when an embedded Perl interpreter is linked with Exim (see chapter 12). It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivalent to

-oMr <rval> -oMs <sval>

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private options, -pd
and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol value of d or s
using this option (but that does not seem a real limitation). Repeated use of this option is not
supported.

-q
This option is normally restricted to admin users. However, there is a configuration option called
prod_requires_admin which can be set false to relax this restriction (and also the same require-
ment for the -M, -R, and -S options).

If other commandline options do not specify an action, the -q option starts one queue runner
process. This scans the queue of waiting messages, and runs a delivery process for each one in
turn. It waits for each delivery process to finish before starting the next one. A delivery process
may not actually do any deliveries if the retry times for the addresses have not been reached. Use
-qf (see below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for these to finish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at a time. Use -q with a
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn’t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
first.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting the queue_run_in_order option, but this is not
recommended for normal use.

-q<qflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qq...
An option starting with -qq requests a two-stage queue run. In the first stage, the queue is scanned
as if the queue_smtp_domains option matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

Performance will be best if the queue_run_in_order option is false. If that is so and the queue_
fast_ramp option is true and a daemon-notifier socket is available then in the first phase of the

49 The Exim command line (5)

run, once a threshold number of messages are routed for a given host, a delivery process is forked
in parallel with the rest of the scan.

The hints database that remembers which messages are waiting for specific hosts is updated, as if
delivery to those hosts had been deferred.

After the first queue scan complete, a second, normal queue scan is done, with routing and
delivery taking place as normal. Messages that are routed to the same host should mostly be
delivered down a single SMTP connection because of the hints that were set up during the first
queue scan.

Two-phase queue runs should be used on systems which, even intermittently, have a large queue
(such as mailing-list operators). They may also be useful for hosts that are connected to the
Internet intermittently.

-q[q]i...
If the i flag is present, the queue runner runs delivery processes only for those messages that
haven’t previously been tried. (i stands for “initial delivery”.) This can be helpful if you are putting
messages in the queue using -odq and want a queue runner just to process the new messages.

-q[q][i]f...
If one f flag is present, a delivery attempt is forced for each non-frozen message, whereas without f
only those non-frozen addresses that have passed their retry times are tried.

-q[q][i]ff...
If ff is present, a delivery attempt is forced for every message, whether frozen or not.

-q[q][i][f[f]]l
The l (the letter “ell”) flag specifies that only local deliveries are to be done. If a message requires
any remote deliveries, it remains in the queue for later delivery.

-q[q][i][f[f]][l][G<name>[/<time>]]]
If the G flag and a name is present, the queue runner operates on the queue with the given name
rather than the default queue. The name should not contain a / character. For a periodic queue run
(see below) append to the name a slash and a time value.

If other commandline options specify an action, a -qG<name> option will specify a queue to
operate on. For example:

exim -bp -qGquarantine
mailq -qGquarantine
exim -qGoffpeak -Rf @special.domain.example

-q<qflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following the -q option with a starting message id. For example:

exim -q 0t5C6f-0000c8-00

Messages that arrived earlier than 0t5C6f-0000c8-00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the same id is given
twice, for example,

exim -q 0t5C6f-0000c8-00 0t5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note that
the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting specific sets of messages for delivery in a queue run – see -R and -S.

-q<qflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals specified by the given time value (whose format is described in section
6.16). This form of the -q option is commonly combined with the -bd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use a command such as

50 The Exim command line (5)

/usr/exim/bin/exim -bd -q30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

It is possible to set up runners for multiple named queues within one daemon, For example:

exim -qGhipri/2m -q10m -qqGmailinglist/1h

When a daemon is started by -q with a time value, but without -bd, no pid file is written unless one
is explicitly requested by the -oP option.

-qR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-qS<rsflags> <string>
This option is synonymous with -S.

-R<rsflags> <string>
The <rsflags> may be empty, in which case the white space before the string is optional, unless the
string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space is required if
<rsflags> is not empty.

This option is similar to -q with no time value, that is, it causes Exim to perform a single queue
run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If the <rsflags> start with r, <string> is interpreted as a regular expression;
otherwise it is a literal string.

If you want to do periodic queue runs for messages with specific recipients, you can combine -R
with -q and a time value. For example:

exim -q25m -R @special.domain.example

This example does a queue run for messages with recipients in the given domain every 25 minutes.
Any additional flags that are specified with -q are applied to each queue run.

Once a message is selected for delivery by this mechanism, all its addresses are processed. For the
first selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the first message is successful,
any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just the
first; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see section 49.2.5), its default effect is to run Exim with the -R option, but it can be configured to
run an arbitrary command instead.

-r
This is a documented (for Sendmail) obsolete alternative name for -f.

-S<rsflags> <string>
This option acts like -R except that it checks the string against each message’s sender instead of
against the recipients. If -R is also set, both conditions must be met for a message to be selected. If
either of the options has f or ff in its flags, the associated action is taken.

-Tqt <times>
This is an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normally. It allows for the setting up of explicit “queue times” so that various
warning/retry features can be tested.

51 The Exim command line (5)

-t
When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the To:, Cc:, and Bcc: header lines
in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and the Bcc: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add argument addresses to
those obtained from the headers, and the O’Reilly Sendmail book documents it that way. Exim can
be made to add argument addresses instead of subtracting them by setting the option extract_
addresses_remove_arguments false.

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-To:,
Resent-Cc:, and Resent-Bcc: header lines instead of from To:, Cc:, and Bcc:. This is for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an error if -t was used in
conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent several
times). The RFC also specifies that they should be added at the front of the message, and separated
by Received: lines. It is not at all clear how -t should operate in the present of multiple sets, nor
indeed exactly what constitutes a “set”. In practice, it seems that MUAs do not follow the RFC.
The Resent- lines are often added at the end of the header, and if a message is resent more than
once, it is common for the original set of Resent- headers to be renamed as X-Resent- when a new
set is added. This removes any possible ambiguity.

-ti
This option is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect
This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed in the tls_on_connect_ports option. See
section 13.4 and chapter 43 for further details.

-U
Sendmail uses this option for “initial message submission”, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than fixing them when
this flag is not set. Exim ignores this option.

-v
This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting of log_selector discards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional.

-x
AIX uses -x for a private purpose (“mail from a local mail program has National Language
Support extended characters in the body of the mail item”). It sets -x when calling the MTA from
its mail command. Exim ignores this option.

-X <logfile>
This option is interpreted by Sendmail to cause debug information to be sent to the named file. It is
ignored by Exim.

-z <log-line>
This option writes its argument to Exim’s logfile. Use is restricted to administrators; the intent is
for operational notes. Quotes should be used to maintain a multi-word item as a single argument,
under most shells.

52 The Exim command line (5)

6. The Exim runtime configuration file

Exim uses a single runtime configuration file that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the configuration file, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is also written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the configuration file is compiled into the binary for security reasons, and is specified
by the CONFIGURE_FILE compilation option. In most configurations, this specifies a single file.
However, it is permitted to give a colon-separated list of filenames, in which case Exim uses the first
existing file in the list.

The runtime configuration file must be owned by root or by the user that is specified at compile time
by the CONFIGURE_OWNER option (if set). The configuration file must not be world-writeable,
or group-writeable unless its group is the root group or the one specified at compile time by the
CONFIGURE_GROUP option.

Warning: In a conventional configuration, where the Exim binary is setuid to root, anybody who is
able to edit the runtime configuration file has an easy way to run commands as root. If you specify a
user or group in the CONFIGURE_OWNER or CONFIGURE_GROUP options, then that user and/or
any users who are members of that group will trivially be able to obtain root privileges.

Up to Exim version 4.72, the runtime configuration file was also permitted to be writeable by the
Exim user and/or group. That has been changed in Exim 4.73 since it offered a simple privilege
escalation for any attacker who managed to compromise the Exim user account.

A default configuration file, which will work correctly in simple situations, is provided in the file
src/configure.default. If CONFIGURE_FILE defines just one filename, the installation process copies
the default configuration to a new file of that name if it did not previously exist. If CONFIGURE_
FILE is a list, no default is automatically installed. Chapter 7 is a “walk-through” discussion of the
default configuration.

6.1 Using a different configuration file

A one-off alternate configuration can be specified by the -C command line option, which may specify
a single file or a list of files. However, when -C is used, Exim gives up its root privilege, unless called
by root (or unless the argument for -C is identical to the built-in value from CONFIGURE_FILE), or
is listed in the TRUSTED_CONFIG_LIST file and the caller is the Exim user or the user specified in
the CONFIGURE_OWNER setting. -C is useful mainly for checking the syntax of configuration files
before installing them. No owner or group checks are done on a configuration file specified by -C, if
root privilege has been dropped.

Even the Exim user is not trusted to specify an arbitrary configuration file with the -C option to be
used with root privileges, unless that file is listed in the TRUSTED_CONFIG_LIST file. This locks
out the possibility of testing a configuration using -C right through message reception and delivery,
even if the caller is root. The reception works, but by that time, Exim is running as the Exim user, so
when it re-execs to regain privilege for the delivery, the use of -C causes privilege to be lost. However,
root can test reception and delivery using two separate commands (one to put a message in the queue,
using -odq, and another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any file
named in a -C command line option must start. In addition, the filename must not contain the
sequence “/../”. There is no default setting for ALT_CONFIG_PREFIX; when it is unset, any
filename can be used with -C.

One-off changes to a configuration can be specified by the -D command line option, which defines
and overrides values for macros used inside the configuration file. However, like -C, the use of this
option by a non-privileged user causes Exim to discard its root privilege. If DISABLE_D_OPTION is

53 The runtime configuration file (6)

defined in Local/Makefile, the use of -D is completely disabled, and its use causes an immediate error
exit.

The WHITELIST_D_MACROS option in Local/Makefile permits the binary builder to declare certain
macro names trusted, such that root privilege will not necessarily be discarded. WHITELIST_D_
MACROS defines a colon-separated list of macros which are considered safe and, if -D only supplies
macros from this list, and the values are acceptable, then Exim will not give up root privilege if the
caller is root, the Exim run-time user, or the CONFIGURE_OWNER, if set. This is a transition
mechanism and is expected to be removed in the future. Acceptable values for the macros satisfy the
regexp: ^[A-Za-z0-9_/.-]*$

Some sites may wish to use the same Exim binary on different machines that share a file system, but
to use different configuration files on each machine. If CONFIGURE_FILE_USE_NODE is defined
in Local/Makefile, Exim first looks for a file whose name is the configuration filename followed by a
dot and the machine’s node name, as obtained from the uname() function. If this file does not exist,
the standard name is tried. This processing occurs for each filename in the list given by
CONFIGURE_FILE or -C.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is defined to help with this. See the comments in src/EDITME
for details.

6.2 Configuration file format

Exim’s configuration file is divided into a number of different parts. General option settings must
always appear at the start of the file. The other parts are all optional, and may appear in any order.
Each part other than the first is introduced by the word “begin” followed by at least one literal space,
and the name of the part. The optional parts are:

• ACL: Access control lists for controlling incoming SMTP mail (see chapter 44).

• authenticators: Configuration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter 33).

• routers: Configuration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see chapters 15–22).

• transports: Configuration settings for the transport drivers. Transports define mechanisms for copy-
ing messages to destinations (see chapters 24–30).

• retry: Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are defined), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in
chapter 32.

• rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in chapter 31.

• local_scan: Private options for the local_scan() function. If you want to use this feature, you must
set

LOCAL_SCAN_HAS_OPTIONS=yes

in Local/Makefile before building Exim. Details of the local_scan() facility are given in chapter 46.

Leading and trailing white space in configuration lines is always ignored.

Blank lines in the file, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: A # character other than at the beginning of a line is not treated
specially, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the general rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

54 The runtime configuration file (6)

A convenient way to create a configuration file is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLs, retry rules, and rewriting rules have their own syntax which is described in chapters 44,
32, and 31, respectively. The other parts of the configuration file have some syntactic items in
common, and these are described below, from section 6.11 onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file

You can include other files inside Exim’s runtime configuration file by using this syntax:

.include <filename>

.include_if_exists <filename>

on a line by itself. Double quotes round the filename are optional. If you use the first form, a
configuration error occurs if the file does not exist; the second form does nothing for non-existent
files. The first form allows a relative name. It is resolved relative to the directory of the including file.
For the second form an absolute filename is required.

Includes may be nested to any depth, but remember that Exim reads its configuration file often, so it is
a good idea to keep them to a minimum. If you change the contents of an included file, you must HUP
the daemon, because an included file is read only when the configuration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts_lookup = a.b.c \
 .include /some/file

Include processing happens after macro processing (see below). Its effect is to process the lines of the
included file as if they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If a line in the main part of the configuration (that is, before the first “begin” line) begins with an
upper case letter, it is taken as a macro definition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with a backslash character, but this doesn’t seem to be a serious limitation.

Macros may also be defined between router, transport, authenticator, or ACL definitions. They may
not, however, be defined within an individual driver or ACL, or in the local_scan, retry, or rewrite
sections of the configuration.

6.5 Macro substitution

Once a macro is defined, all subsequent lines in the file (and any included files) are scanned for the
macro name; if there are several macros, the line is scanned for each, in turn, in the order in which the
macros are defined. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently defined macros. For this reason, a macro name may not contain the name of a
previously defined macro as a substring. You could, for example, define

ABCD_XYZ = <something>
ABCD = <something else>

but putting the definitions in the opposite order would provoke a configuration error. Macro expansion
is applied to individual physical lines from the file, before checking for line continuation or file
inclusion (see above). If a line consists solely of a macro name, and the expansion of the macro is

55 The runtime configuration file (6)

empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
.include line.

6.6 Redefining macros

Once defined, the value of a macro can be redefined later in the configuration (or in an included file).
Redefinition is specified by using == instead of =. For example:

MAC = initial value
...
MAC == updated value

Redefinition does not alter the order in which the macros are applied to the subsequent lines of the
configuration file. It is still the same order in which the macros were originally defined. All that
changes is the macro’s value. Redefinition makes it possible to accumulate values. For example:

MAC = initial value
...
MAC == MAC and something added

This can be helpful in situations where the configuration file is built from a number of other files.

6.7 Overriding macro values

The values set for macros in the configuration file can be overridden by the -D command line option,
but Exim gives up its root privilege when -D is used, unless called by root or the Exim user. A
definition on the command line using the -D option causes all definitions and redefinitions within the
file to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a configuration where aliases are looked up in a MySQL
database. It helps to keep the file less cluttered if long strings such as SQL statements are defined
separately as macros, for example:

ALIAS_QUERY = select mailbox from user where \
 login='${quote_mysql:$local_part}';

This can then be used in a redirect router setting like this:

data = ${lookup mysql{ALIAS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists – see section 10.2.4.

6.9 Builtin macros

Exim defines some macros depending on facilities available, which may differ due to build-time
definitions and from one release to another. All of these macros start with an underscore. They can be
used to conditionally include parts of a configuration (see below).

The following classes of macros are defined:

HAVE* build-time defines
_DRIVER_ROUTER_* router drivers
_DRIVER_TRANSPORT_* transport drivers
_DRIVER_AUTHENTICATOR_* authenticator drivers
_EXP_COND_* expansion conditions
_EXP_ITEM_* expansion items
_EXP_OP_* expansion operators
_EXP_VAR_* expansion variables
LOG* log_selector values
_OPT_MAIN_* main config options

56 The runtime configuration file (6)

_OPT_ROUTERS_* generic router options
_OPT_TRANSPORTS_* generic transport options
_OPT_AUTHENTICATORS_* generic authenticator options
_OPT_ROUTER_*_* private router options
_OPT_TRANSPORT_*_* private transport options
_OPT_AUTHENTICATOR_*_* private authenticator options

Use an “exim -bP macros” command to get the list of macros.

6.10 Conditional skips in the configuration file

You can use the directives .ifdef, .ifndef, .elifdef, .elifndef, .else, and .endif to
dynamically include or exclude portions of the configuration file. The processing happens whenever
the file is read (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the first four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

.ifdef AAA
message_size_limit = 50M
.else
message_size_limit = 100M
.endif

sets a message size limit of 50M if the macro AAA is defined (or A or AA), and 100M otherwise. If
there is more than one macro named on the line, the condition is true if any of them are defined. That
is, it is an “or” condition. To obtain an “and” condition, you need to use nested .ifdefs.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition “there was a macro substitution in this line” will always be true.

Text following .else and .endif is ignored, and can be used as comment to clarify complicated
nestings.

6.11 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting is on a line by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optional white space) and
then the value. For example:

qualify_domain = mydomain.example.com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word “hide”. For example:

hide mysql_servers = localhost/users/admin/secret-password

For non-admin users, such options are displayed like this:

mysql_servers = <value not displayable>

If “hide” is used on a driver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.12 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options: with and without a data value. If the option name is specified on its own without
data, the switch is turned on; if it is preceded by “no_” or “not_” the switch is turned off. However,

57 The runtime configuration file (6)

boolean options may be followed by an equals sign and one of the words “true”, “false”, “yes”, or
“no”, as an alternative syntax. For example, the following two settings have exactly the same effect:

queue_only
queue_only = true

The following two lines also have the same (opposite) effect:

no_queue_only
queue_only = false

You can use whichever syntax you prefer.

6.13 Integer values

If an option’s type is given as “integer”, the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters “0x”, in which case the remainder is interpreted as a
hexadecimal number.

If an integer value is followed by the letter K, it is multiplied by 1024; if it is followed by the letter M,
it is multiplied by 1024x1024; if by the letter G, 1024x1024x1024. When the values of integer option
settings are output, values which are an exact multiple of 1024 or 1024x1024 are sometimes, but not
always, printed using the letters K and M. The printing style is independent of the actual input format
that was used.

6.14 Octal integer values

If an option’s type is given as “octal integer”, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

6.15 Fixed point numbers

If an option’s type is given as “fixed-point”, its value must be a decimal integer, optionally followed
by a decimal point and up to three further digits.

6.16 Time intervals

A time interval is specified as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

 s seconds
 m minutes
 h hours
 d days
 w weeks

For example, “3h50m” specifies 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
“90m” instead of “1h30m”.

6.17 String values

If an option’s type is specified as “string”, the value can be specified with or without double-quotes. If
it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the first character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp:mail
trusted_users = uucp:\

58 The runtime configuration file (6)

 # This comment line is ignored
 mail

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

 \\ single backslash
 \n newline
 \r carriage return
 \t tab
 \<octal digits> up to 3 octal digits specify one character
 \x<hex digits> up to 2 hexadecimal digits specify one character

If a backslash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert special charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is almost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older configuration files and examples
that apparently quote unnecessarily.

6.18 Expanded strings

Some strings in the configuration file are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter 11). The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted strings is done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted configuration string.

6.19 User and group names

User and group names are specified as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that
can be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.20 List construction

The data for some configuration options is a list of items, with colon as the default separator. Many of
these options are shown with type “string list” in the descriptions later in this document. Others are
listed as “domain list”, “host list”, “address list”, or “local part list”. Syntactically, they are all the
same; however, those other than “string list” are subject to particular kinds of interpretation, as
described in chapter 10.

In all these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_users setting in section 6.17 above is an example. If a colon is actually needed in an item in a
list, it must be entered as two colons. Leading and trailing white space on each item in a list is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of IPv6 address. For example, the list

local_interfaces = 127.0.0.1 : ::::1

contains two IP addresses, the IPv4 address 127.0.0.1 and the IPv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The spaces around the first colon in the example above are necessary. If they
were not there, the list would be interpreted as the two items 127.0.0.1:: and 1.

59 The runtime configuration file (6)

6.21 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

local_interfaces = <; 127.0.0.1 ; ::1

This facility applies to all lists, with the exception of the list in log_file_path. It is recommended that
the use of non-colon separators be confined to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by a line such as this:

domains = <\n ${lookup mysql{.....}}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

local_interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as data when it is set as the separator. Two such characters in succession
are interpreted as enclosing an empty list item.

6.22 Empty items in lists

An empty item at the end of a list is always ignored. In other words, trailing separator characters are
ignored. Thus, the list in

senders = user@domain :

contains only a single item. If you want to include an empty string as one item in a list, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = user1@domain : : user2@domain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify a list that contains just one, empty item, you can do it as in this example:

senders = :

In this case, the first item is empty, and the second is discarded because it is at the end of the list.

6.23 Format of driver configurations

There are separate parts in the configuration for defining routers, transports, and authenticators. In
each part, you are defining a number of driver instances, each with its own set of options. Each driver
instance is defined by a sequence of lines like this:

<instance name>:
 <option>
 ...
 <option>

In the following example, the instance name is localuser, and it is followed by three options settings:

localuser:
 driver = accept

60 The runtime configuration file (6)

 check_local_user
 transport = local_delivery

For each driver instance, you specify which Exim code module it uses – by the setting of the driver
option – and (optionally) some configuration settings. For example, in the case of transports, if you
want a transport to deliver with SMTP you would use the smtp driver; if you want to deliver to a local
file you would use the appendfile driver. Each of the drivers is described in detail in its own separate
chapter later in this manual.

You can have several routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are defined is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are defined does not matter at all. The order in
which authenticators are defined is used only when Exim, as a client, is searching them to find one
that matches an authentication mechanism offered by the server.

Within a driver instance definition, there are two kinds of option: generic and private. The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or all
authenticators). The driver option is a generic option that must appear in every definition. The private
options are special for each driver, and none need appear, because they all have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the first option.

Driver instance names, which are used for reference in log entries and elsewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the configuration lines:

remote_smtp:
 driver = smtp

create an instance of the smtp transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smtp transport, with different options, might be defined thus:

special_smtp:
 driver = smtp
 port = 1234
 command_timeout = 10s

The names remote_smtp and special_smtp would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver specifications. The full list of option settings
for any particular driver instance, including all the defaulted values, can be extracted by making use
of the -bP command line option.

61 The runtime configuration file (6)

7. The default configuration file

The default configuration file supplied with Exim as src/configure.default is sufficient for a host with
simple mail requirements. As an introduction to the way Exim is configured, this chapter “walks
through” the default configuration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default configuration file itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default configuration.

7.1 Macros

All macros should be defined before any options.

One macro is specified, but commented out, in the default configuration:

ROUTER_SMARTHOST=MAIL.HOSTNAME.FOR.CENTRAL.SERVER.EXAMPLE

If all off-site mail is expected to be delivered to a "smarthost", then set the hostname here and
uncomment the macro. This will affect which router is used later on. If this is left commented out,
then Exim will perform direct-to-MX deliveries using a dnslookup router.

In addition to macros defined here, Exim includes a number of built-in macros to enable configuration
to be guarded by a binary built with support for a given feature. See section 6.9 for more details.

7.2 Main configuration settings

The main (global) configuration option settings section must always come first in the file, after the
macros. The first thing you’ll see in the file, after some initial comments, is the line

primary_hostname =

This is a commented-out setting of the primary_hostname option. Exim needs to know the official,
fully qualified name of your host, and this is where you can specify it. However, in most cases you do
not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The first three non-comment configuration lines are as follows:

domainlist local_domains = @
domainlist relay_to_domains =
hostlist relay_from_hosts = 127.0.0.1

These are not, in fact, option settings. They are definitions of two named domain lists and one named
host list. Exim allows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the configuration file (see section 10.2.4).

The first line defines a domain list called local_domains; this is used later in the configuration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string “@”. This is a special form of entry which means “the
name of the local host”. Thus, if the local host is called a.host.example, mail to
any.user@a.host.example is expected to be delivered locally. Because the local host’s name is refer-
enced indirectly, the same configuration file can be used on different hosts.

The second line defines a domain list called relay_to_domains, but the list itself is empty. Later in the
configuration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domains in this list. By default, therefore, no relaying on the basis of a mail domain is
permitted.

The third line defines a host list called relay_from_hosts. This list is used later in the configuration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

62 The default configuration file (7)

Just to be sure there’s no misunderstanding: at this point in the configuration we aren’t actually setting
up any controls. We are just defining some domains and hosts that will be used in the controls that are
specified later.

The next two configuration lines are genuine option settings:

acl_smtp_rcpt = acl_check_rcpt
acl_smtp_data = acl_check_data

These options specify Access Control Lists (ACLs) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the lists are acl_check_rcpt and
acl_check_data, and we will come to their definitions below, in the ACL section of the configuration.
The RCPT ACL controls which recipients are accepted for an incoming message – if a configuration
does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = clamd:/tmp/clamd
spamd_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The first specifies the interface to the virus scanner, and the second specifies the interface
to SpamAssassin. Further details are given in chapter 45.

Three more commented-out option settings follow:

tls_advertise_hosts = *
tls_certificate = /etc/ssl/exim.crt
tls_privatekey = /etc/ssl/exim.pem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section 4.7. The first one specifies the list of clients that are allowed to use TLS when
connecting to this server; in this case, the wildcard means all clients. The other options specify where
Exim should find its TLS certificate and private key, which together prove the server’s identity to any
clients that connect. More details are given in chapter 43.

Another two commented-out option settings follow:

daemon_smtp_ports = 25 : 465 : 587
tls_on_connect_ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section 7.8). Mail submission from mail clients
(MUAs) should be separate from inbound mail to your domain (MX delivery) for various good
reasons (eg, ability to impose much saner TLS protocol and ciphersuite requirements without un-
intended consequences). RFC 6409 (previously 4409) specifies use of port 587 for SMTP
Submission, which uses STARTTLS, so this is the “submission” port. RFC 8314 specifies use of port
465 as the “submissions” protocol, which should be used in preference to 587. You should also
consider deploying SRV records to help clients find these ports. Older names for “submissions” are
“smtps” and “ssmtp”.

Two more commented-out options settings follow:

qualify_domain =
qualify_recipient =

The first of these specifies a domain that Exim uses when it constructs a complete email address from
a local login name. This is often needed when Exim receives a message from a local process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different qualification domains for sender and recipient addresses. If you set only the
first one, its value is used in both cases.

63 The default configuration file (7)

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a “domain literal” (an IP address within square brackets) instead of a
named domain.

allow_domain_literals

The RFCs still require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to specific hosts by quoting their IP addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where
domain literals are still useful.

The next configuration line is a kind of trigger guard:

never_users = root

It specifies that no delivery must ever be run as the root user. The normal convention is to set up root
as an alias for the system administrator. This setting is a guard against slips in the configuration. The
list of users specified by never_users is not, however, the complete list; the build-time configuration
in Local/Makefile has an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents of never_users are added to this list. By default FIXED_NEVER_USERS
also specifies root.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host’s identity is its IP address. The next configuration line,

host_lookup = *

specifies that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on “nearby” networks. Note that it is not
always possible to find a host name from an IP address, because not all DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as defined by RFC 1413 (hence their names):

rfc1413_hosts = *
rfc1413_query_timeout = 0s

These settings cause Exim to avoid ident callbacks for all incoming SMTP calls. Few hosts offer
RFC1413 service these days; calls have to be terminated by a timeout and this needlessly delays the
startup of an incoming SMTP connection. If you have hosts for which you trust RFC1413 and need
this information, you can change this.

This line enables an efficiency SMTP option. It is negotiated by clients and not expected to cause
problems but can be disabled if needed.

prdr_enable = true

When Exim receives messages over SMTP connections, it expects all addresses to be fully qualified
with a domain, as required by the SMTP definition. However, if you are running a server to which
simple clients submit messages, you may find that they send unqualified addresses. The two
commented-out options:

sender_unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unqualified sender and recipient addresses,
respectively.

The log_selector option is used to increase the detail of logging over the default:

log_selector = +smtp_protocol_error +smtp_syntax_error \
 +tls_certificate_verified

The percent_hack_domains option is also commented out:

percent_hack_domains =

64 The default configuration file (7)

It provides a list of domains for which the “percent hack” is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore this topic.

The next two settings in the main part of the default configuration are concerned with messages that
have been “frozen” on Exim’s queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

ignore_bounce_errors_after = 2d
timeout_frozen_after = 7d

The first of these options specifies that failing bounce messages are to be discarded after 2 days in the
queue. The second specifies that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this configuration, the first setting ensures that no failing
bounce message ever lasts a week.

Exim queues it’s messages in a spool directory. If you expect to have large queues, you may consider
using this option. It splits the spool directory into subdirectories to avoid file system degradation from
many files in a single directory, resulting in better performance. Manual manipulation of queued
messages becomes more complex (though fortunately not often needed).

split_spool_directory = true

In an ideal world everybody follows the standards. For non-ASCII messages RFC 2047 is a standard,
allowing a maximum line length of 76 characters. Exim adheres that standard and won’t process
messages which violate this standard. (Even ${rfc2047:...} expansions will fail.) In particular, the
Exim maintainers have had multiple reports of problems from Russian administrators of issues until
they disable this check, because of some popular, yet buggy, mail composition software.

check_rfc2047_length = false

If you need to be strictly RFC compliant you may wish to disable the 8BITMIME advertisement. Use
this, if you exchange mails with systems that are not 8-bit clean.

accept_8bitmime = false

Libraries you use may depend on specific environment settings. This imposes a security risk (e.g.
PATH). There are two lists: keep_environment for the variables to import as they are, and add_
environment for variables we want to set to a fixed value. Note that TZ is handled separately, by the
timezone runtime option and by the TIMEZONE_DEFAULT buildtime option.

keep_environment = ^LDAP
add_environment = PATH=/usr/bin::/bin

7.3 ACL configuration

In the default configuration, the ACL section follows the main configuration. It starts with the line

begin acl

and it contains the definitions of two ACLs, called acl_check_rcpt and acl_check_data, that were
referenced in the settings of acl_smtp_rcpt and acl_smtp_data above.

The first ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command specifies one of the message’s recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl_check_rcpt:

This line, consisting of a name terminated by a colon, marks the start of the ACL, and names it.

accept hosts = :

65 The default configuration file (7)

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesn’t actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCP/IP). A
number of MUAs operate in this manner.

deny domains = +local_domains
 local_parts = ^[.] : ^.*[@%!/|]
 message = Restricted characters in address

deny domains = !+local_domains
 local_parts = ^[./|] : ^.*[@%!] : ^.*/\\.\\./
 message = Restricted characters in address

These statements are concerned with local parts that contain any of the characters “@”, “%”, “!”, “/”,
“|”, or dots in unusual places. Although these characters are entirely legal in local parts (in the case
of “@” and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

The first three have in the past been associated with explicitly routed addresses (percent is still
sometimes used – see the percent_hack_domains option). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This configuration is heavy-handed in rejecting these characters for all messages it accepts from
remote hosts. This is a deliberate policy of being as safe as possible.

The first rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. This is implemented by the first condition, which restricts it to domains
that are listed in the local_domains domain list. The “+” character is used to indicate a reference to a
named list. In this configuration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the first statement uses two regular expressions to block local parts that
begin with a dot or contain “@”, “%”, “!”, “/”, or “|”. If you have local accounts that include these
characters, you will have to modify this rule.

Empty components (two dots in a row) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
“first-initial.second-initial.family-name” when applied to someone like the author of Exim, who has
no second initial.) However, a local part starting with a dot or containing “/../” can cause trouble if it
is used as part of a filename (for example, for a mailing list). This is also true for local parts that
contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use slashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence “/../” is barred. The use of “@”, “%”, and “!” is blocked, as before. The
motivation here is to prevent your users (or your users’ viruses) from mounting certain kinds of attack
on remote sites.

accept local_parts = postmaster
 domains = +local_domains

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The “+” character is used to
indicate a reference to a named list. In this configuration, there is just one domain in local_domains,
but in general there may be many.

66 The default configuration file (7)

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
quent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be verified before any subsequent ACL statement can be
used. If verification fails, the incoming recipient address is refused. Verification consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic verification checks only the domain, but callouts can be used for more verification if required.
Section 44.21 discusses the details of address verification.

accept hosts = +relay_from_hosts
 control = submission

This statement accepts the address if the message is coming from one of the hosts that are defined as
being allowed to relay through this host. Recipient verification is omitted here, because in many cases
the clients are dumb MUAs that do not cope well with SMTP error responses. For the same reason,
the second line specifies “submission mode” for messages that are accepted. This is described in
detail in section 48.1; it causes Exim to fix messages that are deficient in some way, for example,
because they lack a Date: header line. If you are actually relaying out from MTAs, you should
probably add recipient verification here, and disable submission mode.

accept authenticated = *
 control = submission

This statement accepts the address if the client host has authenticated itself. Submission mode is again
specified, on the grounds that such messages are most likely to come from MUAs. The default
configuration does not define any authenticators, though it does include some nearly complete
commented-out examples described in 7.8. This means that no client can in fact authenticate until you
complete the authenticator definitions.

require message = relay not permitted
 domains = +local_domains : +relay_to_domains

This statement rejects the address if its domain is neither a local domain nor one of the domains for
which this host is a relay.

require verify = recipient

This statement requires the recipient address to be verified; if verification fails, the address is rejected.

deny dnslists = black.list.example
message = rejected because $sender_host_address \
is in a black list at $dnslist_domain\n\
$dnslist_text
#
warn dnslists = black.list.example
add_header = X-Warning: $sender_host_address is in \
a black list at $dnslist_domain
log_message = found in $dnslist_domain

These commented-out lines are examples of how you could configure Exim to check sending hosts
against a DNS black list. The first statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The final statement in the first ACL unconditionally accepts any recipient address that has success-
fully passed all the previous tests.

67 The default configuration file (7)

acl_check_data:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

deny malware = *
message = This message contains a virus \
($malware_name).

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain a virus, it is rejected with the given custom error message.

warn spam = nobody
message = X-Spam_score: $spam_score\n\
X-Spam_score_int: $spam_score_int\n\
X-Spam_bar: $spam_bar\n\
X-Spam_report: $spam_report

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run with nobody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept

This final line in the DATA ACL accepts the message unconditionally.

7.4 Router configuration

The router configuration comes next in the default configuration, introduced by the line

begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router, in turn, until it is either accepted, or failed. This means that the order in which
you define the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:
driver = ipliteral
domains = !+local_domains
transport = remote_smtp

This router is commented out because the majority of sites do not want to support domain literal
addresses (those of the form user@[10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literals in the main part of the configuration.

Which router is used next depends upon whether or not the ROUTER_SMARTHOST macro has been
defined, per

.ifdef ROUTER_SMARTHOST
smarthost:
#...
.else
dnslookup:
#...
.endif

If ROUTER_SMARTHOST has been defined, either at the top of the file or on the command-line,
then we route all non-local mail to that smarthost; otherwise, we’ll perform DNS lookups for direct-
to-MX lookup. Any mail which is to a local domain will skip these routers because of the domains
option.

68 The default configuration file (7)

smarthost:
 driver = manualroute
 domains = ! +local_domains
 transport = smarthost_smtp
 route_data = ROUTER_SMARTHOST
 ignore_target_hosts = <; 0.0.0.0 ; 127.0.0.0/8 ; ::1
 no_more

This router only handles mail which is not to any local domains; this is specified by the line

domains = ! +local_domains

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was defined at the start of the configuration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is manualroute because we are manually specifying how mail should be
routed onwards, instead of using DNS MX. While the name of this router instance is arbitrary, the
driver option must be one of the driver modules that is in the Exim binary.

With no pre-conditions other than domains, all mail for non-local domains will be handled by this
router, and the no_more setting will ensure that no other routers will be used for messages matching
the pre-conditions. See 3.12 for more on how the pre-conditions apply. For messages which are
handled by this router, we provide a hostname to deliver to in route_data and the macro supplies the
value; the address is then queued for the smarthost_smtp transport.

dnslookup:
 driver = dnslookup
 domains = ! +local_domains
 transport = remote_smtp
 ignore_target_hosts = 0.0.0.0 : 127.0.0.0/8
 no_more

The domains option behaves as per smarthost, above.

The name of the router driver is dnslookup, and is specified by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that is in
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smtp transport, as specified by the transport option. If the router does not find the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore_target_hosts option specifies a list of IP addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS
point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these IP addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system_aliases:
 driver = redirect
 allow_fail
 allow_defer
 data = ${lookup{$local_part}lsearch{/etc/aliases}}
user = exim
 file_transport = address_file
 pipe_transport = address_pipe

69 The default configuration file (7)

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is defined as an alias in the /etc/aliases file, and if so, redirects it
according to the data that it looks up from that file. If no data is found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/etc/aliases is a conventional name for the system aliases file that is often used. That is why it is
referenced by from the default configuration file. However, you can change this by setting SYSTEM_
ALIASES_FILE in Local/Makefile before building Exim.

userforward:
 driver = redirect
 check_local_user
local_part_suffix = +* : -*
local_part_suffix_optional
 file = $home/.forward
allow_filter
 no_verify
 no_expn
 check_ancestor
 file_transport = address_file
 pipe_transport = address_pipe
 reply_transport = address_reply

This is the most complicated router in the default configuration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. The check_local_user setting
specifies a check that the local part of the address is the login name of a local user. If it is not, the
router is skipped. The two commented options that follow check_local_user, namely:

local_part_suffix = +* : -*
local_part_suffix_optional

show how you can specify the recognition of local part suffixes. If the first is uncommented, a suffix
beginning with either a plus or a minus sign, followed by any sequence of characters, is removed from
the local part and placed in the variable $local_part_suffix. The second suffix option specifies that the
presence of a suffix in the local part is optional. When a suffix is present, the check for a local login
uses the local part with the suffix removed.

When a local user account is found, the file called .forward in the user’s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the contents of .forward are interpreted
as redirection data (see chapter 22 for more details).

Traditional .forward files contain just a list of addresses, pipes, or files. Exim supports this by default.
However, if allow_filter is set (it is commented out by default), the contents of the file are interpreted
as a set of Exim or Sieve filtering instructions, provided the file begins with “#Exim filter” or “#Sieve
filter”, respectively. User filtering is discussed in the separate document entitled Exim’s interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

(1) Whether or not a local user has a .forward file is not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read users’ .forward
files at this time.

The setting of check_ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding – see section 22.5).

70 The default configuration file (7)

The final three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a file, or to a pipe, or sets up an auto-reply, respectively. For example, if a .forward
file contains

a.nother@elsewhere.example, /home/spqr/archive

the delivery to /home/spqr/archive is done by running the address_file transport.

localuser:
 driver = accept
 check_local_user
local_part_suffix = +* : -*
local_part_suffix_optional
 transport = local_delivery

The final router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it to the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced. The commented suffix settings fulfil
the same purpose as they do for the userforward router.

7.5 Transport configuration

Transports define mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are defined does not matter. The transports section of the
configuration starts with

begin transports

Two remote transports and four local transports are defined.

remote_smtp:
 driver = smtp
 message_size_limit = ${if > {$max_received_linelength}{998} {1}{0}}
.ifdef _HAVE_PRDR
 hosts_try_prdr = *
.endif

This transport is used for delivering messages over SMTP connections. The list of remote hosts
comes from the router. The message_size_limit usage is a hack to avoid sending on messages with
over-long lines.

The hosts_try_prdr option enables an efficiency SMTP option. It is negotiated between client and
server and not expected to cause problems but can be disabled if needed. The built-in macro _HAVE_
PRDR guards the use of the hosts_try_prdr configuration option.

The other remote transport is used when delivering to a specific smarthost with whom there must be
some kind of existing relationship, instead of the usual federated system.

smarthost_smtp:
 driver = smtp
 message_size_limit = ${if > {$max_received_linelength}{998} {1}{0}}
 multi_domain
 #
.ifdef _HAVE_TLS
 # Comment out any of these which you have to, then file a Support
 # request with your smarthost provider to get things fixed:
 hosts_require_tls = *
 tls_verify_hosts = *
 # As long as tls_verify_hosts is enabled, this this will have no effect,
 # but if you have to comment it out then this will at least log whether
 # you succeed or not:
 tls_try_verify_hosts = *
 #

71 The default configuration file (7)

 # The SNI name should match the name which we'll expect to verify;
 # many mail systems don't use SNI and this doesn't matter, but if it does,
 # we need to send a name which the remote site will recognize.
 # This _should_ be the name which the smarthost operators specified as
 # the hostname for sending your mail to.
 tls_sni = ROUTER_SMARTHOST
 #
.ifdef _HAVE_OPENSSL
 tls_require_ciphers = HIGH:!aNULL:@STRENGTH
.endif
.ifdef _HAVE_GNUTLS
 tls_require_ciphers = SECURE192:-VERS-SSL3.0:-VERS-TLS1.0:-VERS-TLS1.1
.endif
.endif
.ifdef _HAVE_PRDR
 hosts_try_prdr = *
.endif

After the same message_size_limit hack, we then specify that this Transport can handle messages to
multiple domains in one run. The assumption here is that you’re routing all non-local mail to the same
place and that place is happy to take all messages from you as quickly as possible. All other options
depend upon built-in macros; if Exim was built without TLS support then no other options are
defined. If TLS is available, then we configure "stronger than default" TLS ciphersuites and versions
using the tls_require_ciphers option, where the value to be used depends upon the library providing
TLS. Beyond that, the options adopt the stance that you should have TLS support available from your
smarthost on today’s Internet, so we turn on requiring TLS for the mail to be delivered, and requiring
that the certificate be valid, and match the expected hostname. The tls_sni option can be used by
service providers to select an appropriate certificate to present to you and here we re-use the
ROUTER_SMARTHOST macro, because that is unaffected by CNAMEs present in DNS. You want
to specify the hostname which you’ll expect to validate for, and that should not be subject to insecure
tampering via DNS results.

For the hosts_try_prdr option see the previous transport.

All other options are defaulted.

local_delivery:
 driver = appendfile
 file = /var/mail/$local_part_data
 delivery_date_add
 envelope_to_add
 return_path_add
group = mail
mode = 0660

This appendfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format.

We prefer to avoid using $local_part directly to define the mailbox filename, as it is provided by a
potential bad actor. Instead we use $local_part_data, the result of looking up $local_part in the user
database (done by using check_local_user in the the router).

By default appendfile runs under the uid and gid of the local user, which requires the sticky bit to be
set on the /var/mail directory. Some systems use the alternative approach of running mail deliveries
under a particular group instead of using the sticky bit. The commented options show how this can be
done.

Exim adds three headers to the message as it delivers it: Delivery-date:, Envelope-to: and Return-
path:. This action is requested by the three similarly-named options above.

72 The default configuration file (7)

address_pipe:
 driver = pipe
 return_output

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
users’ .forward files). The return_output option specifies that any output on stdout or stderr gener-
ated by the pipe is to be returned to the sender.

address_file:
 driver = appendfile
 delivery_date_add
 envelope_to_add
 return_path_add

This transport is used for handling deliveries to files that are generated by redirection. The name of
the file is not specified in this instance of appendfile, because it comes from the redirect router.

address_reply:
 driver = autoreply

This transport is used for handling automatic replies generated by users’ filter files.

7.6 Default retry rule

The retry section of the configuration file contains rules which affect the way Exim retries deliveries
that cannot be completed at the first attempt. It is introduced by the line

begin retry

In the default configuration, there is just one rule, which applies to all errors:

* * F,2h,15m; G,16h,1h,1.5; F,4d,6h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at
intervals starting at one hour and increasing by a factor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an address is not delivered after 4 days of temporary failure, it is bounced. The
time is measured from first failure, not from the time the message was received.

If the retry section is removed from the configuration, or is empty (that is, if no retry rules are
defined), Exim will not retry deliveries. This turns temporary errors into permanent errors.

7.7 Rewriting configuration

The rewriting section of the configuration, introduced by

begin rewrite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default configuration file.

7.8 Authenticators configuration

The authenticators section of the configuration, introduced by

begin authenticators

defines mechanisms for the use of the SMTP AUTH command. The default configuration file contains
two commented-out example authenticators which support plaintext username/password authenti-
cation using the standard PLAIN mechanism and the traditional but non-standard LOGIN mechanism,
with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA software.

The example PLAIN authenticator looks like this:

#PLAIN:
driver = plaintext
server_set_id = $auth2

73 The default configuration file (7)

server_prompts = :
server_condition = Authentication is not yet configured
server_advertise_condition = ${if def:tls_in_cipher }

And the example LOGIN authenticator looks like this:

#LOGIN:
driver = plaintext
server_set_id = $auth1
server_prompts = <| Username: | Password:
server_condition = Authentication is not yet configured
server_advertise_condition = ${if def:tls_in_cipher }

The server_set_id option makes Exim remember the authenticated username in $authenticated_id,
which can be used later in ACLs or routers. The server_prompts option configures the plaintext
authenticator so that it implements the details of the specific authentication mechanism, i.e. PLAIN or
LOGIN. The server_advertise_condition setting controls when Exim offers authentication to clients;
in the examples, this is only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in section 7.2.

The server_condition setting defines how to verify that the username and password are correct. In the
examples it just produces an error message. To make the authenticators work, you can use a string
expansion expression like one of the examples in chapter 34.

Beware that the sequence of the parameters to PLAIN and LOGIN differ; the usercode and password
are in different positions. Chapter 34 covers both.

74 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE2 regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in online Perl manpages, in many Perl
reference books, and also in Jeffrey Friedl’s Mastering Regular Expressions, which is published by
O’Reilly (see http://www.oreilly.com/catalog/regex2/).

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE2 is included in the PCRE2 distribution, and no further description is included here. The
PCRE2 functions are called from Exim using the default option settings (that is, with no PCRE2
options set), except that the PCRE2_CASELESS option is set when the matching is required to be
case-insensitive.

In most cases, when a regular expression is required in an Exim configuration, it has to start with a
circumflex, in order to distinguish it from plain text or an “ends with” wildcard. In this example of a
configuration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c : ^\\d{3} : *.y.z : ...

The doubling of the backslash is required because of string expansion that precedes interpretation –
see section 11.1 for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the normal effect of
“anchoring” it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are the match condition in a string expansion, and the matches condition in an
Exim filter file. In these cases, the relevant string is always treated as a regular expression; if it does
not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In all cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domains = ^\\d{3}\\.example

matches the domain 123.example, but it also matches 123.example.com. You need to use:

domains = ^\\d{3}\\.example\$

if you want example to be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

75 Regular expressions (8)

9. File and database lookups

Exim can be configured to look up data in files or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are con-
ditional expansion items. Different results can be defined for the cases of lookup success and
failure. See chapter 11, where string expansions are described in detail. The key for the lookup
is specified as part of the string to be expanded.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or fails is what really counts. These kinds of list
are described in chapter 10. Depending on the lookup type (see below) the key for the lookup
may need to be specified as above or may be implicit, given by the context in which the list is
being checked.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two first. If you are reading this for the first
time, be aware that some of it will make a lot more sense after you have read chapters 10 and 11.

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the first kind. Be careful to distinguish between the following two examples:

domains = ${lookup{$sender_host_address}lsearch{/some/file}}
domains = lsearch;/some/file

• The first uses a string expansion, the result of which must be a domain list. The key for an
expansion-style lookup must be given explicitly. No strings have been specified for a successful or
a failing lookup; the defaults in this case are the looked-up data and an empty string, respectively.
The expansion takes place before the string is processed as a list, and the file that is searched could
contain lines like this:

192.168.3.4: domain1:domain2:...
192.168.1.9: domain3:domain4:...

When the lookup succeeds, the result of the expansion is a list of domains (and possibly other types
of item that are allowed in domain lists). The result of the expansion is not tainted.

• In the second example, the lookup is a single item in a domain list. It causes Exim to use a lookup
to see if the domain that is being processed can be found in the file. The file could contains lines
like this:

domain1:
domain2:

Any data that follows the keys is not relevant when checking that the domain matches the list item.

The key for a list-style lookup is implicit, from the lookup context, if the lookup is a single-key
type (see below). For query-style lookup types the query must be given explicitly.

It is possible, though no doubt confusing, to use both kinds of lookup at once. Consider a file
containing lines like this:

192.168.5.6: lsearch;/another/file

If the value of $sender_host_address is 192.168.5.6, expansion of the first domains setting above
generates the second setting, which therefore causes a second lookup to occur.

76 File and database lookups (9)

The lookup type may optionally be followed by a comma and a comma-separated list of options. Each
option is a “name=value” pair. Whether an option is meaningful depends on the lookup type.

All lookups support the option “cache=no_rd”. If this is given then the cache that Exim manages for
lookup results is not checked before doing the lookup. The result of the lookup is still written to the
cache.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the configuration where a lookup is permitted.

9.2 Lookup types

Two different types of data lookup are implemented:

• The single-key type requires the specification of a file in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how the file is searched. The file string may not be tainted.

All single-key lookups support the option “ret=key”. If this is given and the lookup (either underly-
ing implementation or cached value) returns data, the result is replaced with a non-tainted version
of the lookup key.

• The query-style type accepts a generalized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

For the string-expansion kind of lookups, the query is given in the first bracketed argument of the
${lookup ...} expansion. For the list-argument kind of lookup the query is given by the remainder
of the list item after the first semicolon.

If tainted data is used in the query then it should be quoted by using the ${quote_<lookup-
type>:<string>} expansion operator appropriate for the lookup.

The code for each lookup type is in a separate source file that is included in the binary of Exim only if
the corresponding compile-time option is set. The default settings in src/EDITME are:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header files before building
Exim.

9.3 Single-key lookup types

The following single-key lookup types are implemented:

9.3.1 cdb

The given file is searched as a Constant DataBase file, using the key string without a terminating
binary zero. The cdb format is designed for indexed files that are read frequently and never updated,
except by total re-creation. As such, it is particularly suitable for large files containing aliases or other
indexed data referenced by an MTA. Information about cdb and tools for building the files can be
found in several places:

https://cr.yp.to/cdb.html
https://www.corpit.ru/mjt/tinycdb.html
https://packages.debian.org/stable/utils/freecdb
https://github.com/philpennock/cdbtools (in Go)

A cdb distribution is not needed in order to build Exim with cdb support, because the code for reading
cdb files is included directly in Exim itself. However, no means of building or testing cdb files is
provided with Exim, so you need to obtain a cdb distribution in order to do this.

77 File and database lookups (9)

9.3.2 dbm

Calls to DBM library functions are used to extract data from the given DBM file by looking up the
record with the given key. A terminating binary zero is included in the key that is passed to the DBM
library. See section 4.4 for a discussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
files using the exim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of the
types of database that the library supports, and can be useful for accessing DBM files created by other
applications. (For earlier DB versions, DB_HASH is always used.)

9.3.3 dbmjz

This is the same as dbm, except that the lookup key is interpreted as an Exim list; the elements of the
list are joined together with ASCII NUL characters to form the lookup key. An example usage would
be to authenticate incoming SMTP calls using the passwords from Cyrus SASL’s /etc/sasldb2 file
with the gsasl authenticator or Exim’s own cram_md5 authenticator.

9.3.4 dbmnz

This is the same as dbm, except that a terminating binary zero is not included in the key that is passed
to the DBM library. You may need this if you want to look up data in files that are created by or
shared with some other application that does not use terminating zeros. For example, you need to use
dbmnz rather than dbm if you want to authenticate incoming SMTP calls using the passwords from
Courier’s /etc/userdbshadow.dat file. Exim’s utility program for creating DBM files (exim_dbmbuild)
includes the zeros by default, but has an option to omit them (see section 54.9).

9.3.5 dsearch

The given file must be an absolute directory path; this is searched for an entry whose name is the key
by calling the lstat() function.

Unless the options (below) permit a path,

the key may not contain any forward slash characters. If lstat() succeeds then so does the lookup. The
result is regarded as untainted.

Options for the lookup can be given by appending them after the word "dsearch", separated by a
comma. Options, if present, are a comma-separated list having each element starting with a tag name
and an equals.

Three options are supported, for the return value and for filtering match candidates. The "ret" option
requests an alternate result value of the entire path for the entry. Example:

${lookup {passwd} dsearch,ret=full {/etc}}

The default result is just the requested entry.

The "filter" option requests that only directory entries of a given type are matched. The match value is
one of "file", "dir" or "subdir" (the latter not matching "." or ".."). Example:

${lookup {passwd} dsearch,filter=file {/etc}}

The default matching is for any entry type, including directories and symlinks.

The "key" option relaxes the restriction that only a simple path component can be searched for, to
permit a sequence of path components. Example:

${lookup {foo/bar} dsearch,key=path {/etc}}

If this option is used, a ".." component in the key is specifically disallowed. The default operation is
that the key may only be a single path component.

An example of how this lookup can be used to support virtual domains is given in section 51.7.

78 File and database lookups (9)

9.3.6 iplsearch

The given file is a text file containing keys and data. A key is terminated by a colon or white space or
the end of the line. The keys in the file must be IP addresses, or IP addresses with CIDR masks. Keys
that involve IPv6 addresses must be enclosed in quotes to prevent the first internal colon being
interpreted as a key terminator. For example:

1.2.3.4: data for 1.2.3.4
192.168.0.0/16: data for 192.168.0.0/16
"abcd::cdab": data for abcd::cdab
"abcd:abcd::/32" data for abcd:abcd::/32

The key for an iplsearch lookup must be an IP address (without a mask). The file is searched linearly,
using the CIDR masks where present, until a matching key is found. The first key that matches is
used; there is no attempt to find a “best” match. Apart from the way the keys are matched, the
processing for iplsearch is the same as for lsearch.

Warning 1: Unlike most other single-key lookup types, a file of data for iplsearch can not be turned
into a DBM or cdb file, because those lookup types support only literal keys.

Warning 2: In a host list, you must always use net-iplsearch so that the implicit key is the host’s IP
address rather than its name (see section 10.4.3).

Warning 3: Do not use an IPv4-mapped IPv6 address for a key; use the IPv4, in dotted-quad form.
(Exim converts IPv4-mapped IPv6 addresses to this notation before executing the lookup.)

One option is supported, "ret=full", to request the return of the entire line rather than omitting the key
portion. Note however that the key portion will have been de-quoted.

9.3.7 json

The given file is a text file with a JSON structure. An element of the structure is extracted, defined by
the search key. The key is a list of subelement selectors (colon-separated by default but changeable in
the usual way) which are applied in turn to select smaller and smaller portions of the JSON structure.
If a selector is numeric, it must apply to a JSON array; the (zero-based) nunbered array element is
selected. Otherwise it must apply to a JSON object; the named element is selected. The final resulting
element can be a simple JSON type or a JSON object or array; for the latter two a string-
representation of the JSON is returned. For elements of type string, the returned value is de-quoted.

9.3.8 lmdb

The given file is an LMDB database. LMDB is a memory-mapped key-value store, with API modeled
loosely on that of BerkeleyDB. See https://symas.com/products/lightning-memory-mapped-
database/ for the feature set and operation modes.

Exim provides read-only access via the LMDB C library. The library can be obtained from
https://github.com/LMDB/lmdb or your operating system package repository. To enable LMDB
support in Exim set LOOKUP_LMDB=yes in Local/Makefile.

You will need to separately create the LMDB database file, possibly using the “mdb_load” utility.

9.3.9 lsearch

The given file is a text file that is searched linearly for a line beginning with the search key, terminated
by a colon or white space or the end of the line. The search is case-insensitive; that is, upper and
lower case letters are treated as the same. The first occurrence of the key that is found in the file is
used.

White space between the key and the colon is permitted. The remainder of the line, with leading and
trailing white space removed, is the data. This can be continued onto subsequent lines by starting
them with any amount of white space, but only a single space character is included in the data at such
a junction. If the data begins with a colon, the key must be terminated by a colon, for example:

baduser: :fail:

79 File and database lookups (9)

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item. This
is the traditional textual format of alias files. Note that the keys in an lsearch file are literal strings.
There is no wildcarding of any kind.

In most lsearch files, keys are not required to contain colons or # characters, or white space. However,
if you need this feature, it is available. If a key begins with a doublequote character, it is terminated
only by a matching quote (or end of line), and the normal escaping rules apply to its contents (see
section 6.17). An optional colon is permitted after quoted keys (exactly as for unquoted keys). There
is no special handling of quotes for the data part of an lsearch line.

9.3.10 nis

The given file is the name of a NIS map, and a NIS lookup is done with the given key, without a
terminating binary zero. There is a variant called nis0 which does include the terminating binary zero
in the key. This is reportedly needed for Sun-style alias files. Exim does not recognize NIS aliases; the
full map names must be used.

9.3.11 (n)wildlsearch

wildlsearch or nwildlsearch: These search a file linearly, like lsearch, but instead of being interpreted
as a literal string, each key in the file may be wildcarded. The difference between these two lookup
types is that for wildlsearch, each key in the file is string-expanded before being used, whereas for
nwildlsearch, no expansion takes place.

Like lsearch, the testing is done case-insensitively. However, keys in the file that are regular
expressions can be made case-sensitive by the use of (-i) within the pattern. The following forms of
wildcard are recognized:

(1) The string may begin with an asterisk to mean “ends with”. For example:

*.a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch:

^\N\d+\.a\.b\N data for <digits>.a.b

Note the use of \N to disable expansion of the contents of the regular expression. If you are
using nwildlsearch, where the keys are not string-expanded, the equivalent entry is:

^\d+\.a\.b data for <digits>.a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using (-i) at an appropriate point. For example, to make the entire pattern
case-sensitive:

^(?-i)\d+\.a\.b data for <digits>.a.b

If the regular expression contains white space or colon characters, you must either quote it (see
lsearch above), or represent these characters in other ways. For example, \s can be used for
white space and \x3A for a colon. This may be easier than quoting, because if you quote, you
have to escape all the backslashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use, because
the results of all lookups are cached. If a lookup is repeated, the result is taken from the cache,
and no actual pattern matching takes place. The values of all the numeric variables are unset
after a (n)wildlsearch match.

(3) Although I cannot see it being of much use, the general matching function that is used to
implement (n)wildlsearch means that the string may begin with a lookup name terminated by a
semicolon, and followed by lookup data. For example:

cdb;/some/file data for keys that match the file

The data that is obtained from the nested lookup is discarded.

80 File and database lookups (9)

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as for lsearch, and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a file of data for (n)wildlsearch can not be
turned into a DBM or cdb file, because those lookup types support only literal keys.

9.3.12 spf

If Exim is built with SPF support, manual lookups can be done (as opposed to the standard ACL
condition method). For details see section 58.2.

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

9.4.1 dnsdb

This does a DNS search for one or more records whose domain names are given in the supplied
query. The resulting data is the contents of the records. See section 9.10.

9.4.2 ibase

This does a lookup in an InterBase database.

9.4.3 ldap

This does an LDAP lookup using a query in the form of a URL, and returns attributes from a single
entry. There is a variant called ldapm that permits values from multiple entries to be returned. A third
variant called ldapdn returns the Distinguished Name of a single entry instead of any attribute values.
See section 9.11.

9.4.4 mysql

The format of the query is an SQL statement that is passed to a MySQL database. See section 9.13.

9.4.5 nisplus

This does a NIS+ lookup using a query that can specify the name of the field to be returned. See
section 9.12.

9.4.6 oracle

The format of the query is an SQL statement that is passed to an Oracle database. See section 9.13.

9.4.7 passwd

This is a query-style lookup with queries that are just user names. The lookup calls getpwnam() to
interrogate the system password data, and on success, the result string is the same as you would get
from an lsearch lookup on a traditional /etc/passwd file, though with * for the password value. For
example:

*:42:42:King Rat:/home/kr:/bin/bash

9.4.8 pgsql

The format of the query is an SQL statement that is passed to a PostgreSQL database. See section
9.13.

81 File and database lookups (9)

9.4.9 redis

The format of the query is either a simple get or simple set, passed to a Redis database. See section
9.13.

9.4.10 sqlite

The format of the query is an SQL statement that is passed to an SQLite database. See section 9.13.5.

9.4.11 testdb

This is a lookup type that is used for testing Exim. It is not likely to be useful in normal operation.

9.4.12 whoson

Whoson (http://whoson.sourceforge.net) is a protocol that allows a server to check whether a par-
ticular (dynamically allocated) IP address is currently allocated to a known (trusted) user and, option-
ally, to obtain the identity of the said user. For SMTP servers, Whoson was popular at one time for
“POP before SMTP” authentication, but that approach has been superseded by SMTP authentication.
In Exim, Whoson can be used to implement “POP before SMTP” checking using ACL statements
such as

require condition = \
 ${lookup whoson {$sender_host_address}{yes}{no}}

The query consists of a single IP address. The value returned is the name of the authenticated user,
which is stored in the variable $value. However, in this example, the data in $value is not used; the
result of the lookup is one of the fixed strings “yes” or “no”.

9.5 Temporary errors in lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do this for critical options such as a list of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.6 Default values in single-key lookups

In this context, a “default value” is a value specified by the administrator that is to be used if a lookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
query language must be used. An attempt to specify a default for a query-style lookup provokes an
error.

If “*” is added to a single-key lookup type (for example, lsearch*) and the initial lookup fails, the key
“*” is looked up in the file to provide a default value. See also the section on partial matching below.

Alternatively, if “*@” is added to a single-key lookup type (for example dbm*@) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in alias files that include
the domains in the keys. If the second lookup fails (or doesn’t take place because there is no @ in the
key), “*” is looked up. For example, a redirect router might contain:

data = ${lookup{$local_part@$domain}lsearch*@{/etc/mix-aliases}}

Suppose the address that is being processed is jane@eyre.example. Exim looks up these keys, in this
order:

82 File and database lookups (9)

jane@eyre.example
*@eyre.example
*

The data is taken from whichever key it finds first. Note: In an lsearch file, this does not mean the first
of these keys in the file. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the file that has a key starting with “*.” is matched by
any domain that ends with the components that follow the full stop. For example, if a key in a DBM
file is

*.dates.fict.example

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.example
and 1984.dates.fict.example. It is also matched by dates.fict.example, if that does not appear as a
separate key in the file.

Note: Partial matching is not available for query-style lookups. It is also not available for any lookup
items in address lists (see section 10.5).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a special prefix (default “*.”) are included
in the data file. Keys in the file that do not begin with the prefix are matched only by unmodified
subject keys when partial matching is in use.

Partial matching is requested by adding the string “partial-” to the front of the name of a single-key
lookup type, for example, partial-dbm. When this is done, the subject key is first looked up unmodi-
fied; if that fails, “*.” is added at the start of the subject key, and it is looked up again. If that fails,
further lookups are tried with dot-separated components removed from the start of the subject key,
one-by-one, and “*.” added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial3-lsearch specifies a minimum of
three non-* components in the modified keys. Omitting the number is equivalent to “partial2-”. If the
subject key is 2250.dates.fict.example then the following keys are looked up when the minimum
number of non-* components is two:

2250.dates.fict.example
*.2250.dates.fict.example
*.dates.fict.example
*.fict.example

As soon as one key in the sequence is successfully looked up, the lookup finishes.

The use of “*.” as the partial matching prefix is a default that can be changed. The motivation for this
feature is to allow Exim to operate with file formats that are used by other MTAs. A different prefix
can be supplied in parentheses instead of the hyphen after “partial”. For example:

domains = partial(.)lsearch;/some/file

In this example, if the domain is a.b.c, the sequence of lookups is a.b.c, .a.b.c, and .b.c (the
default minimum of 2 non-wild components is unchanged). The prefix may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domains = partial1()cdb;/some/file

For this example, if the domain is a.b.c, the sequence of lookups is a.b.c, b.c, and c.

83 File and database lookups (9)

If “partial0” is specified, what happens at the end (when the lookup with just one non-wild com-
ponent has failed, and the original key is shortened right down to the null string) depends on the
prefix:

• If the prefix has zero length, the whole lookup fails.

• If the prefix has length 1, a lookup for just the prefix is done. For example, the final lookup for
“partial0(.)” is for . alone.

• Otherwise, if the prefix ends in a dot, the dot is removed, and the remainder is looked up. With the
default prefix, therefore, the final lookup is for “*” on its own.

• Otherwise, the whole prefix is looked up.

If the search type ends in “*” or “*@” (see section 9.6 above), the search for an ultimate default that
this implies happens after all partial lookups have failed. If “partial0” is specified, adding “*” to the
search type has no effect with the default prefix, because the “*” key is already included in the
sequence of partial lookups. However, there might be a use for lookup types such as
“partial0(.)lsearch*”.

The use of “*” in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.example in a database file is useless, because the asterisk in a partial matching subject key
is always followed by a dot.

When the lookup is done from a string-expansion, the variables $1 and $2 contain the wild and
non-wild parts of the key during the expansion of the replacement text. They return to their previous
values at the end of the lookup item.

9.8 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within a single Exim process. There is no inter-process lookup caching facility.

If an option “cache=no_rd” is used on the lookup then the cache is only written to, cached data is not
used for the operation and a real lookup is done.

For single-key lookups, Exim keeps the relevant files open in case there is another lookup that needs
them. In some types of configuration this can lead to many files being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
files, Exim closes the least recently used file when it needs to open more files than its own internal
limit, which can be changed via the lookup_open_max option.

The single-key lookup files are closed and the lookup caches are flushed at strategic points during
delivery – for example, after all routing is complete.

9.9 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
special characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$local_part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${quote_<lookup-type>:<string>}

84 File and database lookups (9)

For example, the way to write the NIS+ query is

[name="${quote_nisplus:$local_part}"]

All tainted data used in a query-style lookup must be quoted using a mechanism appropriate for the
lookup type. See chapter 11 for full coverage of string expansions. The quote operator can be used for
all lookup types, but has no effect for single-key lookups, since no quoting is ever needed in their key
strings.

9.10 More about dnsdb

The dnsdb lookup type uses the DNS as its database. A simple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

${lookup dnsdb{mx=a.b.example}{$value}fail}

If the lookup succeeds, the result is placed in $value, which in this case is used on its own as the
result. If the lookup does not succeed, the fail keyword causes a forced expansion failure – see
section 11.4 for an explanation of what this means.

The supported DNS record types are A, CNAME, MX, NS, PTR, SOA, SPF, SRV, TLSA and TXT,
and, when Exim is compiled with IPv6 support, AAAA. If no type is given, TXT is assumed.

For any record type, if multiple records are found, the data is returned as a concatenation, with
newline as the default separator. The order, of course, depends on the DNS resolver. You can specify
a different separator character between multiple records by putting a right angle-bracket followed
immediately by the new separator at the start of the query. For example:

${lookup dnsdb{>: a=host1.example}}

It is permitted to specify a space as the separator character. Further white space is ignored. For lookup
types that return multiple fields per record, an alternate field separator can be specified using a comma
after the main separator character, followed immediately by the field separator.

When the type is PTR, the data can be an IP address, written as normal; inversion and the addition of
in-addr.arpa or ip6.arpa happens automatically. For example:

${lookup dnsdb{ptr=192.168.4.5}{$value}fail}

If the data for a PTR record is not a syntactically valid IP address, it is not altered and nothing is
added.

For an MX lookup, both the preference value and the host name are returned for each record,
separated by a space. For an SRV lookup, the priority, weight, port, and host name are returned for
each record, separated by spaces. The field separator can be modified as above.

For TXT records with multiple items of data, only the first item is returned, unless a field separator is
specified. To concatenate items without a separator, use a semicolon instead. For SPF records the
default behaviour is to concatenate multiple items without using a separator.

${lookup dnsdb{>\n,: txt=a.b.example}}
${lookup dnsdb{>\n; txt=a.b.example}}
${lookup dnsdb{spf=example.org}}

It is permitted to specify a space as the separator character. Further white space is ignored.

For an SOA lookup, while no result is obtained the lookup is redone with successively more leading
components dropped from the given domain. Only the primary-nameserver field is returned unless a
field separator is specified.

${lookup dnsdb{>:,; soa=a.b.example.com}}

9.10.1 Dnsdb lookup modifiers

Modifiers for dnsdb lookups are given by optional keywords, each followed by a comma, that may
appear before the record type.

85 File and database lookups (9)

The dnsdb lookup fails only if all the DNS lookups fail. If there is a temporary DNS error for any
of them, the behaviour is controlled by a defer-option modifier. The possible keywords are
“defer_strict”, “defer_never”, and “defer_lax”. With “strict” behaviour, any temporary DNS error
causes the whole lookup to defer. With “never” behaviour, a temporary DNS error is ignored, and the
behaviour is as if the DNS lookup failed to find anything. With “lax” behaviour, all the queries are
attempted, but a temporary DNS error causes the whole lookup to defer only if none of the other
lookups succeed. The default is “lax”, so the following lookups are equivalent:

${lookup dnsdb{defer_lax,a=one.host.com:two.host.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

Use of DNSSEC is controlled by a dnssec modifier. The possible keywords are “dnssec_strict”,
“dnssec_lax”, and “dnssec_never”. With “strict” or “lax” DNSSEC information is requested with the
lookup. With “strict” a response from the DNS resolver that is not labelled as authenticated data is
treated as equivalent to a temporary DNS error. The default is “lax”.

See also the $lookup_dnssec_authenticated variable.

Timeout for the dnsdb lookup can be controlled by a retrans modifier. The form is “retrans_VAL”
where VAL is an Exim time specification (e.g. “5s”). The default value is set by the main configur-
ation option dns_retrans.

Retries for the dnsdb lookup can be controlled by a retry modifier. The form if “retry_VAL” where
VAL is an integer. The default count is set by the main configuration option dns_retry.

Dnsdb lookup results are cached within a single process (and its children). The cache entry lifetime is
limited to the smallest time-to-live (TTL) value of the set of returned DNS records.

9.10.2 Pseudo dnsdb record types

By default, both the preference value and the host name are returned for each MX record, separated
by a space. If you want only host names, you can use the pseudo-type MXH:

${lookup dnsdb{mxh=a.b.example}}

In this case, the preference values are omitted, and just the host names are returned.

Another pseudo-type is ZNS (for “zone NS”). It performs a lookup for NS records on the given
domain, but if none are found, it removes the first component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or there is a
DNS error). In other words, it may return the name servers for a top-level domain, but it never returns
the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${lookup dnsdb{zns=xxx.quercite.com}}
${lookup dnsdb{zns=xxx.edu}}

Assuming that in each case there are no NS records for the full domain name, the first returns the
name servers for quercite.com, and the second returns the name servers for edu.

You should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup always returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains such as com or co.uk are not going to be on such a list.

A third pseudo-type is CSA (Client SMTP Authorization). This looks up SRV records according to
the CSA rules, which are described in section 44.26. Although dnsdb supports SRV lookups directly,
this is not sufficient because of the extra parent domain search behaviour of CSA. The result of a
successful lookup such as:

${lookup dnsdb {csa=$sender_helo_name}}

86 File and database lookups (9)

has two space-separated fields: an authorization code and a target host name. The authorization code
can be “Y” for yes, “N” for no, “X” for explicit authorization required but absent, or “?” for
unknown.

The pseudo-type A+ performs an AAAA and then an A lookup. All results are returned; defer
processing (see below) is handled separately for each lookup. Example:

${lookup dnsdb {>; a+=$sender_helo_name}}

9.10.3 Multiple dnsdb lookups

In the previous sections, dnsdb lookups for a single domain are described. However, you can specify a
list of domains or IP addresses in a single dnsdb lookup. The list is specified in the normal Exim way,
with colon as the default separator, but with the ability to change this. For example:

${lookup dnsdb{one.domain.com:two.domain.com}}
${lookup dnsdb{a=one.host.com:two.host.com}}
${lookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is specified, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it as a list.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be specified, as
described above.

9.11 More about LDAP

The original LDAP implementation came from the University of Michigan; this has become “Open
LDAP”, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDAP, to indicate which LDAP library is in
use. One of the following should appear in your Local/Makefile:

LDAP_LIB_TYPE=UMICHIGAN
LDAP_LIB_TYPE=OPENLDAP1
LDAP_LIB_TYPE=OPENLDAP2
LDAP_LIB_TYPE=NETSCAPE
LDAP_LIB_TYPE=SOLARIS

If LDAP_LIB_TYPE is not set, Exim assumes OPENLDAP1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave slightly differently in the way they handle
the results of a query:

• ldap requires the result to contain just one entry; if there are more, it gives an error.

• ldapdn also requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

• ldapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For ldap and ldapm, if a query finds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how LDAP queries are coded.

9.11.1 Format of LDAP queries

An LDAP query takes the form of a URL as defined in RFC 2255. For example, in the configuration
of a redirect router one might have this setting:

87 File and database lookups (9)

data = ${lookup ldap \
 {ldap:///cn=$local_part,o=University%20of%20Cambridge,\
 c=UK?mailbox?base?}}

The URL may begin with ldap or ldaps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

With sufficiently modern LDAP libraries, Exim supports forcing TLS over regular LDAP connec-
tions, rather than the SSL-on-connect ldaps. See the ldap_start_tls option.

Starting with Exim 4.83, the initialization of LDAP with TLS is more tightly controlled. Every part of
the TLS configuration can be configured by settings in exim.conf. Depending on the version of the
client libraries installed on your system, some of the initialization may have required setting options
in /etc/ldap.conf or ~/.ldaprc to get TLS working with self-signed certificates. This revealed a nuance
where the current UID that exim was running as could affect which config files it read. With Exim
4.83, these methods become optional, only taking effect if not specifically set in exim.conf.

9.11.2 LDAP quoting

Two levels of quoting are required in LDAP queries, the first for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
quoting are required. For this reason, there are two different LDAP-specific quoting operators.

The quote_ldap operator is designed for use on strings that are part of filter specifications.
Conceptually, it first does the following conversions on the string:

* => \2A
(=> \28
) => \29
\ => \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLs,
that is, all non-alphanumeric characters except

! $ ' - . _ () * +

are converted to their hex values, preceded by a percent sign. For example:

${quote_ldap: a(bc)*, a<yz>; }

yields

%20a%5C28bc%5C29%5C2A%2C%20a%3Cyz%3E%3B%20

Removing the URL quoting, this is (with a leading and a trailing space):

a\28bc\29\2A, a<yz>;

The quote_ldap_dn operator is designed for use on strings that are part of base DN specifications in
queries. Conceptually, it first converts the string by inserting a backslash in front of any of the
following characters:

, + " \ < > ;

It also inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLs.
For example:

${quote_ldap_dn: a(bc)*, a<yz>; }

yields

%5C%20a(bc)*%5C%2C%20a%5C%3Cyz%5C%3E%5C%3B%5C%20

Removing the URL quoting, this is (with a trailing space):

\ a(bc)*\, a\<yz\>\;\

There are some further comments about quoting in the section on LDAP authentication below.

88 File and database lookups (9)

9.11.3 LDAP connections

The connection to an LDAP server may either be over TCP/IP, or, when OpenLDAP is in use, via a
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be specified in a query by starting it with

ldap://<hostname>:<port>/...

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server
is specified in a query, a list of default servers is taken from the ldap_default_servers configuration
option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifying a host
and port is to use a colon separator (RFC 1738). Because ldap_default_servers is a colon-separated
list, such colons have to be doubled. For example

ldap_default_servers = ldap1.example.com::145:ldap2.example.com

If ldap_default_servers is unset, a URL with no server name is passed to the LDAP library with no
server name, and the library’s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. This is specified by using ldapi instead of ldap in LDAP
queries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, this feature is not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be specified either as an item in
ldap_default_servers, or inline in the query. In the former case, you can have settings such as

ldap_default_servers = /tmp/ldap.sock : backup.ldap.your.domain

When the pathname is given in the query, you have to escape the slashes as %2F to fit in with the
LDAP URL syntax. For example:

${lookup ldap {ldapi://%2Ftmp%2Fldap.sock/o=...

When Exim processes an LDAP lookup and finds that the “hostname” is really a pathname, it uses the
Unix domain socket code, even if the query actually specifies ldap or ldaps. In particular, no
encryption is used for a socket connection. This behaviour means that you can use a setting of ldap_
default_servers such as in the example above with traditional ldap or ldaps queries, and it will
work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicit ldapi type is given in a query when a host name is specified, an error is diagnosed.
However, if there are more items in ldap_default_servers, they are tried. In other words:

• Using a pathname with ldap or ldaps forces the use of the Unix domain interface.

• Using ldapi with a host name causes an error.

Using ldapi with no host or path in the query, and no setting of ldap_default_servers, does
whatever the library does by default.

9.11.4 LDAP authentication and control information

The LDAP URL syntax provides no way of passing authentication and other control information to
the server. To make this possible, the URL in an LDAP query may be preceded by any number of
<name>=<value> settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside
them. The following names are recognized:

89 File and database lookups (9)

 DEREFERENCE set the dereferencing parameter
 NETTIME set a timeout for a network operation
 USER set the DN, for authenticating the LDAP bind
 PASS set the password, likewise
 REFERRALS set the referrals parameter
 SERVERS set alternate server list for this query only
 SIZE set the limit for the number of entries returned
 TIME set the maximum waiting time for a query

The value of the DEREFERENCE parameter must be one of the words “never”, “searching”,
“finding”, or “always”. The value of the REFERRALS parameter must be “follow” (the default) or
“nofollow”. The latter stops the LDAP library from trying to follow referrals issued by the LDAP
server.

The name CONNECT is an obsolete name for NETTIME, retained for backwards compatibility. This
timeout (specified as a number of seconds) is enforced from the client end for operations that can
be carried out over a network. Specifically, it applies to network connections and calls to the
ldap_result() function. If the value is greater than zero, it is used if LDAP_OPT_NETWORK_
TIMEOUT is defined in the LDAP headers (OpenLDAP), or if LDAP_X_OPT_CONNECT_
TIMEOUT is defined in the LDAP headers (Netscape SDK 4.1). A value of zero forces an explicit
setting of “no timeout” for Netscape SDK; for OpenLDAP no action is taken.

The TIME parameter (also a number of seconds) is passed to the server to set a server-side limit on
the time taken to complete a search.

The SERVERS parameter allows you to specify an alternate list of ldap servers to use for an individ-
ual lookup. The global ldap_default_servers option provides a default list of ldap servers, and a
single lookup can specify a single ldap server to use. But when you need to do a lookup with a list of
servers that is different than the default list (maybe different order, maybe a completely different set
of servers), the SERVERS parameter allows you to specify this alternate list (colon-separated).

Here is an example of an LDAP query in an Exim lookup that uses some of these values. This is a
single line, folded to fit on the page:

${lookup ldap
 {user="cn=manager,o=University of Cambridge,c=UK" pass=secret
 ldap:///o=University%20of%20Cambridge,c=UK?sn?sub?(cn=foo)}
 {$value}fail}

The encoding of spaces as %20 is a URL thing which should not be done for any of the auxiliary data.
Exim configuration settings that include lookups which contain password information should be
preceded by “hide” to prevent non-admin users from using the -bP option to see their values.

The auxiliary data items may be given in any order. The default is no connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
queries.

When a DN is quoted in the USER= setting for LDAP authentication, Exim removes any URL
quoting that it may contain before passing it to the LDAP library. Apparently some libraries do this
for themselves, but some do not. Removing the URL quoting has two advantages:

• It makes it possible to use the same quote_ldap_dn expansion for USER= DNs as with DNs inside
actual queries.

• It permits spaces inside USER= DNs.

For example, a setting such as

USER=cn=${quote_ldap_dn:$1}

should work even if $1 contains spaces.

Expanded data for the PASS= value should be quoted using the quote expansion operator, rather than
the LDAP quote operators. The only reason this field needs quoting is to ensure that it conforms to the
Exim syntax, which does not allow unquoted spaces. For example:

90 File and database lookups (9)

PASS=${quote:$3}

The LDAP authentication mechanism can be used to check passwords as part of SMTP authenti-
cation. See the ldapauth expansion string condition in chapter 11.

9.11.5 Format of data returned by LDAP

The ldapdn lookup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager,o=University of Cambridge,c=UK

The ldap lookup type generates an error if more than one entry matches the search filter, whereas
ldapm permits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for both ldap and ldapm, but in the former case you
know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commas. Any comma that is part of an attribute’s value is doubled.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded
by the attribute name and an equals sign. Within the quotes, the quote character, backslash, and
newline are escaped with backslashes, and commas are used to separate multiple values for the
attribute. Any commas in attribute values are doubled (permitting treatment of the values as a comma-
separated list). Apart from the escaping, the string within quotes takes the same form as the output
when a single attribute is requested. Specifying no attributes is the same as specifying all of an entry’s
attributes.

Here are some examples of the output format. The first line of each pair is an LDAP query, and the
second is the data that is returned. The attribute called attr1 has two values, one of them with an
embedded comma, whereas attr2 has only one value. Both attributes are derived from attr (they have
SUP attr in their schema definitions).

ldap:///o=base?attr1?sub?(uid=fred)
value1.1,value1,,2

ldap:///o=base?attr2?sub?(uid=fred)
value two

ldap:///o=base?attr?sub?(uid=fred)
value1.1,value1,,2,value two

ldap:///o=base?attr1,attr2?sub?(uid=fred)
attr1="value1.1,value1,,2" attr2="value two"

ldap:///o=base??sub?(uid=fred)
objectClass="top" attr1="value1.1,value1,,2" attr2="value two"

You can make use of Exim’s -be option to run expansion tests and thereby check the results of LDAP
lookups. The extract operator in string expansions can be used to pick out individual fields from data
that consists of key=value pairs. The listextract operator should be used to pick out individual values
of attributes, even when only a single value is expected. The doubling of embedded commas allows
you to use the returned data as a comma separated list (using the "<," syntax for changing the input
list separator).

9.12 More about NIS+

NIS+ queries consist of a NIS+ indexed name followed by an optional colon and field name. If this is
given, the result of a successful query is the contents of the named field; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

91 File and database lookups (9)

[name=mg1456],passwd.org_dir

might return the string

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas

[name=mg1456],passwd.org_dir:gcos

would just return

Martin Guerre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of the quote_nisplus expansion operator is to double any quote characters within the
text.

9.13 SQL lookups

Exim can support lookups in InterBase, MySQL, Oracle, PostgreSQL, Redis, and SQLite databases.
Queries for these databases contain SQL statements, so an example might be

${lookup mysql{select mailbox from users where id='userx'}\
 {$value}fail}

If the result of the query contains more than one field, the data for each field in the row is returned,
preceded by its name, so the result of

${lookup pgsql{select home,name from users where id='userx'}\
 {$value}}

might be

home=/home/userx name="Mister X"

Empty values and values containing spaces are double quoted, with embedded quotes escaped by a
backslash. If the result of the query contains just one field, the value is passed back verbatim, without
a field name, for example:

Mister X

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

9.13.1 More about MySQL, PostgreSQL, Oracle, InterBase, and Redis

If any MySQL, PostgreSQL, Oracle, InterBase or Redis lookups are used, the mysql_servers, pgsql_
servers, oracle_servers, ibase_servers, or redis_servers option (as appropriate) must be set to a
colon-separated list of server information. (For MySQL and PostgreSQL, the global option need not
be set if all queries contain their own server information – see section 9.13.2.) For all but Redis each
item in the list is a slash-separated list of four items: host name, database name, user name, and
password. In the case of Oracle, the host name field is used for the “service name”, and the database
name field is not used and should be empty. For example:

hide oracle_servers = oracle.plc.example//userx/abcdwxyz

Because password data is sensitive, you should always precede the setting with “hide”, to prevent
non-admin users from obtaining the setting via the -bP option. Here is an example where two MySQL
servers are listed:

hide mysql_servers = localhost/users/root/secret:\
 otherhost/users/root/othersecret

For MySQL and PostgreSQL, a host may be specified as <name>:<port> but because this is a
colon-separated list, the colon has to be doubled. For each query, these parameter groups are tried in

92 File and database lookups (9)

order until a connection is made and a query is successfully processed. The result of a query may be
that no data is found, but that is still a successful query. In other words, the list of servers provides a
backup facility, not a list of different places to look.

For Redis the global option need not be specified if all queries contain their own server information –
see section 9.13.2. If specified, the option must be set to a colon-separated list of server information.
Each item in the list is a slash-separated list of three items: host, database number, and password.

(1) The host is required and may be either an IPv4 address and optional port number (separated by a
colon, which needs doubling due to the higher-level list), or a Unix socket pathname enclosed in
parentheses

(2) The database number is optional; if present that number is selected in the backend

(3) The password is optional; if present it is used to authenticate to the backend

The quote_mysql, quote_pgsql, and quote_oracle expansion operators convert newline, tab, carriage
return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backslash itself are escaped with backslashes.

The quote_redis expansion operator escapes whitespace and backslash characters with a backslash.

9.13.2 Specifying the server in the query

For MySQL, PostgreSQL and Redis lookups (but not currently for Oracle and InterBase), it is poss-
ible to specify a list of servers with an individual query. This is done by appending a comma-
separated option to the query type:

,servers=server1:server2:server3:...

Each item in the list may take one of two forms:

(1) If it contains no slashes it is assumed to be just a host name. The appropriate global option
(mysql_servers or pgsql_servers) is searched for a host of the same name, and the remaining
parameters (database, user, password) are taken from there.

(2) If it contains any slashes, it is taken as a complete parameter set.

The list of servers is used in exactly the same way as the global list. Once a connection to a server has
happened and a query has been successfully executed, processing of the lookup ceases.

This feature is intended for use in master/slave situations where updates are occurring and you want
to update the master rather than a slave. If the master is in the list as a backup for reading, you might
have a global setting like this:

mysql_servers = slave1/db/name/pw:\
 slave2/db/name/pw:\
 master/db/name/pw

In an updating lookup, you could then write:

${lookup mysql,servers=master {UPDATE ...} }

That query would then be sent only to the master server. If, on the other hand, the master is not to be
used for reading, and so is not present in the global option, you can still update it by a query of this
form:

${lookup pgsql,servers=master/db/name/pw {UPDATE ...} }

A now-deprecated syntax places the servers specification before the query, semicolon separated:

${lookup mysql{servers=master; UPDATE ...} }

The new version avoids issues with tainted arguments explicitly expanded as part of the query. The
entire string within the braces becomes tainted, including the server sepcification - which is not
permissible. If the older sytax is used, a warning message will be logged. This syntax will be removed
in a future release.

93 File and database lookups (9)

Note: server specifications in list-style lookups are still problematic.

9.13.3 Special MySQL features

For MySQL, an empty host name or the use of “localhost” in mysql_servers causes a connection to
the server on the local host by means of a Unix domain socket. An alternate socket can be specified in
parentheses. An option group name for MySQL option files can be specified in square brackets; the
default value is “exim”. The full syntax of each item in mysql_servers is:

<hostname>::<port>(<socket name>)[<option group>]/<database>/<user>/<password>

Any of the four sub-parts of the first field can be omitted. For normal use on the local host it can be
left blank or set to just “localhost”.

No database need be supplied – but if it is absent here, it must be given in the queries.

If a MySQL query is issued that does not request any data (an insert, update, or delete command), the
result of the lookup is the number of rows affected.

Warning: This can be misleading. If an update does not actually change anything (for example,
setting a field to the value it already has), the result is zero because no rows are affected.

To get an encryted connection, use a Mysql option file with the required parameters for the
connection.

9.13.4 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usually
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail
server runs on the same machine as the database server. A configuration line for PostgreSQL via Unix
domain sockets looks like this:

hide pgsql_servers = (/tmp/.s.PGSQL.5432)/db/user/password : ...

In other words, instead of supplying a host name, a path to the socket is given. The path name is
enclosed in parentheses so that its slashes aren’t visually confused with the delimiters for the other
server parameters.

If a PostgreSQL query is issued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

9.13.5 More about SQLite

SQLite is different to the other SQL lookups because a filename is required in addition to the SQL
query. An SQLite database is a single file, and there is no daemon as in the other SQL databases.

There are two ways of specifying the file. The first is by using the sqlite_dbfile main option. The
second, which allows separate files for each query, is to use an option appended, comma-separated, to
the “sqlite” lookup type word. The option is the word “file”, then an equals, then the filename. The
filename in this case cannot contain whitespace or open-brace charachters.

A deprecated method is available, prefixing the query with the filename separated by white space.
This means that the query cannot use any tainted values, as that taints the entire query including the
filename - resulting in a refusal to open the file.

In all the above cases the filename must be an absolute path.

Here is a lookup expansion example:

sqlite_dbfile = /some/thing/sqlitedb
...
${lookup sqlite {select name from aliases where id='userx';}}

In a list, the syntax is similar. For example:

94 File and database lookups (9)

domainlist relay_to_domains = sqlite;\
 select * from relays where ip='$sender_host_address';

The only character affected by the quote_sqlite operator is a single quote, which it doubles.

The SQLite library handles multiple simultaneous accesses to the database internally. Multiple
readers are permitted, but only one process can update at once. Attempts to access the database while
it is being updated are rejected after a timeout period, during which the SQLite library waits for the
lock to be released. In Exim, the default timeout is set to 5 seconds, but it can be changed by means of
the sqlite_lock_timeout option.

9.13.6 More about Redis

Redis is a non-SQL database. Commands are simple get and set. Examples:

${lookup redis{set keyname ${quote_redis:objvalue plus}}}
${lookup redis{get keyname}}

As of release 4.91, "lightweight" support for Redis Cluster is available. Requires redis_servers list to
contain all the servers in the cluster, all of which must be reachable from the running exim instance. If
the cluster has master/slave replication, the list must contain all the master and slave servers.

When the Redis Cluster returns a "MOVED" response to a query, Exim does not immediately follow
the redirection but treats the response as a DEFER, moving on to the next server in the redis_servers
list until the correct server is reached.

95 File and database lookups (9)

10. Domain, host, address, and local part lists

A number of Exim configuration options contain lists of domains, hosts, email addresses, or local
parts. For example, the hold_domains option contains a list of domains whose delivery is currently
suspended. These lists are also used as data in ACL statements (see chapter 44), and as arguments to
expansion conditions such as match_domain.

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are
described, but first we cover some general facilities that apply to all four kinds of list.

Note that other parts of Exim use a string list which does not support all the complexity available in
domain, host, address and local part lists.

10.1 Results of list checking

The primary result of doing a list check is a truth value. In some contexts additional information is
stored about the list element that matched:

hosts
A hosts ACL condition will store a result in the $host_data variable.

local_parts
A local_parts router option or local_parts ACL condition will store a result in the $local_part_
data variable.

domains
A domains router option or domains ACL condition will store a result in the $domain_data
variable.

senders
A senders router option or senders ACL condition will store a result in the $sender_data variable.

recipients
A recipients ACL condition will store a result in the $recipient_data variable.

The detail of the additional information depends on the type of match and is given below as the value
information.

10.2 Expansion of lists

Each list is expanded as a single string before it is used. Note: As a result, if any componend was
tainted then the entire result string becomes tainted.

Exception: the router headers_remove option, where list-item splitting is done before string-
expansion.

The result of expansion must be a list, possibly containing empty items, which is split up into separate
items for matching. By default, colon is the separator character, but this can be varied if necessary.
See sections 6.20 and 6.22 for details of the list syntax; the second of these discusses the way to
specify empty list items.

If the string expansion is forced to fail, Exim behaves as if the item it is testing (domain, host,
address, or local part) is not in the list. Other expansion failures cause temporary errors.

If an item in a list is a regular expression, backslashes, dollars and possibly other special characters in
the expression must be protected against misinterpretation by the string expander. The easiest way to
do this is to use the \N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \N^\d{8}\w@.*\.baddomain\.example$\N : \
 ${lookup{$domain}lsearch{/badsenders/bydomain}}

96 Domain, host, and address lists (10)

The first item is a regular expression that is protected from expansion by \N, whereas the second uses
the expansion to obtain a list of unwanted senders based on the receiving domain.

10.2.1 Negated items in lists

Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list defines a set of items (domains, etc).
When Exim processes one of these lists, it is trying to find out whether a domain, host, address, or
local part (respectively) is in the set that is defined by the list. It works like this:

The list is scanned from left to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, the list in

domainlist relay_to_domains = !a.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c do not
match, because the last item in the list is positive. However, if the setting were

domainlist relay_to_domains = !a.b.c

then all domains other than a.b.c would match because the last item in the list is negative. In other
words, a list that ends with a negative item behaves as if it had an extra item :* on the end.

Another way of thinking about positive and negative items in lists is to read the connector as “or”
after a positive item and as “and” after a negative item.

10.2.2 File names in lists

If an item in a domain, host, address, or local part list is an absolute filename (beginning with a slash
character), each line of the file is read and processed as if it were an independent item in the list,
except that further filenames are not allowed, and no expansion of the data from the file takes place.
Empty lines in the file are ignored, and the file may also contain comment lines:

• For domain and host lists, if a # character appears anywhere in a line of the file, it and all following
characters are ignored.

• Because local parts may legitimately contain # characters, a comment in an address list or local
part list file is recognized only if # is preceded by white space or the start of the line. For example:

not#comment@x.y.z # but this is a comment

Putting a filename in a list has the same effect as inserting each line of the file as an item in the list
(blank lines and comments excepted). However, there is one important difference: the file is read each
time the list is processed, so if its contents vary over time, Exim’s behaviour changes.

If a filename is preceded by an exclamation mark, the sense of any match within the file is inverted.
For example, if

hold_domains = !/etc/nohold-domains

and the file contains the lines

!a.b.c
*.b.c

then a.b.c is in the set of domains defined by hold_domains, whereas any domain matching *.b.c
is not.

10.2.3 An lsearch file is not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about the way lsearch lookups
work in lists. Because an lsearch file contains plain text and is scanned sequentially, it is sometimes

97 Domain, host, and address lists (10)

thought that it is allowed to contain wild cards and other kinds of non-constant pattern. This is not the
case. The keys in an lsearch file are always fixed strings, just as for any other single-key lookup type.

If you want to use a file to contain wild-card patterns that form part of a list, just give the filename
on its own, without a search type, as described in the previous section. You could also use the
wildlsearch or nwildlsearch, but there is no advantage in doing this.

10.2.4 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the configuration. This is particularly convenient if the same list is
required in several different places. It also allows lists to be given meaningful names, which can
improve the readability of the configuration. For example, it is conventional to define a domain list
called local_domains for all the domains that are handled locally on a host, using a configuration line
such as

domainlist local_domains = localhost:my.dom.example

Named lists are referenced by giving their name preceded by a plus sign, so, for example, a router that
is intended to handle local domains would be configured with the line

domains = +local_domains

The first router in a configuration is often one that handles all domains except the local ones, using a
configuration with a negated item like this:

dnslookup:
 driver = dnslookup
 domains = ! +local_domains
 transport = remote_smtp
 no_more

The four kinds of named list are created by configuration lines starting with the words domainlist,
hostlist, addresslist, or localpartlist, respectively. Then there follows the name that you are defining,
followed by an equals sign and the list itself. For example:

hostlist relay_from_hosts = 192.168.23.0/24 : my.friend.example
addresslist bad_senders = cdb;/etc/badsenders

A named list may refer to other named lists:

domainlist dom1 = first.example : second.example
domainlist dom2 = +dom1 : third.example
domainlist dom3 = fourth.example : +dom2 : fifth.example

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

domainlist dom1 = !a.b
domainlist dom2 = +dom1 : *.b

The second list specifies “either in the dom1 list or *.b”. The first list specifies just “not a.b”, so the
domain x.y matches it. That means it matches the second list as well. The effect is not the same as

domainlist dom2 = !a.b : *.b

where x.y does not match. It’s best to avoid negation altogether in referenced lists if you can.

Some named list definitions may contain sensitive data, for example, passwords for accessing data-
bases. To stop non-admin users from using the -bP command line option to read these values, you can
precede the definition with the word “hide”. For example:

hide domainlist filter_for_domains = ldap;PASS=secret ldap::/// ...

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

98 Domain, host, and address lists (10)

domains = +local_domains

on several of your routers or in several ACL statements, the actual test is done only for the first one.
However, the caching works only if there are no expansions within the list itself or any sublists that it
references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default configuration is set up like this.

10.2.5 Named lists compared with macros

At first sight, named lists might seem to be no different from macros in the configuration file.
However, macros are just textual substitutions. If you write

ALIST = host1 : host2
auth_advertise_hosts = !ALIST

it probably won’t do what you want, because that is exactly the same as

auth_advertise_hosts = !host1 : host2

Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = host1 : host2
auth_advertise_hosts = ! +alist

the negation applies to the whole list, and so that is equivalent to

auth_advertise_hosts = !host1 : !host2

10.2.6 Named list caching

While processing a message, Exim caches the result of checking a named list if it is sure that the list
is the same each time. In practice, this means that the cache operates only if the list contains no $
characters, which guarantees that it will not change when it is expanded. Sometimes, however, you
may have an expanded list that you know will be the same each time within a given message. For
example:

domainlist special_domains = \
 ${lookup{$sender_host_address}cdb{/some/file}}

This provides a list of domains that depends only on the sending host’s IP address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending _cache to domainlist you can tell Exim to go ahead and cache the result anyway.
For example:

domainlist_cache special_domains = ${lookup{...

If you do this, you should be absolutely sure that caching is going to do the right thing in all cases.
When in doubt, leave it out.

10.3 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

• If a pattern consists of a single @ character, it matches the local host name, as set by the primary_
hostname option (or defaulted). This makes it possible to use the same configuration file on
several different hosts that differ only in their names.

The value for a match will be the primary host name.

99 Domain, host, and address lists (10)

• If a pattern consists of the string @[] it matches an IP address enclosed in square brackets (as in an
email address that contains a domain literal), but only if that IP address is recognized as local for
email routing purposes. The local_interfaces and extra_local_interfaces options can be used to
control which of a host’s several IP addresses are treated as local. In today’s Internet, the use of
domain literals is controversial; see the allow_domain_literals main option.

The value for a match will be the string @[].

• If a pattern consists of the string @mx_any it matches any domain that has an MX record pointing
to the local host or to any host that is listed in hosts_treat_as_local. The items @mx_primary
and @mx_secondary are similar, except that the first matches only when a primary MX target is
the local host, and the second only when no primary MX target is the local host, but a secondary
MX target is. “Primary” means an MX record with the lowest preference value – there may of
course be more than one of them.

The MX lookup that takes place when matching a pattern of this type is performed with the
resolver options for widening names turned off. Thus, for example, a single-component domain
will not be expanded by adding the resolver’s default domain. See the qualify_single and search_
parents options of the dnslookup router for a discussion of domain widening.

Sometimes you may want to ignore certain IP addresses when using one of these patterns. You can
specify this by following the pattern with /ignore=<ip list>, where <ip list> is a list of IP
addresses. These addresses are ignored when processing the pattern (compare the ignore_target_
hosts option on a router). For example:

domains = @mx_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host’s IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network specifications and it may also contain negative items.

Because the list of IP addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

domains = @mx_any/ignore=<;127.0.0.1;0.0.0.0 : \
 an.other.domain : ...

so that the sublist uses semicolons for delimiters. When IPv6 addresses are involved, it is easiest to
change the delimiter for the main list as well:

domains = <? @mx_any/ignore=<;127.0.0.1;::1 ? \
 an.other.domain ? ...

The value for a match will be the list element string (starting @mx_).

• If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of “*” in domain lists differs from its use in partial
matching lookups. In a domain list, the character following the asterisk need not be a dot, whereas
partial matching works only in terms of dot-separated components. For example, a domain list item
such as *key.ex matches donkey.ex as well as cipher.key.ex.

The value for a match will be the list element string (starting with the asterisk). Additionally, $0
will be set to the matched string and $1 to the variable portion which the asterisk matched.

• If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as part
of the regular expression. Email domains are case-independent, so this regular expression match is
by default case-independent, but you can make it case-dependent by starting it with (?-i).
References to descriptions of the syntax of regular expressions are given in chapter 8.

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the special \N sequence (see

100 Domain, host, and address lists (10)

chapter 11) to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

The value for a match will be the list element string (starting with the circumflex). Additionally, $0
will be set to the string matching the regular expression, and $1 (onwards) to any submatches
identified by parentheses.

• If a pattern starts with the name of a single-key lookup type followed by a semicolon (for example,
“dbm;” or “lsearch;”), the remainder of the pattern must be a filename in a suitable format for the
lookup type. For example, for “cdb;” it must be an absolute path:

domains = cdb;/etc/mail/local_domains.cdb

The appropriate type of lookup is done on the file using the domain name as the key. In most cases,
the value resulting from the lookup is not used; Exim is interested only in whether or not the key is
present in the file. However, when a lookup is used for the domains option on a router or a
domains condition in an ACL statement, the value is preserved in the $domain_data variable and
can be referred to in other router options or other statements in the same ACL. The value will be
untainted.

Note: If the data result of the lookup (as opposed to the key) is empty, then this empty value is
stored in $domain_data. The option to return the key for the lookup, as the value, may be what is
wanted.

• Any of the single-key lookup type names may be preceded by partial<n>-, where the <n> is
optional, for example,

domains = partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this works is given in
section 9.7.

• Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a useful
feature when using a domain list to select particular domains (because any domain would match),
but it might have value if the result of the lookup is being used via the $domain_data expansion
variable.

• If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, “nisplus;” or “ldap;”), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter 9. For example:

hold_domains = mysql;select domain from holdlist \
 where domain = '${quote_mysql:$domain}';

In most cases, the value resulting from the lookup is not used (so for an SQL query, for example, it
doesn’t matter what field you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for the domains option on a router, the value is preserved in the
$domain_data variable and can be referred to in other options. The value will be untainted.

• If the pattern starts with the name of a lookup type of either kind (single-key or query-style) it may
be followed by a comma and options, The options are lookup-type specific and consist of a
comma-separated list. Each item starts with a tag and and equals "=" sign.

• If none of the above cases apply, a caseless textual comparison is made between the pattern and the
domain.

The value for a match will be the list element string. Note that this is commonly untainted
(depending on the way the list was created). Specifically, explicit text in the configuration file in
not tainted. This is a useful way of obtaining an untainted equivalent to the domain, for later
operations.

However if the list (including one-element lists) is created by expanding a variable containing
tainted data, it is tainted and so will the match value be.

Here is an example that uses several different kinds of pattern:

101 Domain, host, and address lists (10)

domainlist funny_domains = \
 @ : \
 lib.unseen.edu : \
 *.foundation.fict.example : \
 \N^[1-2]\d{3}\.fict\.example$\N : \
 partial-dbm;/opt/data/penguin/book : \
 nis;domains.byname : \
 nisplus;[name=$domain,status=local],domains.org_dir

There are obvious processing trade-offs among the various matching modes. Using an asterisk is
faster than a regular expression, and listing a few names explicitly probably is too. The use of a file or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.4 Host lists

Host lists are used to control what remote hosts are allowed to do. For example, some hosts may be
allowed to use the local host as a relay, and some may be permitted to use the SMTP ETRN
command. Hosts can be identified in two different ways, by name or by IP address. In a host list,
some types of pattern are matched to a host name, and some are matched to an IP address. You need
to be particularly careful with this when single-key lookups are involved, to ensure that the right value
is being used as the key.

10.4.1 Special host list patterns

If a host list item is the empty string, it matches only when no remote host is involved. This is the case
when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The special pattern “*” in a host list matches any host or no host. Neither the IP address nor the name
is actually inspected.

10.4.2 Host list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appears in the IPv6 host as ::ffff:<v4address>. When such an address is tested against a
host list, it is converted into a traditional IPv4 address first. (Not all operating systems accept IPv4
calls on IPv6 sockets, as there have been some security concerns.)

The following types of pattern in a host list check the remote host by inspecting its IP address:

• If the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup of
any kind), Exim calls the operating system function to find the associated IP address(es). Exim
uses the newer getipnodebyname() function when available, otherwise gethostbyname(). This typi-
cally causes a forward DNS lookup of the name. The result is compared with the IP address of the
subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a “defer”
response, usually leading to a temporary SMTP error code. If no IP address can be found for the
host name, what happens is described in section 10.4.5 below.

• If the pattern is “@”, the primary host name is substituted and used as a domain name, as just
described.

• If the pattern is an IP address, it is matched against the IP address of the subject host. IPv4
addresses are given in the normal “dotted-quad” notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. IPv6 addresses are recognized even when Exim is compiled
without IPv6 support. This means that if they appear in a host list on an IPv4-only host, Exim will
not treat them as host names. They are just addresses that can never match a client host.

102 Domain, host, and address lists (10)

• If the pattern is “@[]”, it matches the IP address of any IP interface on the local host. For example,
if the local host is an IPv4 host with one interface address 10.45.23.56, these two ACL statements
have the same effect:

accept hosts = 127.0.0.1 : 10.45.23.56
accept hosts = @[]

• If the pattern is an IP address followed by a slash and a mask length, for example

10.11.42.0/24

, it is matched against the IP address of the subject host under the given mask. This allows an entire
network of hosts to be included (or excluded) by a single item. The mask uses CIDR notation; it
specifies the number of address bits that must match, starting from the most significant end of the
address.

Note: The mask is not a count of addresses, nor is it the high number of a range of addresses. It is
the number of bits in the network portion of the address. The above example specifies a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192.168.23.236/31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address is the same as no mask at all; just a single address matches.

Here is another example which shows an IPv4 and an IPv6 network:

recipient_unqualified_hosts = 192.168.0.0/16: \
 3ffe::ffff::836f::::/48

The doubling of list separator characters applies only when these items appear inline in a host list.
It is not required when indirecting via a file. For example:

recipient_unqualified_hosts = /opt/exim/unqualnets

could make use of a file containing

172.16.0.0/12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing IPv6 addresses inline, it is
usually more convenient to use the facility for changing separator characters. This list contains the
same two networks:

recipient_unqualified_hosts = <; 172.16.0.0/12; \
 3ffe:ffff:836f::/48

The separator is changed to semicolon by the leading “<;” at the start of the list.

10.4.3 Host list patterns for single-key lookups by host address

When a host is to be identified by a single-key lookup of its complete IP address, the pattern takes this
form:

net-<single-key-search-type>;<search-data>

For example:

hosts_lookup = net-cdb;/hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. IPv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator in lsearch files. [Colons can in fact be used in keys in lsearch files by quoting the
keys, but this is a facility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked IP addresses, using patterns of this form:

net<number>-<single-key-search-type>;<search-data>

103 Domain, host, and address lists (10)

For example:

net24-dbm;/networks.db

The IP address of the subject host is masked using <number> as the mask length. A textual string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For
example, if the host’s IP address is 192.168.34.6, the key that is looked up for the above example is
“192.168.34.0/24”.

When an IPv6 address is converted to a string, dots are normally used instead of colons, so that keys
in lsearch files need not contain colons (which terminate lsearch keys). This was implemented some
time before the ability to quote keys was made available in lsearch files. However, the more recently
implemented iplsearch files do require colons in IPv6 keys (notated using the quoting facility) so as to
distinguish them from IPv4 keys. For this reason, when the lookup type is iplsearch, IPv6 addresses
are converted using colons and not dots. In all cases except IPv4-mapped IPv6, full, unabbreviated
IPv6 addresses are always used. The latter are converted to IPv4 addresses, in dotted-quad form.

Ideally, it would be nice to tidy up this anomalous situation by changing to colons in all cases, given
that quoting is now available for lsearch. However, this would be an incompatible change that might
break some existing configurations.

Warning: Specifying net32- (for an IPv4 address) or net128- (for an IPv6 address) is not the same as
specifying just net- without a number. In the former case the key strings include the mask value,
whereas in the latter case the IP address is used on its own.

10.4.4 Host list patterns that match by host name

There are several types of pattern that require Exim to know the name of the remote host. These are
either wildcard patterns or lookups by name. (If a complete hostname is given without any
wildcarding, it is used to find an IP address to match against, as described in section 10.4.2 above.)

If the remote host name is not already known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS data for their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when configuring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from IP addresses, matching against host names
is not as common as matching against IP addresses.

By default, in order to find a host name, Exim first does a reverse DNS lookup; if no name is found in
the DNS, the system function (gethostbyaddr() or getipnodebyaddr() if available) is tried. The order
in which these lookups are done can be changed by setting the host_lookup_order option. For
security, once Exim has found one or more names, it looks up the IP addresses for these names and
compares them with the IP address that it started with. Only those names whose IP addresses match
are accepted. Any other names are discarded. If no names are left, Exim behaves as if the host name
cannot be found. In the most common case there is only one name and one IP address.

There are some options that control what happens if a host name cannot be found. These are
described in section 10.4.5 below.

As a result of aliasing, hosts may have more than one name. When processing any of the following
types of pattern, all the host’s names are checked:

• If a pattern starts with “*” the remainder of the item must match the end of the host name. For
example, *.b.c matches all hosts whose names end in .b.c. This special simple form is provided
because this is a very common requirement. Other kinds of wildcarding require the use of a regular
expression.

• If the item starts with “^” it is taken to be a regular expression which is matched against the host
name. Host names are case-independent, so this regular expression match is by default case-
independent, but you can make it case-dependent by starting it with (?-i). References to descrip-
tions of the syntax of regular expressions are given in chapter 8. For example,

104 Domain, host, and address lists (10)

^(a|b)\.c\.d$

is a regular expression that matches either of the two hosts a.c.d or b.c.d. When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The simplest way to do this is to use \N to mark that
part of the string as non-expandable. For example:

sender_unqualified_hosts = \N^(a|b)\.c\.d$\N :

Warning: If you want to match a complete host name, you must include the $ terminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start of
the host name is all that is required.

10.4.5 Behaviour when an IP address or name cannot be found

While processing a host list, Exim may need to look up an IP address from a name (see section
10.4.2), or it may need to look up a host name from an IP address (see section 10.4.4). In either case,
the behaviour when it fails to find the information it is seeking is the same.

Note: This section applies to permanent lookup failures. It does not apply to temporary DNS errors,
whose handling is described in the next section.

Exim parses a host list from left to right. If it encounters a permanent lookup failure in any item in the
host list before it has found a match, Exim treats it as a failure and the default behavior is as if the
host does not match the list. This may not always be what you want to happen. To change Exim’s
behaviour, the special items +include_unknown or +ignore_unknown may appear in the list
(at top level – they are not recognized in an indirected file).

• If any item that follows +include_unknown requires information that cannot found, Exim
behaves as if the host does match the list. For example,

host_reject_connection = +include_unknown:*.enemy.ex

rejects connections from any host whose name matches *.enemy.ex, and also any hosts whose
name it cannot find.

• If any item that follows +ignore_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignore_unknown : friend.example : \
 192.168.4.5

accepts from any host whose name is friend.example and from 192.168.4.5, whether or not its host
name can be found. Without +ignore_unknown, if no name can be found for 192.168.4.5, it is
rejected.

Both +include_unknown and +ignore_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of the list.

10.4.6 Mixing wildcarded host names and addresses in host lists

This section explains the host/ip processing logic with the same concepts as the previous section, but
specifically addresses what happens when a wildcarded hostname is one of the items in the hostlist.

• If you have name lookups or wildcarded host names and IP addresses in the same host list, you
should normally put the IP addresses first. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend.example

The reason you normally would order it this way lies in the left-to-right way that Exim processes
lists. It can test IP addresses without doing any DNS lookups, but when it reaches an item that
requires a host name, it fails if it cannot find a host name to compare with the pattern. If the above
list is given in the opposite order, the accept statement fails for a host whose name cannot be
found, even if its IP address is 10.9.8.7.

105 Domain, host, and address lists (10)

• If you really do want to do the name check first, and still recognize the IP address, you can rewrite
the ACL like this:

accept hosts = *.friend.example
accept hosts = 10.9.8.7

If the first accept fails, Exim goes on to try the second one. See chapter 44 for details of ACLs.
Alternatively, you can use +ignore_unknown, which was discussed in depth in the first
example in this section.

10.4.7 Temporary DNS errors when looking up host information

A temporary DNS lookup failure normally causes a defer action (except when dns_again_means_
nonexist converts it into a permanent error). However, host lists can include +ignore_defer and
+include_defer, analogous to +ignore_unknown and +include_unknown, as described
in the previous section. These options should be used with care, probably only in non-critical host
lists such as whitelists.

10.4.8 Host list patterns for single-key lookups by host name

If a pattern is of the form

<single-key-search-type>;<search-data>

for example

dbm;/host/accept/list

a single-key lookup is performed, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual data that is looked up is not used.

Reminder: With this kind of pattern, you must have host names as keys in the file, not IP addresses.
If you want to do lookups based on IP addresses, you must precede the search type with “net-” (see
section 10.4.3). There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the same file.

10.4.9 Host list patterns for query-style lookups

If a pattern is of the form

<query-style-search-type>;<query>

the query is obeyed, and if it succeeds, the host matches the item. The actual data that is looked up is
not used. The variables $sender_host_address and $sender_host_name can be used in the query. For
example:

hosts_lookup = pgsql;\
 select ip from hostlist where ip='$sender_host_address'

The value of $sender_host_address for an IPv6 address contains colons. You can use the sg expansion
item to change this if you need to. If you want to use masked IP addresses in database queries, you
can use the mask expansion operator.

If the query contains a reference to $sender_host_name, Exim automatically looks up the host name if
it has not already done so. (See section 10.4.4 for comments on finding host names.)

Historical note: prior to release 4.30, Exim would always attempt to find a host name before running
the query, unless the search type was preceded by net-. This is no longer the case. For backwards
compatibility, net- is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookups, net- is important. See section 10.4.3.)

10.5 Address lists

Address lists contain patterns that are matched against mail addresses. There is one special case to be
considered: the sender address of a bounce message is always empty. You can test for this by provid-

106 Domain, host, and address lists (10)

ing an empty item in an address list. For example, you can set up a router to process bounce messages
by using this option setting:

senders = :

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can also be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds when $sender_address is empty.

Non-empty items in an address list can be straightforward email addresses. For example:

senders = jbc@askone.example : hs@anacreon.example

A certain amount of wildcarding is permitted. If a pattern contains an @ character, but is not a regular
expression and does not begin with a semicolon-terminated lookup type (described below), the local
part of the subject address is compared with the local part of the pattern, which may start with an
asterisk. If the local parts match, the domain is checked in exactly the same way as for a pattern in a
domain list. For example, the domain can be wildcarded, refer to a named list, or be a lookup:

deny senders = *@*.spamming.site:\
 *@+hostile_domains:\
 bozo@partial-lsearch;/list/of/dodgy/sites:\
 *@dbm;/bad/domains.db

If a local part that begins with an exclamation mark is required, it has to be specified using a regular
expression, because otherwise the exclamation mark is treated as a sign of negation, as is standard in
lists.

If a non-empty pattern that is not a regular expression or a lookup does not contain an @ character, it
is matched against the domain part of the subject address. The only two formats that are recognized
this way are a literal domain, or a domain pattern that starts with *. In both these cases, the effect is
the same as if *@ preceded the pattern. For example:

deny senders = enemy.domain : *.enemy.domain

The following kinds of more complicated address list pattern can match any address, including the
empty address that is characteristic of bounce message senders:

• If (after expansion) a pattern starts with “^”, a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash and
dollar characters are not misinterpreted as part of the string expansion. The simplest way to do this
is to use \N to mark that part of the string as non-expandable. For example:

deny senders = \N^.*this.*@example\.com$\N : \
 \N^\d{8}.+@spamhaus.example$\N : ...

The \N sequences are removed by the expansion, so these items do indeed start with “^” by the
time they are being interpreted as address patterns.

• Complete addresses can be looked up by using a pattern that starts with a lookup type terminated
by a semicolon, followed by the data for the lookup. For example:

deny senders = cdb;/etc/blocked.senders : \
 mysql;select address from blocked where \
 address='${quote_mysql:$sender_address}'

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim uses
the complete address as the key. However, empty keys are not supported for single-key lookups, so
a match against the empty address always fails. This restriction does not apply to query-style
lookups.

Partial matching for single-key lookups (section 9.7) cannot be used, and is ignored if specified,
with an entry being written to the panic log. However, you can configure lookup defaults, as
described in section 9.6, but this is useful only for the “*@” type of default. For example, with this
lookup:

accept senders = lsearch*@;/some/file

107 Domain, host, and address lists (10)

the file could contains lines like this:

user1@domain1.example
*@domain2.example

and for the sender address nimrod@jaeger.example, the sequence of keys that are tried is:

nimrod@jaeger.example
*@jaeger.example
*

Warning 1: Do not include a line keyed by “*” in the file, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

deny recipients = dbm*@;/some/file
deny recipients = *@dbm;/some/file

The first does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a bullet
point below.

The following kinds of address list pattern can match only non-empty addresses. If the subject
address is empty, a match against any of these pattern types always fails.

• If a pattern starts with “@@” followed by a single-key lookup item (for example,
@@lsearch;/some/file), the address that is being checked is split into a local part and a
domain. The domain is looked up in the file. If it is not found, there is no match. If it is found, the
data that is looked up from the file is treated as a colon-separated list of local part patterns, each of
which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by “*” (see
section 9.6). The local part patterns that are looked up can be regular expressions or begin with
“*”, or even be further lookups. They may also be independently negated. For example, with

deny senders = @@dbm;/etc/reject-by-domain

the data from which the DBM file is built could contain lines like

baddomain.com: !postmaster : *

to reject all senders except postmaster from that domain.

If a local part that actually begins with an exclamation mark is required, it has to be specified using
a regular expression. In lsearch files, an entry may be split over several lines by indenting the
second and subsequent lines, but the separating colon must still be included at line breaks. White
space surrounding the colons is ignored. For example:

aol.com: spammer1 : spammer2 : ^[0-9]+$:
 spammer3 : spammer4

As in all colon-separated lists in Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entries like

aol.com: spammer1 : spammer 2 : >*
xyz.com: spammer3 : >*
*: ^\d{8}$

in a file that was searched with @@dbm*, to specify a match for 8-digit local parts for all
domains, in addition to the specific local parts listed for each domain. Of course, using this feature
costs another lookup each time a chain is followed, but the effort needed to maintain the data is
reduced.

108 Domain, host, and address lists (10)

It is possible to construct loops using this facility, and in order to catch them, the chains may be no
more than fifty items long.

• The @@<lookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return a single list of local parts.

Warning: There is an important difference between the address list items in these two examples:

senders = +my_list
senders = *@+my_list

In the first one, my_list is a named address list, whereas in the second example it is a named
domain list.

10.5.1 Case of letters in address lists

Domains in email addresses are always handled caselessly, but for local parts case may be significant
on some systems (see caseful_local_part for how Exim deals with this when routing addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAs) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always lowercased before matching it to an address list. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the data in the address list itself, in files included as plain filenames, and in any file that is
looked up using the “@@” mechanism, can be in any case. However, the keys in files that are looked
up by a search type other than lsearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in an address list is the string
“+caseful”, the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remains in lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after “+caseful” has
been seen.

10.6 Local part lists

These behave in the same way as domain and host lists, with the following changes:

Case-sensitivity in local part lists is handled in the same way as for address lists, as just described.
The “+caseful” item can be used if required. In a setting of the local_parts option in a router with
caseful_local_part set false, the subject is lowercased and the matching is initially case-insensitive.
In this case, “+caseful” will restore case-sensitive matching in the local part list, but not elsewhere in
the router. If caseful_local_part is set true in a router, matching in the local_parts option is case-
sensitive from the start.

If a local part list is indirected to a file (see section 10.2.2), comments are handled in the same way as
address lists – they are recognized only if the # is preceded by white space or the start of the line.
Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host (@, @[], @mx_any, @mx_primary, and @mx_secondary) are not
recognized. Refer to section 10.3 for details of the other available item types.

109 Domain, host, and address lists (10)

11. String expansions

Many strings in Exim’s runtime configuration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar specifies the start of a portion of the string that is
interpreted and replaced as described below in section 11.5 onwards. Backslash is used as an escape
character, as described in the following section.

If any porttion of the result string is tainted, the entire result is.

Whether a string is expanded depends upon the context. Usually this is solely dependent upon the
option for which a value is sought; in this documentation, options for which string expansion is
performed are marked with † after the data type. ACL rules always expand strings. A couple of
expansion conditions do not expand some of the brace-delimited branches, for security reasons, and
expansion of data deriving from the sender (“tainted data”) is not permitted (including acessing a file
using a tainted name).

Common ways of obtaining untainted equivalents of variables with tainted values come down to using
the tainted value as a lookup key in a trusted database. This database could be the filesystem structure,
or the password file, or accessed via a DBMS. Specific methods are indexed under “de-tainting”.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including backslash itself. If the string appears in quotes in the configuration file, two backslashes are
required because the quotes themselves cause interpretation of backslashes when the string is read in
(see section 6.17).

A portion of the string can specified as non-expandable by placing it between two occurrences of \N.
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \N^\d{8}[a-z]@some\.site\.example$\N

On encountering the first \N, the expander copies subsequent characters without interpretation until it
reaches the next \N or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters “n”, “r”, or “t” in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by “x” and up to two hexadecimal digits is a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up
strings that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with the -be option. This takes the command argu-
ments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on configuration values
are set up, but since no message is being processed, variables such as $local_part have no value.
Nevertheless the -be option can be useful for checking out file and database lookups, and the use of
expansion operators such as sg, substr and nhash.

When reading lines from the standard input, macros can be defined and ACL variables can be set. For
example:

110 String expansions (11)

MY_MACRO = foo
set acl_m_myvar = bar

Such macros and variables can then be used in later input lines.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading files to which they do not have
access.

If you want to test expansions that include variables whose values are taken from a message, there are
two other options that can be used. The -bem option is like -be except that it is followed by a
filename. The file is read as a message before doing the test expansions. For example:

exim -bem /tmp/test.message '$h_subject:'

The -Mset option is used in conjunction with -be and is followed by an Exim message identifier. For
example:

exim -be -Mset 1GrA8W-0004WS-LQ '$recipients'

This loads the message from Exim’s spool before doing the test expansions, and is therefore restricted
to admin users.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative “true” and “false”
substrings, enclosed in brace characters (which are sometimes called “curly brackets”). Which of the
two strings is used depends on some condition that is evaluated as part of the expansion. If, instead of
a “false” substring, the word “fail” is used (not in braces), the entire string expansion fails in a way
that can be detected by the code that requested the expansion. This is called “forced expansion
failure”, and its consequences depend on the circumstances. In some cases it is no different from any
other expansion failure, but in others a different action may be taken. Such variations are mentioned
in the documentation of the option that is being expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve read-
ability. Warning: Within braces, white space is significant.

$<variable name> or ${<variable name>}
Substitute the contents of the named variable, for example:

$local_part
${domain}

The second form can be used to separate the name from subsequent alphanumeric characters. This
form (using braces) is available only for variables; it does not apply to message headers. The
names of the variables are given in section 11.9 below. If the name of a non-existent variable is
given, the expansion fails.

${<op>:<string>}
The string is first itself expanded, and then the operation specified by <op> is applied to it. For
example:

${lc:$local_part}

The string starts with the first character after the colon, which may be leading white space. A list
of operators is given in section 11.6 below. The operator notation is used for simple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

$bheader_<header name>: or $bh_<header name>:
This item inserts “basic” header lines. It is described with the header expansion item below.

111 String expansions (11)

${acl{<name>}{<arg>}...}
The name and zero to nine argument strings are first expanded separately. The expanded argu-
ments are assigned to the variables $acl_arg1 to $acl_arg9 in order. Any unused are made empty.
The variable $acl_narg is set to the number of arguments. The named ACL (see chapter 44) is
called and may use the variables; if another acl expansion is used the values are restored after it
returns. If the ACL sets a value using a "message =" modifier and returns accept or deny, the value
becomes the result of the expansion. If no message is set and the ACL returns accept or deny the
expansion result is an empty string. If the ACL returns defer the result is a forced-fail. Otherwise
the expansion fails.

${authresults{<authserv-id>}}
This item returns a string suitable for insertion as an Authentication-Results: header line. The
given <authserv-id> is included in the result; typically this will be a domain name identifying the
system performing the authentications. Methods that might be present in the result include:

none
iprev
auth
spf
dkim

Example use (as an ACL modifier):

add_header = :at_start:${authresults {$primary_hostname}}

This is safe even if no authentication results are available and would generally be placed in the
DATA ACL.

${certextract{<field>}{<certificate>}{<string2>}{<string3>}}
The <certificate> must be a variable of type certificate. The field name is expanded and used to
retrieve the relevant field from the certificate. Supported fields are:

version
serial_number
subject RFC4514 DN
issuer RFC4514 DN
notbefore time
notafter time
sig_algorithm
signature
subj_altname tagged list
ocsp_uri list
crl_uri list

If the field is found, <string2> is expanded, and replaces the whole item; otherwise <string3> is
used. During the expansion of <string2> the variable $value contains the value that has been
extracted. Afterwards, it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used.

Some field names take optional modifiers, appended and separated by commas.

The field selectors marked as "RFC4514" above output a Distinguished Name string which is not
quite parseable by Exim as a comma-separated tagged list (the exceptions being elements contain-
ing commas). RDN elements of a single type may be selected by a modifier of the type label; if so
the expansion result is a list (newline-separated by default). The separator may be changed by
another modifier of a right angle-bracket followed immediately by the new separator. Recognised
RDN type labels include "CN", "O", "OU" and "DC".

The field selectors marked as "time" above take an optional modifier of "int" for which the result
is the number of seconds since epoch. Otherwise the result is a human-readable string in the
timezone selected by the main "timezone" option.

112 String expansions (11)

The field selectors marked as "list" above return a list, newline-separated by default, (embedded
separator characters in elements are doubled). The separator may be changed by a modifier of a
right angle-bracket followed immediately by the new separator.

The field selectors marked as "tagged" above prefix each list element with a type string and an
equals sign. Elements of only one type may be selected by a modifier which is one of "dns", "uri"
or "mail"; if so the element tags are omitted.

If not otherwise noted field values are presented in human-readable form.

${dlfunc{<file>}{<function>}{<arg>}{<arg>}...}
This expansion dynamically loads and then calls a locally-written C function. This functionality is
available only if Exim is compiled with

EXPAND_DLFUNC=yes

set in Local/Makefile. Once loaded, Exim remembers the dynamically loaded object so that it
doesn’t reload the same object file in the same Exim process (but of course Exim does start new
processes frequently).

There may be from zero to eight arguments to the function.

When compiling a local function that is to be called in this way, first DLFUNC_IMPL should be
defined, and second local_scan.h should be included. The Exim variables and functions that are
defined by that API are also available for dynamically loaded functions. The function itself must
have the following type:

int dlfunction(uschar **yield, int argc, uschar *argv[])

Where uschar is a typedef for unsigned char in local_scan.h. The function should return
one of the following values:

OK: Success. The string that is placed in the variable yield is put into the expanded string that is
being built.

FAIL: A non-forced expansion failure occurs, with the error message taken from yield, if it is set.

FAIL_FORCED: A forced expansion failure occurs, with the error message taken from yield if it is
set.

ERROR: Same as FAIL, except that a panic log entry is written.

When compiling a function that is to be used in this way with gcc, you need to add -shared to the
gcc command. Also, in the Exim build-time configuration, you must add -export-dynamic to
EXTRALIBS.

${env{<key>}{<string1>}{<string2>}}
The key is first expanded separately, and leading and trailing white space removed. This is then
searched for as a name in the environment. If a variable is found then its value is placed in $value
and <string1> is expanded, otherwise <string2> is expanded.

Instead of {<string2>} the word “fail” (not in curly brackets) can appear, for example:

${env{USER}{$value} fail }

This forces an expansion failure (see section 11.4); {<string1>} must be present for “fail” to be
recognized.

If {<string2>} is omitted an empty string is substituted on search failure. If {<string1>} is omitted
the search result is substituted on search success.

The environment is adjusted by the keep_environment and add_environment main section
options.

${extract{<key>}{<string1>}{<string2>}{<string3>}}
The key and <string1> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not be empty and must not consist
entirely of digits. The expanded <string1> must be of the form:

113 String expansions (11)

<key1> = <value1> <key2> = <value2> ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section 6.17. The expanded <string1> is searched
for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwise <string3> is used. During the
expansion of <string2> the variable $value contains the value that has been extracted. Afterwards,
it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions are identical, and yield “2001”:

${extract{gid}{uid=1984 gid=2001}}
${extract{gid}{uid=1984 gid=2001}{$value}}

Instead of {<string3>} the word “fail” (not in curly brackets) can appear, for example:

${extract{Z}{A=... B=...}{$value} fail }

This forces an expansion failure (see section 11.4); {<string2>} must be present for “fail” to be
recognized.

${extract json{<key>}{<string1>}{<string2>}{<string3>}}
${extract jsons{<key>}{<string1>}{<string2>}{<string3>}}

The key and <string1> are first expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not be empty and must not consist
entirely of digits. The expanded <string1> must be of the form:

{ <"key1"> : <value1> , <"key2"> , <value2> ... }

The braces, commas and colons, and the quoting of the member name are required; the spaces are
optional. Matching of the key against the member names is done case-sensitively. For the “json”
variant, if a returned value is a JSON string, it retains its leading and trailing quotes. For the
“jsons” variant, which is intended for use with JSON strings, the leading and trailing quotes are
removed from the returned value.

The results of matching are handled as above.

${extract{<number>}{<separators>}{<string1>}{<string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored. This is what distinguishes this form of extract from the previous
kind. It behaves in the same way, except that, instead of extracting a named field, it extracts from
<string1> the field whose number is given as the first argument. You can use $value in <string2>
or fail instead of <string3> as before.

The fields in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. The first field is numbered one. If the number is negative, the
fields are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of fields in the string, the result is the expansion of <string3>, or the empty string if <string3> is
not provided. For example:

${extract{2}{:}{x:42:99:& Mailer::/bin/bash}}

yields “42”, and

${extract{-4}{:}{x:42:99:& Mailer::/bin/bash}}

yields “99”. Two successive separators mean that the field between them is empty (for example,
the fifth field above).

114 String expansions (11)

${extract json {<number>}}{<string1>}{<string2>}{<string3>}}
${extract jsons{<number>}}{<string1>}{<string2>}{<string3>}}

The <number> argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored.

Field selection and result handling is as above; there is no choice of field separator. For the “json”
variant, if a returned value is a JSON string, it retains its leading and trailing quotes. For the
“jsons” variant, which is intended for use with JSON strings, the leading and trailing quotes are
removed from the returned value.

${filter{<string>}{<condition>}}
After expansion, <string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way (6.21). For each item in this list, its value is placed in $item, and then
the condition is evaluated. Any modification of $value by this evaluation is discarded. If the
condition is true, $item is added to the output as an item in a new list; if the condition is false, the
item is discarded. The separator used for the output list is the same as the one used for the input,
but a separator setting is not included in the output. For example:

${filter{a:b:c}{!eq{$item}{b}}}

yields a:c. At the end of the expansion, the value of $item is restored to what it was before. See
also the map and reduce expansion items.

${hash{<string1>}{<string2>}{<string3>}}
This is a textual hashing function, and was the first to be implemented in early versions of Exim.
In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The first two strings, after expansion, must be numbers. Call them <m> and <n>. If you are using
fixed values for these numbers, that is, if <string1> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${hash_<n>_<m>:<string>}

The second number is optional (in both notations). If <n> is greater than or equal to the length of
the string, the expansion item returns the string. Otherwise it computes a new string of length <n>
by applying a hashing function to the string. The new string consists of characters taken from the
first <m> characters of the string

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQWRSTUVWXYZ0123456789

If <m> is not present the value 26 is used, so that only lower case letters appear. For example:

$hash{3}{monty}} yields jmg
$hash{5}{monty}} yields monty
$hash{4}{62}{monty python}} yields fbWx

$header_<header name>: or $h_<header name>:
$bheader_<header name>: or $bh_<header name>:
$lheader_<header name>: or $lh_<header name>:
$rheader_<header name>: or $rh_<header name>:

Substitute the contents of the named message header line, for example

$header_reply-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference between the four pairs of expansions is in the way the data in the header line is
interpreted.

• rheader gives the original “raw” content of the header line, with no processing at all, and
without the removal of leading and trailing white space.

• lheader gives a colon-separated list, one element per header when there are multiple headers
with a given name. Any embedded colon characters within an element are doubled, so normal

115 String expansions (11)

Exim list-processing facilities can be used. The terminating newline of each element is
removed; in other respects the content is “raw”.

• bheader removes leading and trailing white space, and then decodes base64 or quoted-printable
MIME “words” within the header text, but does no character set translation. If decoding of what
looks superficially like a MIME “word” fails, the raw string is returned. If decoding produces a
binary zero character, it is replaced by a question mark – this is what Exim does for binary zeros
that are actually received in header lines.

• header tries to translate the string as decoded by bheader to a standard character set. This is an
attempt to produce the same string as would be displayed on a user’s MUA. If translation fails,
the bheader string is returned. Translation is attempted only on operating systems that support
the iconv() function. This is indicated by the compile-time macro HAVE_ICONV in a system
Makefile or in Local/Makefile.

In a filter file, the target character set for header can be specified by a command of the following
form:

headers charset "UTF-8"

This command affects all references to $h_ (or $header_) expansions in subsequently obeyed filter
commands. In the absence of this command, the target character set in a filter is taken from the
setting of the headers_charset option in the runtime configuration. The value of this option
defaults to the value of HEADERS_CHARSET in Local/Makefile. The ultimate default is ISO-
8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by an ACL
statement or by a system filter. Header lines that are added to a particular copy of a message by a
router or transport are not accessible.

For incoming SMTP messages, no header lines are visible in ACLs that are obeyed before the data
phase completes, because the header structure is not set up until the message is received. They are
visible in DKIM, PRDR and DATA ACLs. Header lines that are added in a RCPT ACL (for
example) are saved until the message’s incoming header lines are available, at which point they are
added. When any of the above ACLs are running, however, header lines added by earlier ACLs are
visible.

Upper case and lower case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but this is not recommended, because you may
then forget it when it is needed. When white space terminates the header name, this white space is
included in the expanded string. If the message does not contain the given header, the expansion
item is replaced by an empty string. (See the def condition in section 11.7 for a means of testing
for the existence of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. Unless rheader is being used, leading and
trailing white space is removed from each header before concatenation, and a completely empty
header is ignored. A newline character is then inserted between non-empty headers, but there is no
newline at the very end. For the header and bheader expansion, for those headers that contain
lists of addresses, a comma is also inserted at the junctions between headers. This does not happen
for the rheader expansion.

When the headers are from an incoming message, the result of expanding any of these variables is
tainted.

${hmac{<hashname>}{<secret>}{<string>}}
This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as specified in RFC 2104. This differs from

116 String expansions (11)

${md5:secret_text...} or ${sha1:secret_text...} in that the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD5 or
SHA-1 alone. The hash name must expand to either md5 or sha1 at present. For example:

${hmac{md5}{somesecret}{$primary_hostname $tod_log}}

For the hostname mail.example.com and time 2002-10-17 11:30:59, this produces:

dd97e3ba5d1a61b5006108f8c8252953

As an example of how this might be used, you might put in the main part of an Exim
configuration:

SPAMSCAN_SECRET=cohgheeLei2thahw

In a router or a transport you could then have:

headers_add = \
 X-Spam-Scanned: ${primary_hostname} ${message_exim_id} \
 ${hmac{md5}{SPAMSCAN_SECRET}\
 {${primary_hostname},${message_exim_id},$h_message-id:}}

Then given a message, you can check where it was scanned by looking at the X-Spam-Scanned:
header line. If you know the secret, you can check that this header line is authentic by recomputing
the authentication code from the host name, message ID and the Message-id: header line. This can
be done using Exim’s -be option, or by other means, for example, by using the hmac_md5_hex()
function in Perl.

${if <condition> {<string1>}{<string2>}}
If <condition> is true, <string1> is expanded and replaces the whole item; otherwise <string2> is
used. The available conditions are described in section 11.7 below. For example:

${if eq {$local_part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is replaced
with nothing. Alternatively, the word “fail” may be present instead of the second string (without
any curly brackets). In this case, the expansion is forced to fail if the condition is not true (see
section 11.4).

If both strings are omitted, the result is the string true if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition = ${if >{$acl_m4}{3}{true}{false}}

you can use

condition = ${if >{$acl_m4}{3}}

${imapfolder{<foldername>}}
This item converts a (possibly multilevel, or with non-ASCII characters) folder specification to a
Maildir name for filesystem use. For information on internationalisation support see 60.2.

${length{<string1>}{<string2>}}
The length item is used to extract the initial portion of a string. Both strings are expanded, and the
first one must yield a number, <n>, say. If you are using a fixed value for the number, that is, if
<string1> does not change when expanded, you can use the simpler operator notation that avoids
some of the braces:

${length_<n>:<string>}

The result of this item is either the first <n> bytes or the whole of <string2>, whichever is the
shorter. Do not confuse length with strlen, which gives the length of a string. All measurement is
done in bytes and is not UTF-8 aware.

${listextract{<number>}{<string1>}{<string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from an optional leading
minus, and leading and trailing white space (which is ignored).

117 String expansions (11)

After expansion, <string1> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way (6.21).

The first field of the list is numbered one. If the number is negative, the fields are counted from the
end of the list, with the rightmost one numbered -1. The numbered element of the list is extracted
and placed in $value, then <string2> is expanded as the result.

If the modulus of the number is zero or greater than the number of fields in the string, the result is
the expansion of <string3>.

For example:

${listextract{2}{x:42:99}}

yields “42”, and

${listextract{-3}{<, x,42,99,& Mailer,,/bin/bash}{result: $value}}

yields “result: 42”.

If {<string3>} is omitted, an empty string is used for string3. If {<string2>} is also omitted, the
value that was extracted is used. You can use fail instead of {<string3>} as in a string extract.

${listquote{<separator>}{<string>}}
This item doubles any occurrence of the separator character in the given string. An empty string is
replaced with a single space. This converts the string into a safe form for use as a list element, in a
list using the given separator.

${lookup {<key>} <search type> {<file>} {<string1>} {<string2>}}
${lookup <search type> {<query>} {<string1>} {<string2>}}

The two forms of lookup item specify data lookups in files and databases, as discussed in chapter
9. The first form is used for single-key lookups, and the second is used for query-style lookups.
The <key>, <file>, and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a filter command, a retry or rewrite
rule, a routing rule for the manualroute router, or any other place where white space is significant,
the lookup item must be enclosed in double quotes. The use of data lookups in users’ filter files
may be locked out by the system administrator.

If the lookup succeeds, <string1> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up a default value when the original lookup fails.

If a nested lookup is used as part of <string1>, $value contains the data for the outer lookup while
the parameters of the second lookup are expanded, and also while <string2> of the second lookup
is expanded, should the second lookup fail. Instead of {<string2>} the word “fail” can appear, and
in this case, if the lookup fails, the entire expansion is forced to fail (see section 11.4). If both
{<string1>} and {<string2>} are omitted, the result is the looked up value in the case of a
successful lookup, and nothing in the case of failure.

For single-key lookups, the string “partial” is permitted to precede the search type in order to do
partial matching, and * or *@ may follow a search type to request default lookups if the key does
not match (see sections 9.6 and 9.7 for details).

If a partial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster alias in the conventional alias file:

${lookup {postmaster} lsearch {/etc/aliases} {$value}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

118 String expansions (11)

${lookup nisplus {[name=$local_part],passwd.org_dir:gcos} \
 {$value}fail}

${map{<string1>}{<string2>}}
After expansion, <string1> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way (6.21). For each item in this list, its value is place in $item, and then
<string2> is expanded and added to the output as an item in a new list. The separator used for the
output list is the same as the one used for the input, but a separator setting is not included in the
output. For example:

${map{a:b:c}{[$item]}} ${map{<- x-y-z}{($item)}}

expands to [a]:[b]:[c] (x)-(y)-(z). At the end of the expansion, the value of $item is
restored to what it was before. See also the filter and reduce expansion items.

${nhash{<string1>}{<string2>}{<string3>}}
The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <string1> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${nhash_<n>_<m>:<string>}

The second number is optional (in both notations). If there is only one number, the result is a
number in the range 0–<n>-1. Otherwise, the string is processed by a div/mod hash function that
returns two numbers, separated by a slash, in the ranges 0 to <n>-1 and 0 to <m>-1, respectively.
For example,

${nhash{8}{64}{supercalifragilisticexpialidocious}}

returns the string “6/33”.

${perl{<subroutine>}{<arg>}{<arg>}...}
This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are first separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number per-
mitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the entire expansion is forced to fail, in the same way as an explicit “fail” on a
lookup item does (see section 11.4). Whatever you return is evaluated in a scalar context, thus the
return value is a scalar. For example, if you return a Perl vector, the return value is the size of the
vector, not its contents.

If the subroutine exits by calling Perl’s die function, the expansion fails with the error message
that was passed to die. More details of the embedded Perl facility are given in chapter 12.

The redirect router has an option called forbid_filter_perl which locks out the use of this expan-
sion item in filter files.

${prvs{<address>}{<secret>}{<keynumber>}}
The first argument is a complete email address and the second is secret keystring. The third
argument, specifying a key number, is optional. If absent, it defaults to 0. The result of the
expansion is a prvs-signed email address, to be typically used with the return_path option on an
smtp transport as part of a bounce address tag validation (BATV) scheme. For more discussion and
an example, see section 44.27.

${prvscheck{<address>}{<secret>}{<string>}}
This expansion item is the complement of the prvs item. It is used for checking prvs-signed
addresses. If the expansion of the first argument does not yield a syntactically valid prvs-signed
address, the whole item expands to the empty string. When the first argument does expand to a
syntactically valid prvs-signed address, the second argument is expanded, with the prvs-decoded
version of the address and the key number extracted from the address in the variables $prvscheck_
address and $prvscheck_keynum, respectively.

119 String expansions (11)

These two variables can be used in the expansion of the second argument to retrieve the secret.
The validity of the prvs-signed address is then checked against the secret. The result is stored in
the variable $prvscheck_result, which is empty for failure or “1” for success.

The third argument is optional; if it is missing, it defaults to an empty string. This argument is now
expanded. If the result is an empty string, the result of the expansion is the decoded version of the
address. This is the case whether or not the signature was valid. Otherwise, the result of the
expansion is the expansion of the third argument.

All three variables can be used in the expansion of the third argument. However, once the expan-
sion is complete, only $prvscheck_result remains set. For more discussion and an example, see
section 44.27.

${readfile{<file name>}{<eol string>}}
The filename and end-of-line (eol) string are first expanded separately. The file is then read, and its
contents replace the entire item. All newline characters in the file are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of the file. If you want this, you must wrap the item in an expand operator. If the file
cannot be read, the string expansion fails.

The redirect router has an option called forbid_filter_readfile which locks out the use of this
expansion item in filter files.

${readsocket{<name>}{<request>}{<options>}{<eol string>}{<fail string>}}
This item inserts data from a Unix domain or TCP socket into the expanded string. The minimal
way of using it uses just two arguments, as in these examples:

${readsocket{/socket/name}{request string}}
${readsocket{inet:some.host:1234}{request string}}

For a Unix domain socket, the first substring must be the path to the socket. For an Internet socket,
the first substring must contain inet: followed by a host name or IP address, followed by a colon
and a port, which can be a number or the name of a TCP port in /etc/services. An IP address may
optionally be enclosed in square brackets. This is best for IPv6 addresses. For example:

${readsocket{inet:[::1]:1234}{request string}}

Only a single host name may be given, but if looking it up yields more than one IP address, they
are each tried in turn until a connection is made. For both kinds of socket, Exim makes a connec-
tion, writes the request string (unless it is an empty string; no terminating NUL is ever sent) and
reads from the socket until an end-of-file is read. A timeout of 5 seconds is applied. Additional,
optional arguments extend what can be done. Firstly, you can vary the timeout. For example:

${readsocket{/socket/name}{request string}{3s}}

The third argument is a list of options, of which the first element is the timeout and must be
present if any options are given. Further elements are options of form name=value. Example:

${readsocket{/socket/name}{request string}{3s:shutdown=no}}

The following option names are recognised:

• cache Defines if the result data can be cached for use by a later identical request in the same
process. Values are “yes” or “no” (the default). If not, all cached results for this connection
specification will be invalidated.

• shutdown Defines whether or not a write-shutdown is done on the connection after sending the
request. Values are “yes” (the default) or “no” (preferred, eg. by some webservers).

• sni Controls the use of Server Name Identification on the connection. Any nonempty value will
be the SNI sent; TLS will be forced.

• tls Controls the use of TLS on the connection. Values are “yes” or “no” (the default). If it is
enabled, a shutdown as described above is never done.

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way as for readfile (see above). This example turns them into spaces:

120 String expansions (11)

${readsocket{inet:127.0.0.1:3294}{request string}{3s}{ }}

As with all expansions, the substrings are expanded before the processing happens. Errors in these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

• Failure to create a socket file descriptor;

• Failure to connect the socket;

• Failure to write the request string;

• Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fifth sub-
string, it is expanded and used when any of the above errors occurs. For example:

${readsocket{/socket/name}{request string}{3s}{\n}\
 {socket failure}}

You can test for the existence of a Unix domain socket by wrapping this expansion in ${if
exists, but there is a race condition between that test and the actual opening of the socket, so it
is safer to use the fifth argument if you want to be absolutely sure of avoiding an expansion error
for a non-existent Unix domain socket, or a failure to connect to an Internet socket.

The redirect router has an option called forbid_filter_readsocket which locks out the use of this
expansion item in filter files.

${reduce{<string1>}{<string2>}{<string3>}}
This operation reduces a list to a single, scalar string. After expansion, <string1> is interpreted as a
list, colon-separated by default, but the separator can be changed in the usual way (6.21). Then
<string2> is expanded and assigned to the $value variable. After this, each item in the <string1>
list is assigned to $item, in turn, and <string3> is expanded for each of them. The result of that
expansion is assigned to $value before the next iteration. When the end of the list is reached, the
final value of $value is added to the expansion output. The reduce expansion item can be used in a
number of ways. For example, to add up a list of numbers:

${reduce {<, 1,2,3}{0}{${eval:$value+$item}}}

The result of that expansion would be 6. The maximum of a list of numbers can be found:

${reduce {3:0:9:4:6}{0}{${if >{$item}{$value}{$item}{$value}}}}

At the end of a reduce expansion, the values of $item and $value are restored to what they were
before. See also the filter and map expansion items.

$rheader_<header name>: or $rh_<header name>:
This item inserts “raw” header lines. It is described with the header expansion item in section 11.5
above.

${run<options> {<command string>}{<string1>}{<string2>}}
This item runs an external command, as a subprocess. One option is supported after the word run,
comma-separated and without whitespace.

If the option preexpand is not used, the command string before expansion is split into individual
arguments by spaces and then each argument is separately expanded. Then the command is run in
a separate process, but under the same uid and gid. As in other command executions from Exim, a
shell is not used by default. If the command requires a shell, you must explicitly code it. The
command name may not be tainted, but the remaining arguments can be.

Note: if tainted arguments are used, they are supplied by a potential attacker; a careful assessment
for security vulnerabilities should be done.

If the option preexpand is used, the command string is first expanded as a whole. The expansion
result is split apart into individual arguments by spaces, and then the command is run as above.
Since the arguments are split by spaces, when there is a variable expansion which has an empty
result, it will cause the situation that the argument will simply be omitted when the program is
actually executed by Exim. If the script/program requires a specific number of arguments and the

121 String expansions (11)

expanded variable could possibly result in this empty expansion, the variable must be quoted. This
is more difficult if the expanded variable itself could result in a string containing quotes, because it
would interfere with the quotes around the command arguments. A possible guard against this is to
wrap the variable in the sg operator to change any quote marks to some other character. Neither the
command nor any argument may be tainted.

The standard input for the command exists, but is empty. The standard output and standard error
are set to the same file descriptor. If the command succeeds (gives a zero return code) <string1> is
expanded and replaces the entire item; during this expansion, the standard output/error from the
command is in the variable $value. If the command fails, <string2>, if present, is expanded and
used. Once again, during the expansion, the standard output/error from the command is in the
variable $value.

If <string2> is absent, the result is empty. Alternatively, <string2> can be the word “fail” (not in
braces) to force expansion failure if the command does not succeed. If both strings are omitted, the
result is contents of the standard output/error on success, and nothing on failure.

The standard output/error of the command is put in the variable $value. In this ACL example, the
output of a command is logged for the admin to troubleshoot:

warn condition = ${run{/usr/bin/id}{yes}{no}}
 log_message = Output of id: $value

If the command requires shell idioms, such as the > redirect operator, the shell must be invoked
directly, such as with:

${run{/bin/bash -c "/usr/bin/id >/tmp/id"}{yes}{yes}}

Note that $value will not persist beyond the reception of a single message.

The return code from the command is put in the variable $runrc, and this remains set afterwards,
so in a filter file you can do things like this:

if "${run{x y z}{}}$runrc" is 1 then ...
 elif $runrc is 2 then ...
 ...
endif

If execution of the command fails (for example, the command does not exist), the return code is
127 – the same code that shells use for non-existent commands.

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

The redirect router has an option called forbid_filter_run which locks out the use of this expan-
sion item in filter files.

${sg{<subject>}{<regex>}{<replacement>}}
This item works like Perl’s substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns the
modified string for insertion into the overall expansion. The item takes three arguments: the
subject string, a regular expression, and a substitution string. For example:

${sg{abcdefabcdef}{abc}{xyz}}

yields “xyzdefxyzdef”. Because all three arguments are expanded before use, if any $, } or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example:

${sg{abcdef}{^(...)(...)\$}{\$2\$1}}

yields “defabc”, and

${sg{1=A 4=D 3=C}{\N(\d+)=\N}{K\$1=}}

122 String expansions (11)

yields “K1=A K4=D K3=C”. Note the use of \N to protect the contents of the regular expression
from string expansion.

The regular expression is compiled in 8-bit mode, working against bytes rather than any Unicode-
aware character handling.

${sort{<string>}{<comparator>}{<extractor>}}
After expansion, <string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way (6.21). The <comparator> argument is interpreted as the operator of a
two-argument expansion condition. The numeric operators plus ge, gt, le, lt (and ~i variants) are
supported. The comparison should return true when applied to two values if the first value should
sort before the second value. The <extractor> expansion is applied repeatedly to elements of the
list, the element being placed in $item, to give values for comparison.

The item result is a sorted list, with the original list separator, of the list elements (in full) of the
original.

Examples:

${sort{3:2:1:4}{<}{$item}}

sorts a list of numbers, and

${sort {${lookup dnsdb{>:,,mx=example.com}}} {<} {${listextract{1}{<,$item}}}}

will sort an MX lookup into priority order.

${srs_encode {<secret>}{<return path>}{<original domain>}}
SRS encoding. See SECT 58.2.1 for details.

${substr{<start>}{<len>}{<subject>}}
The three strings are expanded; the first two must yield numbers. Call them <n> and <m>. If you
are using fixed values for these numbers, that is, if <start> and <len> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${substr_<n>_<m>:<subject>}

The second number is optional (in both notations). If it is absent in the simpler format, the
preceding underscore must also be omitted.

The substr item can be used to extract more general substrings than length. The first number, <n>,
is a starting offset, and <m> is the length required. For example

${substr{3}{2}{$local_part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string, starting
from the given offset. The first byte (character) in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last byte (character) is offset -1, the second-last is offset -2, and so on. Thus, for
example,

${substr{-5}{2}{1234567}}

yields “34”. If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of over-
shoot. Thus, for example,

${substr{-5}{2}{12}}

yields an empty string, but

${substr{-3}{2}{12}}

yields “1”.

123 String expansions (11)

When the second number is omitted from substr, the remainder of the string is taken if the offset
is positive. If it is negative, all bytes (characters) in the string preceding the offset point are taken.
For example, an offset of -1 and no length, as in these semantically identical examples:

${substr_-1:abcde}
${substr{-1}{abcde}}

yields all but the last character of the string, that is, “abcd”.

All measurement is done in bytes and is not UTF-8 aware.

${tr{<subject>}{<characters>}{<replacements>}}
This item does single-character (in bytes) translation on its subject string. The second argument is
a list of characters to be translated in the subject string. Each matching character is replaced by the
corresponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields 1b3de1. If there are duplicates in the second character string, the last occurrence is used. If
the third string is shorter than the second, its last character is replicated. However, if it is empty, no
translation takes place.

All character handling is done in bytes and is not UTF-8 aware.

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the “operator” notation
is used because it is simpler and uses fewer braces. The substring is first expanded before the
operation is applied to it. The following operations can be performed:

${address:<string>}
The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

The parsing correctly handles SMTPUTF8 Unicode in the string.

${addresses:<string>}
The string (after expansion) is interpreted as a list of addresses in RFC 2822 format, such as can be
found in a To: or Cc: header line. The operative address (local-part@domain) is extracted from
each item, and the result of the expansion is a colon-separated list, with appropriate doubling of
colons should any happen to be present in the email addresses. Syntactically invalid RFC2822
address items are omitted from the output.

It is possible to specify a character other than colon for the output separator by starting the string
with > followed by the new separator character. For example:

${addresses:>& Chief <ceo@up.stairs>, sec@base.ment (dogsbody)}

expands to ceo@up.stairs&sec@base.ment. The string is expanded first, so if the
expanded string starts with >, it may change the output separator unintentionally. This can be
avoided by setting the output separator explicitly:

${addresses:>:$h_from:}

Compare the address (singular) expansion item, which extracts the working address from a single
RFC2822 address. See the filter, map, and reduce items for ways of processing lists.

To clarify "list of addresses in RFC 2822 format" mentioned above, Exim follows a strict interpret-
ation of header line formatting. Exim parses the bare, unquoted portion of an email address and if
it finds a comma, treats it as an email address separator. For the example header line:

From: =?iso-8859-2?Q?Last=2C_First?= <user@example.com>

The first example below demonstrates that Q-encoded email addresses are parsed properly if it is
given the raw header (in this example, $rheader_from:). It does not see the comma because
it’s still encoded as "=2C". The second example below is passed the contents of
$header_from:, meaning it gets de-mimed. Exim sees the decoded "," so it treats it as two

124 String expansions (11)

email addresses. The third example shows that the presence of a comma is skipped when it is
quoted. The fourth example shows SMTPUTF8 handling.

exim -be '${addresses:From: \
=?iso-8859-2?Q?Last=2C_First?= <user@example.com>}'
user@example.com
exim -be '${addresses:From: Last, First <user@example.com>}'
Last:user@example.com
exim -be '${addresses:From: "Last, First" <user@example.com>}'
user@example.com
exim -be '${addresses:¤¤¤ <¤¤¤¤¤@example.jp>}'
¤¤¤¤¤@example.jp

${base32:<digits>}
The string must consist entirely of decimal digits. The number is converted to base 32 and output
as a (empty, for zero) string of characters. Only lowercase letters are used.

${base32d:<base-32 digits>}
The string must consist entirely of base-32 digits. The number is converted to decimal and output
as a string.

${base62:<digits>}
The string must consist entirely of decimal digits. The number is converted to base 62 and output
as a string of six characters, including leading zeros. In the few operating environments where
Exim uses base 36 instead of base 62 for its message identifiers (because those systems do not
have case-sensitive filenames), base 36 is used by this operator, despite its name. Note: Just to be
absolutely clear: this is not base64 encoding.

${base62d:<base-62 digits>}
The string must consist entirely of base-62 digits, or, in operating environments where Exim uses
base 36 instead of base 62 for its message identifiers, base-36 digits. The number is converted to
decimal and output as a string.

${base64:<string>}
This operator converts a string into one that is base64 encoded.

If the string is a single variable of type certificate, returns the base64 encoding of the DER form of
the certificate.

${base64d:<string>}
This operator converts a base64-encoded string into the un-coded form.

${domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

${escape:<string>}
If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most significant bit set (so-called “8-bit characters”)
count as printing or not is controlled by the print_topbitchars option.

${escape8bit:<string>}
If the string contains any characters with the most significant bit set, they are converted to escape
sequences starting with a backslash. Backslashes and DEL characters are also converted.

${eval:<string>} and ${eval10:<string>}
These items supports simple arithmetic and bitwise logical operations in expansion strings. The
string (after expansion) must be a conventional arithmetic expression, but it is limited to basic
arithmetic operators, bitwise logical operators, and parentheses. All operations are carried out
using integer arithmetic. The operator priorities are as follows (the same as in the C programming
language):

 highest: not (~), negate (-)
 multiply (*), divide (/), remainder (%)

125 String expansions (11)

 plus (+), minus (-)
 shift-left (<<), shift-right (>>)
 and (&)
 xor (^)
 lowest: or (|)

Binary operators with the same priority are evaluated from left to right. White space is permitted
before or after operators.

For eval, numbers may be decimal, octal (starting with “0”) or hexadecimal (starting with “0x”).
For eval10, all numbers are taken as decimal, even if they start with a leading zero; hexadecimal
numbers are not permitted. This can be useful when processing numbers extracted from dates or
times, which often do have leading zeros.

A number may be followed by “K”, “M” or “G” to multiply it by 1024, 1024*1024 or
1024*1024*1024, respectively. Negative numbers are supported. The result of the computation is a
decimal representation of the answer (without “K”, “M” or “G”). For example:

${eval:1+1} yields 2
${eval:1+2*3} yields 7
${eval:(1+2)*3} yields 9
${eval:2+42%5} yields 4
${eval:0xc&5} yields 4
${eval:0xc|5} yields 13
${eval:0xc^5} yields 9
${eval:0xc>>1} yields 6
${eval:0xc<<1} yields 24
${eval:~255&0x1234} yields 4608
${eval:-(~255&0x1234)} yields -4608

As a more realistic example, in an ACL you might have

deny condition = \
 ${if and { \
 {>{$rcpt_count}{10}} \
 { \
 < \
 {$recipients_count} \
 {${eval:$rcpt_count/2}} \
 } \
 }{yes}{no}}
 message = Too many bad recipients

The condition is true if there have been more than 10 RCPT commands and fewer than half of
them have resulted in a valid recipient.

${expand:<string>}
The expand operator causes a string to be expanded for a second time. For example,

${expand:${lookup{$domain}dbm{/some/file}{$value}}}

first looks up a string in a file while expanding the operand for expand, and then re-expands what
it has found.

${from_utf8:<string>}
The world is slowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store data in Unicode, using
UTF-8 encoding. This operator converts from a UTF-8 string to an ISO-8859-1 string. UTF-8 code
values greater than 255 are converted to underscores. The input must be a valid UTF-8 string. If it
is not, the result is an undefined sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and ISO-8859-1 (also
known as Latin-1). For example, character 169 is the copyright symbol in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code

126 String expansions (11)

values greater than 127, whereas ISO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes translation from UTF-8 to ISO-8859-1 straightforward.

${hash_<n>_<m>:<string>}
The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${hash{<n>}{<m>}{<string>}}

See the description of the general hash item above for details. The abbreviation h can be used
when hash is used as an operator.

${headerwrap_<cols>_<limit>:<string>}
This operator line-wraps its argument in a way useful for headers. The cols value gives the column
number to wrap after, the limit gives a limit number of result characters to truncate at. Either just
the limit and the preceding underbar, or both, can be omitted; the defaults are 80 and 998.
Wrapping will be inserted at a space if possible before the column number is reached. Whitespace
at a chosen wrap point is removed. A line-wrap consists of a newline followed by a tab, and the tab
is counted as 8 columns.

${hex2b64:<hexstring>}
This operator converts a hex string into one that is base64 encoded. This can be useful for
processing the output of the various hashing functions.

${hexquote:<string>}
This operator converts non-printable characters in a string into a hex escape form. Byte values
between 33 (!) and 126 (~) inclusive are left as is, and other byte values are converted to \xNN, for
example, a byte value 127 is converted to \x7f.

${ipv6denorm:<string>}
This expands an IPv6 address to a full eight-element colon-separated set of hex digits including
leading zeroes. A trailing ipv4-style dotted-decimal set is converted to hex. Pure IPv4 addresses
are converted to IPv4-mapped IPv6.

${ipv6norm:<string>}
This converts an IPv6 address to canonical form. Leading zeroes of groups are omitted, and the
longest set of zero-valued groups is replaced with a double colon. A trailing ipv4-style dotted-
decimal set is converted to hex. Pure IPv4 addresses are converted to IPv4-mapped IPv6.

${lc:<string>}
This forces the letters in the string into lower-case, for example:

${lc:$local_part}

Case is defined per the system C locale.

${length_<number>:<string>}
The length operator is a simpler interface to the length function that can be used when the
parameter is a fixed number (as opposed to a string that changes when expanded). The effect is the
same as

${length{<number>}{<string>}}

See the description of the general length item above for details. Note that length is not the same as
strlen. The abbreviation l can be used when length is used as an operator. All measurement is
done in bytes and is not UTF-8 aware.

${listcount:<string>}
The string is interpreted as a list and the number of items is returned.

${listnamed:<name>} and ${listnamed_<type>:<name>}
The name is interpreted as a named list and the content of the list is returned, expanding any
referenced lists, re-quoting as needed for colon-separation. If the optional type is given it must be
one of "a", "d", "h" or "l" and selects address-, domain-, host- or localpart- lists to search among
respectively. Otherwise all types are searched in an undefined order and the first matching list is

127 String expansions (11)

returned. Note: Neither string-expansion of lists referenced by named-list syntax elements, nor
expansion of lookup elements, is done by the listnamed operator.

${local_part:<string>}
The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the
string does not parse successfully, the result is empty. The parsing correctly handles SMTPUTF8
Unicode in the string.

${mask:<IP address>/<bit count>}
${mask_n:<IP address>/<bit count>}

If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator con-
verts the IP address to binary, masks off the least significant bits according to the bit count, and
converts the result back to text, with mask appended. For example,

${mask:10.111.131.206/28}

returns the string “10.111.131.192/28”.

Since this operation is expected to be mostly used for looking up masked addresses in files, the
normal result for an IPv6 address uses dots to separate components instead of colons, because
colon terminates a key string in lsearch files. So, for example,

${mask:3ffe:ffff:836f:0a00:000a:0800:200a:c031/99}

returns the string

3ffe.ffff.836f.0a00.000a.0800.2000.0000/99

If the optional form mask_n is used, IPv6 address result are instead returned in normailsed form,
using colons and with zero-compression. Letters in IPv6 addresses are always output in lower
case.

${md5:<string>}
The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit hexa-
decimal number, in which any letters are in lower case.

If the string is a single variable of type certificate, returns the MD5 hash fingerprint of the
certificate.

${nhash_<n>_<m>:<string>}
The nhash operator is a simpler interface to the numeric hashing function that can be used when
the two parameters are fixed numbers (as opposed to strings that change when expanded). The
effect is the same as

${nhash{<n>}{<m>}{<string>}}

See the description of the general nhash item above for details.

${quote:<string>}
The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
quotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to \n and \r, respectively For example,

${quote:ab"*"cd}

becomes

"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

${quote_local_part:<string>}
This operator is like quote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would

128 String expansions (11)

for quote). If you are creating a new email address from the contents of $local_part (or any other
unknown data), you should always use this operator.

This quoting determination is not SMTPUTF8-aware, thus quoting non-ASCII data will likely use
the quoting form. Thus ${quote_local_part:¤¤¤} will always become "¤¤¤".

${quote_<lookup-type>:<string>}
This operator applies lookup-specific quoting rules to the string. Each query-style lookup type has
its own quoting rules which are described with the lookups in chapter 9. For example,

${quote_ldap:two * two}

returns

two%20%5C2A%20two

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.

${randint:<n>}
This operator returns a somewhat random number which is less than the supplied number and is at
least 0. The quality of this randomness depends on how Exim was built; the values are not suitable
for keying material. If Exim is linked against OpenSSL then RAND_pseudo_bytes() is used. If
Exim is linked against GnuTLS then gnutls_rnd(GNUTLS_RND_NONCE) is used, for versions
of GnuTLS with that function. Otherwise, the implementation may be arc4random(), random()
seeded by srandomdev() or srandom(), or a custom implementation even weaker than random().

${reverse_ip:<ipaddr>}
This operator reverses an IP address; for IPv4 addresses, the result is in dotted-quad decimal form,
while for IPv6 addresses the result is in dotted-nibble hexadecimal form. In both cases, this is the
"natural" form for DNS. For example,

${reverse_ip:192.0.2.4}
${reverse_ip:2001:0db8:c42:9:1:abcd:192.0.2.127}

returns

4.2.0.192
f.7.2.0.0.0.0.c.d.c.b.a.1.0.0.0.9.0.0.0.2.4.c.0.8.b.d.0.1.0.0.2

${rfc2047:<string>}
This operator encodes text according to the rules of RFC 2047. This is an encoding that is used in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding
specified by the headers_charset option, which gets its default at build time. If the string contains
only characters in the range 33–126, and no instances of the characters

? = () < > @ , ; : \ " . [] _

it is not modified. Otherwise, the result is the RFC 2047 encoding of the string, using as many
“encoded words” as necessary to encode all the characters.

${rfc2047d:<string>}
This operator decodes strings that are encoded as per RFC 2047. Binary zero bytes are replaced
by question marks. Characters are converted into the character set defined by headers_charset.
Overlong RFC 2047 “words” are not recognized unless check_rfc2047_length is set false.

Note: If you use $header_xxx: (or $h_xxx:) to access a header line, RFC 2047 decoding is done
automatically. You do not need to use this operator as well.

${rxquote:<string>}
The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
This is useful when substituting the values of variables or headers inside regular expressions.

${sha1:<string>}
The sha1 operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters are in upper case.

129 String expansions (11)

If the string is a single variable of type certificate, returns the SHA-1 hash fingerprint of the
certificate.

${sha256:<string>}
${sha2:<string>}
${sha2_<n>:<string>}

The sha256 operator computes the SHA-256 hash value of the string and returns it as a 64-digit
hexadecimal number, in which any letters are in upper case.

If the string is a single variable of type certificate, returns the SHA-256 hash fingerprint of the
certificate.

The operator can also be spelled sha2 and does the same as sha256 (except for certificates, which
are not supported). Finally, if an underbar and a number is appended it specifies the output length,
selecting a member of the SHA-2 family of hash functions. Values of 256, 384 and 512 are
accepted, with 256 being the default.

${sha3:<string>}
${sha3_<n>:<string>}

The sha3 operator computes the SHA3-256 hash value of the string and returns it as a 64-digit
hexadecimal number, in which any letters are in upper case.

If a number is appended, separated by an underbar, it specifies the output length. Values of 224,
256, 384 and 512 are accepted; with 256 being the default.

The sha3 expansion item is only supported if Exim has been compiled with GnuTLS 3.5.0 or later,
or OpenSSL 1.1.1 or later. The macro "_CRYPTO_HASH_SHA3" will be defined if it is
supported.

${stat:<string>}
The string, after expansion, must be a file path. A call to the stat() function is made for this path. If
stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series of <name>=<value> pairs, where the values are all numerical, except for the
value of “smode”. The names are: “mode” (giving the mode as a 4-digit octal number), “smode”
(giving the mode in symbolic format as a 10-character string, as for the ls command), “inode”,
“device”, “links”, “uid”, “gid”, “size”, “atime”, “mtime”, and “ctime”. You can extract individual
fields using the extract expansion item.

The use of the stat expansion in users’ filter files can be locked out by the system administrator.
Warning: The file size may be incorrect on 32-bit systems for files larger than 2GB.

${str2b64:<string>}
Now deprecated, a synonym for the base64 expansion operator.

${strlen:<string>}
The item is replaced by the length of the expanded string, expressed as a decimal number. Note:
Do not confuse strlen with length. All measurement is done in bytes and is not UTF-8 aware.

${substr_<start>_<length>:<string>}
The substr operator is a simpler interface to the substr function that can be used when the two
parameters are fixed numbers (as opposed to strings that change when expanded). The effect is the
same as

${substr{<start>}{<length>}{<string>}}

See the description of the general substr item above for details. The abbreviation s can be used
when substr is used as an operator. All measurement is done in bytes and is not UTF-8 aware.

${time_eval:<string>}
This item converts an Exim time interval such as 2d4h5m into a number of seconds.

${time_interval:<string>}
The argument (after sub-expansion) must be a sequence of decimal digits that represents an inter-
val of time as a number of seconds. It is converted into a number of larger units and output in
Exim’s normal time format, for example, 1w3d4h2m6s.

130 String expansions (11)

${uc:<string>}
This forces the letters in the string into upper-case. Case is defined per the system C locale.

${utf8clean:<string>}
This replaces any invalid utf-8 sequence in the string by the character ?. In versions of Exim
before 4.92, this did not correctly do so for a truncated final codepoint’s encoding, and the charac-
ter would be silently dropped. If you must handle detection of this scenario across both sets of
Exim behavior, the complexity will depend upon the task. For instance, to detect if the first
character is multibyte and a 1-byte extraction can be successfully used as a path component (as is
common for dividing up delivery folders), you might use:

condition = ${if inlist{${utf8clean:${length_1:$local_part}}}{:?}{yes}{no}}

(which will false-positive if the first character of the local part is a literal question mark).

${utf8_domain_to_alabel:<string>}
${utf8_domain_from_alabel:<string>}
${utf8_localpart_to_alabel:<string>}
${utf8_localpart_from_alabel:<string>}

These convert EAI mail name components between UTF-8 and a-label forms. For information on
internationalisation support see 60.1.

${xtextd:<string>}
This performs xtext decoding of the string (per RFC 3461 section 4).

11.7 Expansion conditions

The following conditions are available for testing by the ${if construct while expanding strings:

!<condition>
Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<string1>}{<string2>}
There are a number of symbolic operators for doing numeric comparisons. They are:

 = equal
 == equal
 > greater
 >= greater or equal
 < less
 <= less or equal

For example:

${if >{$message_size}{10M} ...

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters “K”, “M”
or “G” (in either upper or lower case), signifying multiplication by 1024, 1024*1024 or
1024*1024*1024, respectively. As a special case, the numerical value of an empty string is taken
as zero.

In all cases, a relative comparator OP is testing if <string1> OP <string2>; the above example is
checking if $message_size is larger than 10M, not if 10M is larger than $message_size.

acl {{<name>}{<arg1>}{<arg2>}...}
The name and zero to nine argument strings are first expanded separately. The expanded argu-
ments are assigned to the variables $acl_arg1 to $acl_arg9 in order. Any unused are made empty.
The variable $acl_narg is set to the number of arguments. The named ACL (see chapter 44) is
called and may use the variables; if another acl expansion is used the values are restored after it
returns. If the ACL sets a value using a "message =" modifier the variable $value becomes the
result of the expansion, otherwise it is empty. If the ACL returns accept the condition is true; if
deny, false. If the ACL returns defer the result is a forced-fail.

131 String expansions (11)

bool {<string>}
This condition turns a string holding a true or false representation into a boolean state. It parses
“true”, “false”, “yes” and “no” (case-insensitively); also integer numbers map to true if non-zero,
false if zero. An empty string is treated as false. Leading and trailing whitespace is ignored; thus a
string consisting only of whitespace is false. All other string values will result in expansion failure.

When combined with ACL variables, this expansion condition will let you make decisions in one
place and act on those decisions in another place. For example:

${if bool{$acl_m_privileged_sender} ...

bool_lax {<string>}
Like bool, this condition turns a string into a boolean state. But where bool accepts a strict set of
strings, bool_lax uses the same loose definition that the Router condition option uses. The empty
string and the values “false”, “no” and “0” map to false, all others map to true. Leading and
trailing whitespace is ignored.

Note that where “bool{00}” is false, “bool_lax{00}” is true.

crypteq {<string1>}{<string2>}
This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter 33). Otherwise, it is necessary to define SUPPORT_CRYPTEQ in
Local/Makefile to get crypteq included in the binary.

The crypteq condition has two arguments. The first is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with “{” it is assumed to be encrypted with crypt() or crypt16() (see below),
since such strings cannot begin with “{”. Typically this will be a field from a password file. An
example of an encrypted string in LDAP form is:

{md5}CY9rzUYh03PK3k6DJie09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because they
are part of the expansion syntax. For example:

${if crypteq {test}{\{md5\}CY9rzUYh03PK3k6DJie09g==}{yes}{no}}

The following encryption types (whose names are matched case-independently) are supported:

• {md5} computes the MD5 digest of the first string, and expresses this as printable characters to
compare with the remainder of the second string. If the length of the comparison string is 24,
Exim assumes that it is base64 encoded (as in the above example). If the length is 32, Exim
assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
comparison fails.

• {sha1} computes the SHA-1 digest of the first string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is 28,
Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that it is a hexadeci-
mal encoding of the SHA-1 digest. If the length is not 28 or 40, the comparison fails.

• {crypt} calls the crypt() function, which traditionally used to use only the first eight characters
of the password. However, in modern operating systems this is no longer true, and in many
cases the entire password is used, whatever its length.

• {crypt16} calls the crypt16() function, which was originally created to use up to 16 characters
of the password in some operating systems. Again, in modern operating systems, more charac-
ters may be used.

Exim has its own version of crypt16(), which is just a double call to crypt(). For operating systems
that have their own version, setting HAVE_CRYPT16 in Local/Makefile when building Exim
causes it to use the operating system version instead of its own. This option is set by default in the
OS-dependent Makefile for those operating systems that are known to support crypt16().

Some years after Exim’s crypt16() was implemented, a user discovered that it was not using the
same algorithm as some operating systems’ versions. It turns out that as well as crypt16() there is a

132 String expansions (11)

function called bigcrypt() in some operating systems. This may or may not use the same algorithm,
and both of them may be different to Exim’s built-in crypt16().

However, since there is now a move away from the traditional crypt() functions towards using
SHA1 and other algorithms, tidying up this area of Exim is seen as very low priority.

If you do not put a encryption type (in curly brackets) in a crypteq comparison, the default is
usually either {crypt} or {crypt16}, as determined by the setting of DEFAULT_CRYPT in
Local/Makefile. The default default is {crypt}. Whatever the default, you can always use either
function by specifying it explicitly in curly brackets.

def:<variable name>
The def condition must be followed by the name of one of the expansion variables defined in
section 11.9. The condition is true if the variable does not contain the empty string. For example:

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exist,
the expansion fails.

def:header_<header name>: or def:h_<header name>:
This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

Note: No $ appears before header_ or h_ in the condition, and the header name must be termin-
ated by a colon if white space does not follow.

eq {<string1>}{<string2>}
eqi {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the two resulting strings are identi-
cal. For eq the comparison includes the case of letters, whereas for eqi the comparison is case-
independent, where case is defined per the system C locale.

exists {<file name>}
The substring is first expanded and then interpreted as an absolute path. The condition is true if the
named file (or directory) exists. The existence test is done by calling the stat() function. The use of
the exists test in users’ filter files may be locked out by the system administrator.

Note: Testing a path using this condition is not a sufficient way of de-tainting it. Consider using a
dsearch lookup.

first_delivery
This condition, which has no data, is true during a message’s first delivery attempt. It is false
during any subsequent delivery attempts.

forall{<a list>}{<a condition>}
forany{<a list>}{<a condition>}

These conditions iterate over a list. The first argument is expanded to form the list. By default, the
list separator is a colon, but it can be changed by the normal method (6.21). The second argument
is interpreted as a condition that is to be applied to each item in the list in turn. During the
interpretation of the condition, the current list item is placed in a variable called $item.

• For forany, interpretation stops if the condition is true for any item, and the result of the whole
condition is true. If the condition is false for all items in the list, the overall condition is false.

• For forall, interpretation stops if the condition is false for any item, and the result of the whole
condition is false. If the condition is true for all items in the list, the overall condition is true.

Note that negation of forany means that the condition must be false for all items for the overall
condition to succeed, and negation of forall means that the condition must be false for at least one
item.

Example:

${if forany{$recipients_list}{match{$item}{^user3@}}{yes}{no}}

133 String expansions (11)

The value of $item is saved and restored while forany or forall is being processed, to enable these
expansion items to be nested.

To scan a named list, expand it with the listnamed operator.

forall_json{<a JSON array>}{<a condition>}
forany_json{<a JSON array>}{<a condition>}
forall_jsons{<a JSON array>}{<a condition>}
forany_jsons{<a JSON array>}{<a condition>}

As for the above, except that the first argument must, after expansion, be a JSON array. The array
separator is not changeable. For the “jsons” variants the elements are expected to be JSON strings
and have their quotes removed before the evaluation of the condition.

ge {<string1>}{<string2>}
gei {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically greater
than or equal to the second string. For ge the comparison includes the case of letters, whereas for
gei the comparison is case-independent. Case and collation order are defined per the system C
locale.

gt {<string1>}{<string2>}
gti {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically greater
than the second string. For gt the comparison includes the case of letters, whereas for gti the
comparison is case-independent. Case and collation order are defined per the system C locale.

inbound_srs {<local part>}{<secret>}
SRS decode. See SECT 58.2.1 for details.

inlist {<subject>}{<list>}
inlisti {<subject>}{<list>}

Both strings are expanded; the second string is treated as a list of simple strings; if the first string is
a member of the second, then the condition is true. For the case-independent inlisti condition, case
is defined per the system C locale.

These are simpler to use versions of the more powerful forany condition. Examples, and the
forany equivalents:

${if inlist{needle}{foo:needle:bar}}
 ${if forany{foo:needle:bar}{eq{$item}{needle}}}
${if inlisti{Needle}{fOo:NeeDLE:bAr}}
 ${if forany{fOo:NeeDLE:bAr}{eqi{$item}{Needle}}}

The variable $value will be set for a successful match and can be used in the success clause of an
if expansion item using the condition. It will have the same taint status as the list; expansions such
as

${if inlist {$h_mycode:} {0 : 1 : 42} {$value}}

can be used for de-tainting. Any previous $value is restored after the if.

isip {<string>}
isip4 {<string>}
isip6 {<string>}

The substring is first expanded, and then tested to see if it has the form of an IP address. Both IPv4
and IPv6 addresses are valid for isip, whereas isip4 and isip6 test specifically for IPv4 or IPv6
addresses.

For an IPv4 address, the test is for four dot-separated components, each of which consists of from
one to three digits. For an IPv6 address, up to eight colon-separated components are permitted,
each containing from one to four hexadecimal digits. There may be fewer than eight components if
an empty component (adjacent colons) is present. Only one empty component is permitted.

Note: The checks used to be just on the form of the address; actual numerical values were not
considered. Thus, for example, 999.999.999.999 passed the IPv4 check. This is no longer the case.

134 String expansions (11)

The main use of these tests is to distinguish between IP addresses and host names, or between
IPv4 and IPv6 addresses. For example, you could use

${if isip4{$sender_host_address}...

to test which IP version an incoming SMTP connection is using.

ldapauth {<ldap query>}
This condition supports user authentication using LDAP. See section 9.11 for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is rejected without calling LDAP because LDAP binds with an empty password are considered
anonymous regardless of the username, and will succeed in most configurations. See chapter 33
for details of SMTP authentication, and chapter 34 for an example of how this can be used.

le {<string1>}{<string2>}
lei {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically less than
or equal to the second string. For le the comparison includes the case of letters, whereas for lei the
comparison is case-independent. Case and collation order are defined per the system C locale.

lt {<string1>}{<string2>}
lti {<string1>}{<string2>}

The two substrings are first expanded. The condition is true if the first string is lexically less than
the second string. For lt the comparison includes the case of letters, whereas for lti the comparison
is case-independent. Case and collation order are defined per the system C locale.

match {<string1>}{<string2>}
The two substrings are first expanded. The second is then treated as a regular expression and
applied to the first. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of <string2>. The easiest approach is to use the \N feature to disable
expansion of the regular expression. For example,

${if match {$local_part}{\N^\d{3}\N} ...

If the whole expansion string is in double quotes, further escaping of backslashes is also required.

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must include the $ metacharacter at an appropriate
point. All character handling is done in bytes and is not UTF-8 aware, but we might change this in
a future Exim release.

At the start of an if expansion the values of the numeric variable substitutions $1 etc. are remem-
bered. Obeying a match condition that succeeds causes them to be reset to the substrings of that
condition and they will have these values during the expansion of the success string. At the end of
the if expansion, the previous values are restored. After testing a combination of conditions using
or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_address {<string1>}{<string2>}
See match_local_part.

match_domain {<string1>}{<string2>}
See match_local_part.

match_ip {<string1>}{<string2>}
This condition matches an IP address to a list of IP address patterns. It must be followed by two
argument strings. The first (after expansion) must be an IP address or an empty string. The second
(not expanded) is a restricted host list that can match only an IP address, not a host name. For
example:

135 String expansions (11)

${if match_ip{$sender_host_address}{1.2.3.4:5.6.7.8}{...}{...}}

The specific types of host list item that are permitted in the list are:

• An IP address, optionally with a CIDR mask.

• A single asterisk, which matches any IP address.

• An empty item, which matches only if the IP address is empty. This could be useful for testing
for a locally submitted message or one from specific hosts in a single test such as

${if match_ip{$sender_host_address}{:4.3.2.1:...}{...}{...}}

where the first item in the list is the empty string.

• The item @[] matches any of the local host’s interface addresses.

• Single-key lookups are assumed to be like “net-” style lookups in host lists (see section 10.4.3),
even if net- is not specified. There is never any attempt to turn the IP address into a host
name. The most common type of linear search for match_ip is likely to be iplsearch, in which
the file can contain CIDR masks. For example:

${if match_ip{$sender_host_address}{iplsearch;/some/file}...

It is of course possible to use other kinds of lookup, and in such a case, you do need to specify
the net- prefix if you want to specify a specific address mask, for example:

${if match_ip{$sender_host_address}{net24-dbm;/some/file}...

However, unless you are combining a match_ip condition with others, it is just as easy to use
the fact that a lookup is itself a condition, and write:

${lookup{${mask:$sender_host_address/24}}dbm{/a/file}...

Note that <string2> is not itself subject to string expansion, unless Exim was built with the
EXPAND_LISTMATCH_RHS option.

Consult section 10.4.2 for further details of these patterns.

The variable $value will be set for a successful match and can be used in the success clause of an
if expansion item using the condition. Any previous $value is restored after the if.

match_local_part {<string1>}{<string2>}
This condition, together with match_address and match_domain, make it possible to test
domain, address, and local part lists within expansions. Each condition requires two arguments: an
item and a list to match. A trivial example is:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.r}{yes}{no}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument is a standard form of list, it is possible to
refer to a named list. Thus, you can use conditions like this:

${if match_domain{$domain}{+local_domains}{...

For address lists, the matching starts off caselessly, but the +caseful item can be used, as in all
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselessly.

The variable $value will be set for a successful match and can be used in the success clause of an
if expansion item using the condition. It will have the same taint status as the list; expansions such
as

${if match_local_part {$local_part} {alice : bill : charlotte : dave} {$value}}

can be used for de-tainting. Any previous $value is restored after the if.

Note that <string2> is not itself subject to string expansion, unless Exim was built with the
EXPAND_LISTMATCH_RHS option.

136 String expansions (11)

Note: Host lists are not supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such a test would work. However,
IP addresses can be matched using match_ip.

pam {<string1>:<string2>:...}
Pluggable Authentication Modules (https://mirrors.edge.kernel.org/pub/linux/libs/pam/) are a
facility that is available in Solaris and in some GNU/Linux distributions. The Exim support, which
is intended for use in conjunction with the SMTP AUTH command, is available only if Exim is
compiled with

SUPPORT_PAM=yes

in Local/Makefile. You probably need to add -lpam to EXTRALIBS, and in some releases of
GNU/Linux -ldl is also needed.

The argument string is first expanded, and the result must be a colon-separated list of strings.
Leading and trailing white space is ignored. The PAM module is initialized with the service name
“exim” and the user name taken from the first item in the colon-separated data string (<string1>).
The remaining items in the data string are passed over in response to requests from the authenti-
cation function. In the simple case there will only be one request, for a password, so the data
consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. The listquote expansion item can
be used for this. For example, the configuration of a LOGIN authenticator might contain this
setting:

server_condition = ${if pam{$auth1:${listquote{:}{$auth2}}}}

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems.

pwcheck {<string1>:<string2>}
This condition supports user authentication using the Cyrus pwcheck daemon. This is one way of
making it possible for passwords to be checked by a process that is not running as root. Note: The
use of pwcheck is now deprecated. Its replacement is saslauthd (see below).

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemon’s socket in Local/Makefile before building Exim. For example:

CYRUS_PWCHECK_SOCKET=/var/pwcheck/pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensure that exim is the
only user that has access to the /var/pwcheck directory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in a LOGIN authenticator configuration, you might have this:

server_condition = ${if pwcheck{$auth1:$auth2}}

Again, for a PLAIN authenticator configuration, this would be:

server_condition = ${if pwcheck{$auth2:$auth3}}

queue_running
This condition, which has no data, is true during delivery attempts that are initiated by queue
runner processes, and false otherwise.

radius {<authentication string>}
Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set RADIUS_
CONFIG_FILE in Local/Makefile to specify the location of the Radius client configuration file in
order to build Exim with Radius support.

With just that one setting, Exim expects to be linked with the radiusclient library, using the
original API. If you are using release 0.4.0 or later of this library, you need to set

137 String expansions (11)

RADIUS_LIB_TYPE=RADIUSCLIENTNEW

in Local/Makefile when building Exim. You can also link Exim with the libradius library that
comes with FreeBSD. To do this, set

RADIUS_LIB_TYPE=RADLIB

in Local/Makefile, in addition to setting RADIUS_CONFIGURE_FILE. You may also have to
supply a suitable setting in EXTRALIBS so that the Radius library can be found when Exim is
linked.

The string specified by RADIUS_CONFIG_FILE is expanded and passed to the Radius client
library, which calls the Radius server. The condition is true if the authentication is successful. For
example:

server_condition = ${if radius{<arguments>}}

saslauthd {{<user>}{<password>}{<service>}{<realm>}}
This condition supports user authentication using the Cyrus saslauthd daemon. This replaces the
older pwcheck daemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. You need to specify the location of the
saslauthd daemon’s socket in Local/Makefile before building Exim. For example:

CYRUS_SASLAUTHD_SOCKET=/var/state/saslauthd/mux

You do not need to install the full Cyrus software suite in order to use the saslauthd daemon. You
can compile and install just the daemon alone from the Cyrus SASL library.

Up to four arguments can be supplied to the saslauthd condition, but only two are mandatory. For
example:

server_condition = ${if saslauthd{{$auth1}{$auth2}}}

The service and the realm are optional (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon, consult
the Cyrus documentation.

11.8 Combining expansion conditions

Several conditions can be tested at once by combining them using the and and or combination
conditions. Note that and and or are complete conditions on their own, and precede their lists of
sub-conditions. Each sub-condition must be enclosed in braces within the overall braces that contain
the list. No repetition of if is used.

or {{<cond1>}{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditions is true. For example,

${if or {{eq{$local_part}{spqr}}{eq{$domain}{testing.com}}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several “match” sub-conditions the values of the numeric variables afterwards are taken from the
first one that succeeds.

and {{<cond1>}{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several “match” sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones are
parsed but not evaluated.

11.9 Expansion variables

This section contains an alphabetical list of all the expansion variables. Some of them are available
only when Exim is compiled with specific options such as support for TLS or the content scanning

138 String expansions (11)

extension. Variables marked as tainted are likely to carry data supplied by a potential attacker.
Variables without such marking may also, depending on how their values are created. Such variables
should not be further expanded, used as filenames or used as command-line arguments for external
commands.

$0, $1, etc
When a match expansion condition succeeds, these variables contain the captured substrings
identified by the regular expression during subsequent processing of the success string of the
containing if expansion item. In the expansion condition case they do not retain their values
afterwards; in fact, their previous values are restored at the end of processing an if item. The
numerical variables may also be set externally by some other matching process which precedes the
expansion of the string. For example, the commands available in Exim filter files include an if
command with its own regular expression matching condition. If the subject string was tainted
then any captured substring will also be.

$acl_arg1, $acl_arg2, etc
Within an acl condition, expansion condition or expansion item any arguments are copied to these
variables, any unused variables being made empty.

$acl_c...
Values can be placed in these variables by the set modifier in an ACL. They can be given any name
that starts with $acl_c and is at least six characters long, but the sixth character must be either a
digit or an underscore. For example: $acl_c5, $acl_c_mycount. The values of the $acl_c... vari-
ables persist throughout the lifetime of an SMTP connection. They can be used to pass information
between ACLs and between different invocations of the same ACL. When a message is received,
the values of these variables are saved with the message, and can be accessed by filters, routers,
and transports during subsequent delivery.

$acl_m...
These variables are like the $acl_c... variables, except that their values are reset after a message
has been received. Thus, if several messages are received in one SMTP connection, $acl_m...
values are not passed on from one message to the next, as $acl_c... values are. The $acl_m...
variables are also reset by MAIL, RSET, EHLO, HELO, and after starting a TLS session. When a
message is received, the values of these variables are saved with the message, and can be accessed
by filters, routers, and transports during subsequent delivery.

$acl_narg
Within an acl condition, expansion condition or expansion item this variable has the number of
arguments.

$acl_verify_message
After an address verification has failed, this variable contains the failure message. It retains its
value for use in subsequent modifiers of the verb. The message can be preserved by coding like
this:

warn !verify = sender
 set acl_m0 = $acl_verify_message

You can use $acl_verify_message during the expansion of the message or log_message modifiers,
to include information about the verification failure. Note: The variable is cleared at the end of
processing the ACL verb.

$address_data
This variable is set by means of the address_data option in routers. The value then remains with
the address while it is processed by subsequent routers and eventually a transport. If the transport
is handling multiple addresses, the value from the first address is used. See chapter 15 for more
details. Note: The contents of $address_data are visible in user filter files.

If $address_data is set when the routers are called from an ACL to verify a recipient address, the
final value is still in the variable for subsequent conditions and modifiers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed as
part of the verification, and in this case the final value of $address_data is from the child’s routing.

139 String expansions (11)

If $address_data is set when the routers are called from an ACL to verify a sender address, the
final value is also preserved, but this time in $sender_address_data, to distinguish it from data
from a recipient address.

In both cases (recipient and sender verification), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in ACL
variables.

$address_file
When, as a result of aliasing, forwarding, or filtering, a message is directed to a specific file, this
variable holds the name of the file when the transport is running. At other times, the variable is
empty. For example, using the default configuration, if user r2d2 has a .forward file containing

/home/r2d2/savemail

then when the address_file transport is running, $address_file contains the text string
/home/r2d2/savemail. For Sieve filters, the value may be “inbox” or a relative folder name.
It is then up to the transport configuration to generate an appropriate absolute path to the relevant
file.

$address_pipe
When, as a result of aliasing or forwarding, a message is directed to a pipe, this variable holds the
pipe command when the transport is running.

$auth1 – $auth4
These variables are used in SMTP authenticators (see chapters 34–42). Elsewhere, they are empty.

$authenticated_id
When a server successfully authenticates a client it may be configured to preserve some of the
authentication information in the variable $authenticated_id (see chapter 33). For example, a
user/password authenticator configuration might preserve the user name for use in the routers.
Note that this is not the same information that is saved in $sender_host_authenticated.

When a message is submitted locally (that is, not over a TCP connection) the value of
$authenticated_id is normally the login name of the calling process. However, a trusted user can
override this by means of the -oMai command line option. This second case also sets up infor-
mation used by the $authresults expansion item.

$authenticated_fail_id
When an authentication attempt fails, the variable $authenticated_fail_id will contain the failed
authentication id. If more than one authentication id is attempted, it will contain only the last one.
The variable is available for processing in the ACL’s, generally the quit or notquit ACL. A mess-
age to a local recipient could still be accepted without requiring authentication, which means this
variable could also be visible in all of the ACL’s as well.

$authenticated_sender

Tainted

When acting as a server, Exim takes note of the AUTH= parameter on an incoming SMTP MAIL
command if it believes the sender is sufficiently trusted, as described in section 33.2. Unless the
data is the string “<>”, it is set as the authenticated sender of the message, and the value is
available during delivery in the $authenticated_sender variable. If the sender is not trusted, Exim
accepts the syntax of AUTH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the value of
$authenticated_sender is an address constructed from the login name of the calling process and
$qualify_domain, except that a trusted user can override this by means of the -oMas command line
option.

$authentication_failed
This variable is set to “1” in an Exim server if a client issues an AUTH command that does not
succeed. Otherwise it is set to “0”. This makes it possible to distinguish between “did not try to
authenticate” ($sender_host_authenticated is empty and $authentication_failed is set to “0”) and
“tried to authenticate but failed” ($sender_host_authenticated is empty and $authentication_failed

140 String expansions (11)

is set to “1”). Failure includes cancellation of a authentication attempt, and any negative response
to an AUTH command, (including, for example, an attempt to use an undefined mechanism).

$av_failed
This variable is available when Exim is compiled with the content-scanning extension. It is set to
“0” by default, but will be set to “1” if any problem occurs with the virus scanner (specified by av_
scanner) during the ACL malware condition.

$body_linecount
When a message is being received or delivered, this variable contains the number of lines in the
message’s body. See also $message_linecount.

$body_zerocount
When a message is being received or delivered, this variable contains the number of binary zero
bytes (ASCII NULs) in the message’s body.

$bounce_recipient
This is set to the recipient address of a bounce message while Exim is creating it. It is useful if a
customized bounce message text file is in use (see chapter 50).

$bounce_return_size_limit
This contains the value set in the bounce_return_size_limit option, rounded up to a multiple of
1000. It is useful when a customized error message text file is in use (see chapter 50).

$caller_gid
The real group id under which the process that called Exim was running. This is not the same as
the group id of the originator of a message (see $originator_gid). If Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

$caller_uid
The real user id under which the process that called Exim was running. This is not the same as the
user id of the originator of a message (see $originator_uid). If Exim re-execs itself, this variable in
the new incarnation normally contains the Exim uid.

$callout_address
After a callout for verification, spamd or malware daemon service, the address that was connected
to.

$compile_number
The building process for Exim keeps a count of the number of times it has been compiled. This
serves to distinguish different compilations of the same version of Exim.

$config_dir
The directory name of the main configuration file. That is, the content of $config_file with the last
component stripped. The value does not contain the trailing slash. If $config_file does not contain a
slash, $config_dir is ".".

$config_file
The name of the main configuration file Exim is using.

$dkim_verify_status
Results of DKIM verification. For details see section 58.1.2.

141 String expansions (11)

$dkim_cur_signer
$dkim_verify_reason
$dkim_domain
$dkim_identity
$dkim_selector
$dkim_algo
$dkim_canon_body
$dkim_canon_headers
$dkim_copiedheaders
$dkim_bodylength
$dkim_created
$dkim_expires
$dkim_headernames
$dkim_key_testing
$dkim_key_nosubdomains
$dkim_key_srvtype
$dkim_key_granularity
$dkim_key_notes
$dkim_key_length

These variables are only available within the DKIM ACL. For details see section 58.1.2.

$dkim_signers
When a message has been received this variable contains a colon-separated list of signer domains
and identities for the message. For details see section 58.1.2.

$dmarc_domain_policy
$dmarc_status
$dmarc_status_text
$dmarc_used_domains

Results of DMARC verification. For details see section 58.3.

$dnslist_domain
$dnslist_matched
$dnslist_text
$dnslist_value

When a DNS (black) list lookup succeeds, these variables are set to contain the following data
from the lookup: the list’s domain name, the key that was looked up, the contents of any associated
TXT record, and the value from the main A record. See section 44.18.5 for more details.

$domain

Tainted

When an address is being routed, or delivered on its own, this variable contains the domain.
Uppercase letters in the domain are converted into lower case for $domain.

Global address rewriting happens when a message is received, so the value of $domain during
routing and delivery is the value after rewriting. $domain is set during user filtering, but not during
system filtering, because a message may have many recipients and the system filter is called just
once.

When more than one address is being delivered at once (for example, several RCPT commands in
one SMTP delivery), $domain is set only if they all have the same domain. Transports can be
restricted to handling only one domain at a time if the value of $domain is required at transport
time – this is the default for local transports. For further details of the environment in which local
transports are run, see chapter 23.

At the end of a delivery, if all deferred addresses have the same domain, it is set in $domain during
the expansion of delay_warning_condition.

The $domain variable is also used in some other circumstances:

142 String expansions (11)

• When an ACL is running for a RCPT command, $domain contains the domain of the recipient
address. The domain of the sender address is in $sender_address_domain at both MAIL time
and at RCPT time. $domain is not normally set during the running of the MAIL ACL. However,
if the sender address is verified with a callout during the MAIL ACL, the sender domain is
placed in $domain during the expansions of hosts, interface, and port in the smtp transport.

• When a rewrite item is being processed (see chapter 31), $domain contains the domain portion
of the address that is being rewritten; it can be used in the expansion of the replacement address,
for example, to rewrite domains by file lookup.

• With one important exception, whenever a domain list is being scanned, $domain contains the
subject domain. Exception: When a domain list in a sender_domains condition in an ACL is
being processed, the subject domain is in $sender_address_domain and not in $domain. It
works this way so that, in a RCPT ACL, the sender domain list can be dependent on the
recipient domain (which is what is in $domain at this time).

• When the smtp_etrn_command option is being expanded, $domain contains the complete
argument of the ETRN command (see section 49.2.5).

If the origin of the data is an incoming message, the result of expanding this variable is tainted and
may not be further expanded or used as a filename. When an untainted version is needed, one
should be obtained from looking up the value in a local (therefore trusted) database. Often
$domain_data is usable in this role.

$domain_data
When the domains condition on a router or an ACL matches a domain against a list, the match
value is copied to $domain_data. This is an enhancement over previous versions of Exim, when it
only applied to the data read by a lookup. For details on match values see section 10.1 et. al.

If the router routes the address to a transport, the value is available in that transport. If the transport
is handling multiple addresses, the value from the first address is used.

$domain_data set in an ACL is available during the rest of the ACL statement.

$exim_gid
This variable contains the numerical value of the Exim group id.

$exim_path
This variable contains the path to the Exim binary.

$exim_uid
This variable contains the numerical value of the Exim user id.

$exim_version
This variable contains the version string of the Exim build. The first character is a major version
number, currently 4. Then after a dot, the next group of digits is a minor version number. There
may be other characters following the minor version. This value may be overridden by the exim_
version main config option.

$header_<name>

Tainted

This is not strictly an expansion variable. It is expansion syntax for inserting the message header
line with the given name. Note that the name must be terminated by colon or white space, because
it may contain a wide variety of characters. Note also that braces must not be used. See the full
description in section 11.5 above.

$headers_added
Within an ACL this variable contains the headers added so far by the ACL modifier add_header
(section 44.15). The headers are a newline-separated list.

$home
When the check_local_user option is set for a router, the user’s home directory is placed in $home
when the check succeeds. In particular, this means it is set during the running of users’ filter files.

143 String expansions (11)

A router may also explicitly set a home directory for use by a transport; this can be overridden by
a setting on the transport itself.

When running a filter test via the -bf option, $home is set to the value of the environment variable
HOME, which is subject to the keep_environment and add_environment main config options.

$host
If a router assigns an address to a transport (any transport), and passes a list of hosts with the
address, the value of $host when the transport starts to run is the name of the first host on the list.
Note that this applies both to local and remote transports.

For the smtp transport, if there is more than one host, the value of $host changes as the transport
works its way through the list. In particular, when the smtp transport is expanding its options for
encryption using TLS, or for specifying a transport filter (see chapter 24), $host contains the name
of the host to which it is connected.

When used in the client part of an authenticator configuration (see chapter 33), $host contains the
name of the server to which the client is connected.

$host_address
This variable is set to the remote host’s IP address whenever $host is set for a remote connection.
It is also set to the IP address that is being checked when the ignore_target_hosts option is being
processed.

$host_data
If a hosts condition in an ACL is satisfied by means of a lookup, the result of the lookup is made
available in the $host_data variable. This allows you, for example, to do things like this:

deny hosts = net-lsearch;/some/file
 message = $host_data

$host_lookup_deferred
This variable normally contains “0”, as does $host_lookup_failed. When a message comes from a
remote host and there is an attempt to look up the host’s name from its IP address, and the attempt
is not successful, one of these variables is set to “1”.

• If the lookup receives a definite negative response (for example, a DNS lookup succeeded, but
no records were found), $host_lookup_failed is set to “1”.

• If there is any kind of problem during the lookup, such that Exim cannot tell whether or not the
host name is defined (for example, a timeout for a DNS lookup), $host_lookup_deferred is set
to “1”.

Looking up a host’s name from its IP address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse lookup
yields the original IP address. If this is not the case, Exim does not accept the looked up name(s),
and $host_lookup_failed is set to “1”. Thus, being able to find a name from an IP address (for
example, the existence of a PTR record in the DNS) is not sufficient on its own for the success of a
host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a timeout
when checking the result, the name is not accepted, and $host_lookup_deferred is set to “1”. See
also $sender_host_name.

Performing these checks sets up information used by the authresults expansion item.

$host_lookup_failed
See $host_lookup_deferred.

$host_port
This variable is set to the remote host’s TCP port whenever $host is set for an outbound
connection.

$initial_cwd
This variable contains the full path name of the initial working directory of the current Exim
process. This may differ from the current working directory, as Exim changes this to "/" during
early startup, and to $spool_directory later.

144 String expansions (11)

$inode
The only time this variable is set is while expanding the directory_file option in the appendfile
transport. The variable contains the inode number of the temporary file which is about to be
renamed. It can be used to construct a unique name for the file.

$interface_address
$interface_port

These are obsolete names for $received_ip_address and $received_port.

$item
This variable is used during the expansion of forall and forany conditions (see section 11.7), and
filter, map, and reduce items (see section 11.7). In other circumstances, it is empty.

$ldap_dn
This variable, which is available only when Exim is compiled with LDAP support, contains the
DN from the last entry in the most recently successful LDAP lookup.

$load_average
This variable contains the system load average, multiplied by 1000 so that it is an integer. For
example, if the load average is 0.21, the value of the variable is 210. The value is recomputed
every time the variable is referenced.

$local_part

Tainted

When an address is being routed, or delivered on its own, this variable contains the local part.
When a number of addresses are being delivered together (for example, multiple RCPT commands
in an SMTP session), $local_part is not set.

Global address rewriting happens when a message is received, so the value of $local_part during
routing and delivery is the value after rewriting. $local_part is set during user filtering, but not
during system filtering, because a message may have many recipients and the system filter is called
just once.

If the origin of the data is an incoming message, the result of expanding this variable is tainted and
may not be further expanded or used as a filename.

Warning: the content of this variable is usually provided by a potential attacker. Consider care-
fully the implications of using it unvalidated as a name for file access. This presents issues for
users’ .forward and filter files. For traditional full user accounts, use check_local_users and the
$local_part_data variable rather than this one. For virtual users, store a suitable pathname com-
ponent in the database which is used for account name validation, and use that retrieved value
rather than this variable. Often $local_part_data is usable in this role. If needed, use a router
address_data or set option for the retrieved data.

When a message is being delivered to a file, pipe, or autoreply transport as a result of aliasing or
forwarding, $local_part is set to the local part of the parent address, not to the filename or
command (see $address_file and $address_pipe).

When an ACL is running for a RCPT command, $local_part contains the local part of the recipi-
ent address.

When a rewrite item is being processed (see chapter 31), $local_part contains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, all quoting is removed from the local part. For example, for both the addresses

"abc:xyz"@test.example
abc\:xyz@test.example

the value of $local_part is

abc:xyz

145 String expansions (11)

If you use $local_part to create another address, you should always wrap it inside a quoting
operator. For example, in a redirect router you could have:

data = ${quote_local_part:$local_part}@new.domain.example

Note: The value of $local_part is normally lower cased. If you want to process local parts in a
case-dependent manner in a router, you can set the caseful_local_part option (see chapter 15).

$local_part_data
When the local_parts condition on a router or ACL matches a local part list the match value is
copied to $local_part_data. This is an enhancement over previous versions of Exim, when it only
applied to the data read by a lookup. For details on match values see section 10.1 et. al.

The check_local_user router option also sets this variable.

If a local part prefix or suffix has been recognized, it is not included in the value of $local_part
during routing and subsequent delivery. The values of any prefix or suffix are in $local_part_prefix
and $local_part_suffix, respectively. If the specification did not include a wildcard then the affix
variable value is not tainted.

If the affix specification included a wildcard then the portion of the affix matched by the wildcard
is in $local_part_prefix_v or $local_part_suffix_v as appropriate, and both the whole and varying
values are tainted.

$local_scan_data
This variable contains the text returned by the local_scan() function when a message is received.
See chapter 46 for more details.

$local_user_gid
See $local_user_uid.

$local_user_uid
This variable and $local_user_gid are set to the uid and gid after the check_local_user router
precondition succeeds. This means that their values are available for the remaining preconditions
(senders, require_files, and condition), for the address_data expansion, and for any router-
specific expansions. At all other times, the values in these variables are (uid_t)(-1) and
(gid_t)(-1), respectively.

$localhost_number
This contains the expanded value of the localhost_number option. The expansion happens after
the main options have been read.

$log_inodes
The number of free inodes in the disk partition where Exim’s log files are being written. The value
is recalculated whenever the variable is referenced. If the relevant file system does not have the
concept of inodes, the value of is -1. See also the check_log_inodes option.

$log_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s log files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. See also the check_log_space option.

$lookup_dnssec_authenticated
This variable is set after a DNS lookup done by a dnsdb lookup expansion, dnslookup router or
smtp transport. It will be empty if DNSSEC was not requested, “no” if the result was not labelled
as authenticated data and “yes” if it was. Results that are labelled as authoritative answer that
match the dns_trust_aa configuration variable count also as authenticated data.

$mailstore_basename
This variable is set only when doing deliveries in “mailstore” format in the appendfile transport.
During the expansion of the mailstore_prefix, mailstore_suffix, message_prefix, and message_
suffix options, it contains the basename of the files that are being written, that is, the name without
the “.tmp”, “.env”, or “.msg” suffix. At all other times, this variable is empty.

146 String expansions (11)

$malware_name
This variable is available when Exim is compiled with the content-scanning extension. It is set to
the name of the virus that was found when the ACL malware condition is true (see section 45.1).

$max_received_linelength
This variable contains the number of bytes in the longest line that was received as part of the
message, not counting the line termination character(s). It is not valid if the spool_wireformat
option is used.

$message_age
This variable is set at the start of a delivery attempt to contain the number of seconds since the
message was received. It does not change during a single delivery attempt.

$message_body

Tainted

This variable contains the initial portion of a message’s body while it is being delivered, and is
intended mainly for use in filter files. The maximum number of characters of the body that are put
into the variable is set by the message_body_visible configuration option; the default is 500.

By default, newlines are converted into spaces in $message_body, to make it easier to search for
phrases that might be split over a line break. However, this can be disabled by setting message_
body_newlines to be true. Binary zeros are always converted into spaces.

$message_body_end

Tainted

This variable contains the final portion of a message’s body while it is being delivered. The format
and maximum size are as for $message_body.

$message_body_size
When a message is being delivered, this variable contains the size of the body in bytes. The count
starts from the character after the blank line that separates the body from the header. Newlines are
included in the count. See also $message_size, $body_linecount, and $body_zerocount.

If the spool file is wireformat (see the spool_wireformat main option) the CRLF line-terminators
are included in the count.

$message_exim_id
When a message is being received or delivered, this variable contains the unique message id that is
generated and used by Exim to identify the message. An id is not created for a message until after
its header has been successfully received. Note: This is not the contents of the Message-ID: header
line; it is the local id that Exim assigns to the message, for example: 1BXTIK-0001yO-VA.

$message_headers

Tainted

This variable contains a concatenation of all the header lines when a message is being processed,
except for lines added by routers or transports. The header lines are separated by newline charac-
ters. Their contents are decoded in the same way as a header line that is inserted by bheader.

$message_headers_raw

Tainted

This variable is like $message_headers except that no processing of the contents of header lines is
done.

$message_id
This is an old name for $message_exim_id. It is now deprecated.

$message_linecount
This variable contains the total number of lines in the header and body of the message. Compare
$body_linecount, which is the count for the body only. During the DATA and content-scanning
ACLs, $message_linecount contains the number of lines received. Before delivery happens (that is,

147 String expansions (11)

before filters, routers, and transports run) the count is increased to include the Received: header
line that Exim standardly adds, and also any other header lines that are added by ACLs. The blank
line that separates the message header from the body is not counted.

As with the special case of $message_size, during the expansion of the appendfile transport’s
maildir_tag option in maildir format, the value of $message_linecount is the precise size of the
number of newlines in the file that has been written (minus one for the blank line between the
header and the body).

Here is an example of the use of this variable in a DATA ACL:

deny condition = \
 ${if <{250}{${eval:$message_linecount - $body_linecount}}}
 message = Too many lines in message header

In the MAIL and RCPT ACLs, the value is zero because at that stage the message has not yet been
received.

This variable is not valid if the spool_wireformat option is used.

$message_size
When a message is being processed, this variable contains its size in bytes. In most cases, the size
includes those headers that were received with the message, but not those (such as Envelope-to:)
that are added to individual deliveries as they are written. However, there is one special case:
during the expansion of the maildir_tag option in the appendfile transport while doing a delivery
in maildir format, the value of $message_size is the precise size of the file that has been written.
See also $message_body_size, $body_linecount, and $body_zerocount.

While running a per message ACL (mail/rcpt/predata), $message_size contains the size supplied
on the MAIL command, or -1 if no size was given. The value may not, of course, be truthful.

$mime_anomaly_level
$mime_anomaly_text
$mime_boundary
$mime_charset
$mime_content_description
$mime_content_disposition
$mime_content_id
$mime_content_size
$mime_content_transfer_encoding
$mime_content_type
$mime_decoded_filename
$mime_filename
$mime_is_coverletter
$mime_is_multipart
$mime_is_rfc822
$mime_part_count

A number of variables whose names start with $mime are available when Exim is compiled with
the content-scanning extension. For details, see section 45.4.

$n0 – $n9
These variables are counters that can be incremented by means of the add command in filter files.

$original_domain

Tainted

When a top-level address is being processed for delivery, this contains the same value as $domain.
However, if a “child” address (for example, generated by an alias, forward, or filter file) is being
processed, this variable contains the domain of the original address (lower cased). This differs
from $parent_domain only when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a single transport run, $original_domain is not set.

148 String expansions (11)

If a new address is created by means of a deliver command in a system filter, it is set up with an
artificial “parent” address. This has the local part system-filter and the default qualify domain.

$original_local_part

Tainted

When a top-level address is being processed for delivery, this contains the same value as $local_
part, unless a prefix or suffix was removed from the local part, because $original_local_part
always contains the full local part. When a “child” address (for example, generated by an alias,
forward, or filter file) is being processed, this variable contains the full local part of the original
address.

If the router that did the redirection processed the local part case-insensitively, the value in
$original_local_part is in lower case. This variable differs from $parent_local_part only when
there is more than one level of aliasing or forwarding. When more than one address is being
delivered in a single transport run, $original_local_part is not set.

If a new address is created by means of a deliver command in a system filter, it is set up with an
artificial “parent” address. This has the local part system-filter and the default qualify domain.

$originator_gid
This variable contains the value of $caller_gid that was set when the message was received. For
messages received via the command line, this is the gid of the sending user. For messages received
by SMTP over TCP/IP, this is normally the gid of the Exim user.

$originator_uid
The value of $caller_uid that was set when the message was received. For messages received via
the command line, this is the uid of the sending user. For messages received by SMTP over
TCP/IP, this is normally the uid of the Exim user.

$parent_domain

Tainted

This variable is similar to $original_domain (see above), except that it refers to the immediately
preceding parent address.

$parent_local_part

Tainted

This variable is similar to $original_local_part (see above), except that it refers to the immediately
preceding parent address.

$pid
This variable contains the current process id.

$pipe_addresses
This is not an expansion variable, but is mentioned here because the string $pipe_addresses
is handled specially in the command specification for the pipe transport (chapter 29) and in
transport filters (described under transport_filter in chapter 24). It cannot be used in general
expansion strings, and provokes an “unknown variable” error if encountered. Note: This value
permits data supplied by a potential attacker to be used in the command for a pipe transport. Such
configurations should be carefully assessed for security vulnerbilities.

$primary_hostname
This variable contains the value set by primary_hostname in the configuration file, or read by the
uname() function. If uname() returns a single-component name, Exim calls gethostbyname() (or
getipnodebyname() where available) in an attempt to acquire a fully qualified host name. See also
$smtp_active_hostname.

149 String expansions (11)

$proxy_external_address
$proxy_external_port
$proxy_local_address
$proxy_local_port
$proxy_session

These variables are only available when built with Proxy Protocol or SOCKS5 support. For details
see chapter 59.1.

$prdr_requested
This variable is set to “yes” if PRDR was requested by the client for the current message, other-
wise “no”.

$prvscheck_address
$prvscheck_keynum
$prvscheck_result

These variables are used in conjunction with the prvscheck expansion item, which is described in
sections 11.5 and 44.27.

$qualify_domain
The value set for the qualify_domain option in the configuration file.

$qualify_recipient
The value set for the qualify_recipient option in the configuration file, or if not set, the value of
$qualify_domain.

$queue_name
The name of the spool queue in use; empty for the default queue.

$queue_size
This variable contains the number of messages queued. It is evaluated on demand, but no more
often than once every minute. If there is no daemon notifier socket open, the value will be an
empty string.

$r_...
Values can be placed in these variables by the set option of a router. They can be given any name
that starts with $r_. The values persist for the address being handled through subsequent routers
and the eventual transport.

$rcpt_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands received for the current message. If this variable is used in a RCPT ACL, its value includes
the current command.

$rcpt_defer_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a temporary (4xx) response.

$rcpt_fail_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a permanent (5xx) response.

$received_count
This variable contains the number of Received: header lines in the message, including the one
added by Exim (so its value is always greater than zero). It is available in the DATA ACL, the
non-SMTP ACL, and while routing and delivering.

$received_for

Tainted

If there is only a single recipient address in an incoming message, this variable contains that
address when the Received: header line is being built. The value is copied after recipient rewriting
has happened, but before the local_scan() function is run.

150 String expansions (11)

$received_ip_address
$received_port

As soon as an Exim server starts processing an incoming TCP/IP connection, these variables are
set to the address and port on the local IP interface. (The remote IP address and port are in
$sender_host_address and $sender_host_port.) When testing with -bh, the port value is -1 unless
it has been set using the -oMi command line option.

As well as being useful in ACLs (including the “connect” ACL), these variable could be used, for
example, to make the filename for a TLS certificate depend on which interface and/or port is being
used for the incoming connection. The values of $received_ip_address and $received_port are
saved with any messages that are received, thus making these variables available at delivery time.
For outbound connections see $sending_ip_address.

$received_protocol
When a message is being processed, this variable contains the name of the protocol by which it
was received. Most of the names used by Exim are defined by RFCs 821, 2821, and 3848. They
start with “smtp” (the client used HELO) or “esmtp” (the client used EHLO). This can be followed
by “s” for secure (encrypted) and/or “a” for authenticated. Thus, for example, if the protocol is set
to “esmtpsa”, the message was received over an encrypted SMTP connection and the client was
successfully authenticated.

Exim uses the protocol name “smtps” for the case when encryption is automatically set up on
connection without the use of STARTTLS (see tls_on_connect_ports), and the client uses HELO
to initiate the encrypted SMTP session. The name “smtps” is also used for the rare situation where
the client initially uses EHLO, sets up an encrypted connection using STARTTLS, and then uses
HELO afterwards.

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being
re-injected after some kind of scanning.

$received_time
This variable contains the date and time when the current message was received, as a number of
seconds since the start of the Unix epoch.

$recipient_data
This variable is set after an indexing lookup success in an ACL recipients condition. It contains
the data from the lookup, and the value remains set until the next recipients test. Thus, you can do
things like this:

require recipients = cdb*@;/some/file
deny some further test involving $recipient_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$recipient_verify_failure
In an ACL, when a recipient verification fails, this variable contains information about the failure.
It is set to one of the following words:

• “qualify”: The address was unqualified (no domain), and the message was neither local nor
came from an exempted host.

• “route”: Routing failed.

• “mail”: Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, on initial connection, HELO, or MAIL).

• “recipient”: The RCPT command in a callout was rejected.

• “postmaster”: The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between rejections of MAIL and
rejections of RCPT.

151 String expansions (11)

$recipients

Tainted

$recipients_list

Tainted

These variables both contain the envelope recipients for a message.

The first uses a comma and a space separate the addresses in the replacement text. Note: an
address can legitimately contain a comma; this variable is not intended for further processing.

The second is a proper Exim list; colon-separated.

However, the variables are not generally available, to prevent exposure of Bcc recipients in un-
privileged users’ filter files. You can use either of them only in these cases:

(1) In a system filter file.

(2) In the ACLs associated with the DATA command and with non-SMTP messages, that is, the
ACLs defined by acl_smtp_predata, acl_smtp_data, acl_smtp_mime, acl_not_smtp_
start, acl_not_smtp, and acl_not_smtp_mime.

(3) From within a local_scan() function.

$recipients_count
When a message is being processed, this variable contains the number of envelope recipients that
came with the message. Duplicates are not excluded from the count. While a message is being
received over SMTP, the number increases for each accepted recipient. It can be referenced in an
ACL.

$regex_match_string
This variable is set to contain the matching regular expression after a regex ACL condition has
matched (see section 45.5).

$regex1, $regex2, etc
When a regex or mime_regex ACL condition succeeds, these variables contain the captured
substrings identified by the regular expression. If the subject string was tainted then so will any
captured substring.

$reply_address

Tainted

When a message is being processed, this variable contains the contents of the Reply-To: header
line if one exists and it is not empty, or otherwise the contents of the From: header line. Apart from
the removal of leading white space, the value is not processed in any way. In particular, no RFC
2047 decoding or character code translation takes place.

$return_path
When a message is being delivered, this variable contains the return path – the sender field that
will be sent as part of the envelope. It is not enclosed in <> characters. At the start of routing an
address, $return_path has the same value as $sender_address, but if, for example, an incoming
message to a mailing list has been expanded by a router which specifies a different address for
bounce messages, $return_path subsequently contains the new bounce address, whereas $sender_
address always contains the original sender address that was received with the message. In other
words, $sender_address contains the incoming envelope sender, and $return_path contains the
outgoing envelope sender.

$return_size_limit
This is an obsolete name for $bounce_return_size_limit.

$router_name
During the running of a router, or a transport called, this variable contains the router name.

152 String expansions (11)

$runrc
This variable contains the return code from a command that is run by the ${run...} expansion item.
Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

$self_hostname
When an address is routed to a supposedly remote host that turns out to be the local host, what
happens is controlled by the self generic router option. One of its values causes the address to be
passed to another router. When this happens, $self_hostname is set to the name of the local host
that the original router encountered. In other circumstances its contents are null.

$sender_address

Tainted

When a message is being processed, this variable contains the sender’s address that was received
in the message’s envelope. The case of letters in the address is retained, in both the local part and
the domain. For bounce messages, the value of this variable is the empty string. See also $return_
path.

$sender_address_data
If $address_data is set when the routers are called from an ACL to verify a sender address, the
final value is preserved in $sender_address_data, to distinguish it from data from a recipient
address. The value does not persist after the end of the current ACL statement. If you want to
preserve it for longer, you can save it in an ACL variable.

$sender_address_domain

Tainted

The domain portion of $sender_address.

$sender_address_local_part

Tainted

The local part portion of $sender_address.

$sender_data
This variable is set after a lookup success in an ACL senders condition or in a router senders
option. It contains the data from the lookup, and the value remains set until the next senders test.
Thus, you can do things like this:

require senders = cdb*@;/some/file
deny some further test involving $sender_data

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for a lookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

$sender_fullhost
When a message is received from a remote host, this variable contains the host name and IP
address in a single string. It ends with the IP address in square brackets, followed by a colon and a
port number if the logging of ports is enabled. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host name was
verified by looking up its IP address. (Looking up the IP address can be forced by the host_lookup
option, independent of verification.) A plain host name at the start of the string is a verified host
name; if this is not present, verification either failed or was not requested. A host name in parenth-
eses is the argument of a HELO or EHLO command. This is omitted if it is identical to the verified
host name or to the host’s IP address in square brackets.

$sender_helo_dnssec
This boolean variable is true if a successful HELO verification was done using DNS information
the resolver library stated was authenticated data.

153 String expansions (11)

$sender_helo_name

Tainted

When a message is received from a remote host that has issued a HELO or EHLO command, the
argument of that command is placed in this variable. It is also set if HELO or EHLO is used when
a message is received using SMTP locally via the -bs or -bS options.

$sender_host_address
When a message is received from a remote host using SMTP, this variable contains that host’s IP
address. For locally non-SMTP submitted messages, it is empty.

$sender_host_authenticated
This variable contains the name (not the public name) of the authenticator driver that successfully
authenticated the client from which the message was received. It is empty if there was no success-
ful authentication. See also $authenticated_id.

$sender_host_dnssec
If an attempt to populate $sender_host_name has been made (by reference, hosts_lookup or
otherwise) then this boolean will have been set true if, and only if, the resolver library states that
both the reverse and forward DNS were authenticated data. At all other times, this variable is false.

It is likely that you will need to coerce DNSSEC support on in the resolver library, by setting:

dns_dnssec_ok = 1

In addition, on Linux with glibc 2.31 or newer the resolver library will default to stripping out a
successful validation status. This will break a previously working Exim installation. Provided that
you do trust the resolver (ie, is on localhost) you can tell glibc to pass through any successful
validation with a new option in /etc/resolv.conf:

options trust-ad

Exim does not perform DNSSEC validation itself, instead leaving that to a validating resolver (e.g.
unbound, or bind with suitable configuration).

If you have changed host_lookup_order so that bydns is not the first mechanism in the list, then
this variable will be false.

This requires that your system resolver library support EDNS0 (and that DNSSEC flags exist in
the system headers). If the resolver silently drops all EDNS0 options, then this will have no effect.
OpenBSD’s asr resolver is known to currently ignore EDNS0, documented in CAVEATS of
asr_run(3).

$sender_host_name

Tainted

When a message is received from a remote host, this variable contains the host’s name as obtained
by looking up its IP address. For messages received by other means, this variable is empty.

If the host name has not previously been looked up, a reference to $sender_host_name triggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to the
original IP address via a forward lookup. If either the reverse or the forward lookup fails to find
any data, or if the forward lookup does not yield the original IP address, $sender_host_name
remains empty, and $host_lookup_failed is set to “1”.

However, if either of the lookups cannot be completed (for example, there is a DNS timeout),
$host_lookup_deferred is set to “1”, and $host_lookup_failed remains set to “0”.

Once $host_lookup_failed is set to “1”, Exim does not try to look up the host name again if there
is a subsequent reference to $sender_host_name in the same Exim process, but it does try again if
$host_lookup_deferred is set to “1”.

Exim does not automatically look up every calling host’s name. If you want maximum efficiency,
you should arrange your configuration so that it avoids these lookups altogether. The lookup
happens only if one or more of the following are true:

154 String expansions (11)

• A string containing $sender_host_name is expanded.

• The calling host matches the list in host_lookup. In the default configuration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the default for host_
lookup is unset.)

• Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections 10.4.4 and 10.4.8.

• The calling host matches helo_try_verify_hosts or helo_verify_hosts. In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

• The remote host issues a EHLO or HELO command that quotes one of the domains in helo_
lookup_domains. The default value of this option is

helo_lookup_domains = @ : @[]

which causes a lookup if a remote host (incorrectly) gives the server’s name or IP address in an
EHLO or HELO command.

$sender_host_port
When a message is received from a remote host, this variable contains the port number that was
used on the remote host.

$sender_ident
When a message is received from a remote host, this variable contains the identification received
in response to an RFC 1413 request. When a message has been received locally, this variable
contains the login name of the user that called Exim.

$sender_rate_xxx
A number of variables whose names begin $sender_rate_ are set as part of the ratelimit ACL
condition. Details are given in section 44.20.

$sender_rcvhost
This is provided specifically for use in Received: headers. It starts with either the verified host
name (as obtained from a reverse DNS lookup) or, if there is no verified host name, the IP address
in square brackets. After that there may be text in parentheses. When the first item is a verified
host name, the first thing in the parentheses is the IP address in square brackets, followed by a
colon and a port number if port logging is enabled. When the first item is an IP address, the port is
recorded as “port=xxxx” inside the parentheses.

There may also be items of the form “helo=xxxx” if HELO or EHLO was used and its argument
was not identical to the real host name or IP address, and “ident=xxxx” if an RFC 1413 ident string
is available. If all three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$sender_verify_failure
In an ACL, when a sender verification fails, this variable contains information about the failure.
The details are the same as for $recipient_verify_failure.

$sending_ip_address
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the IP address of the local interface that is being used. This is useful if a host that has
more than one IP address wants to take on different personalities depending on which one is being
used. For incoming connections, see $received_ip_address.

$sending_port
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the local port that is being used. For incoming connections, see $received_port.

$smtp_active_hostname
During an incoming SMTP session, this variable contains the value of the active host name, as
specified by the smtp_active_hostname option. The value of $smtp_active_hostname is saved
with any message that is received, so its value can be consulted during routing and delivery.

155 String expansions (11)

$smtp_command

Tainted

During the processing of an incoming SMTP command, this variable contains the entire command.
This makes it possible to distinguish between HELO and EHLO in the HELO ACL, and also to
distinguish between commands such as these:

MAIL FROM:<>
MAIL FROM: <>

For a MAIL command, extra parameters such as SIZE can be inspected. For a RCPT command,
the address in $smtp_command is the original address before any rewriting, whereas the values in
$local_part and $domain are taken from the address after SMTP-time rewriting.

$smtp_command_argument

Tainted

While an ACL is running to check an SMTP command, this variable contains the argument, that is,
the text that follows the command name, with leading white space removed. Following the intro-
duction of $smtp_command, this variable is somewhat redundant, but is retained for backwards
compatibility.

$smtp_command_history
A comma-separated list (with no whitespace) of the most-recent SMTP commands received, in
time-order left to right. Only a limited number of commands are remembered.

$smtp_count_at_connection_start
This variable is set greater than zero only in processes spawned by the Exim daemon for handling
incoming SMTP connections. The name is deliberately long, in order to emphasize what the
contents are. When the daemon accepts a new connection, it increments this variable. A copy of
the variable is passed to the child process that handles the connection, but its value is fixed, and
never changes. It is only an approximation of how many incoming connections there actually are,
because many other connections may come and go while a single connection is being processed.
When a child process terminates, the daemon decrements its copy of the variable.

$smtp_notquit_reason
When the not-QUIT ACL is running, this variable is set to a string that indicates the reason for the
termination of the SMTP connection.

$sn0 – $sn9
These variables are copies of the values of the $n0 – $n9 accumulators that were current at the end
of the system filter file. This allows a system filter file to set values that can be tested in users’
filter files. For example, a system filter could set a value indicating how likely it is that a message
is junk mail.

$spam_score
$spam_score_int
$spam_bar
$spam_report
$spam_action

A number of variables whose names start with $spam are available when Exim is compiled with
the content-scanning extension. For details, see section 45.2.

$spf_header_comment
$spf_received
$spf_result
$spf_result_guessed
$spf_smtp_comment

These variables are only available if Exim is built with SPF support. For details see section 58.2.

$spool_directory
The name of Exim’s spool directory.

156 String expansions (11)

$spool_inodes
The number of free inodes in the disk partition where Exim’s spool files are being written. The
value is recalculated whenever the variable is referenced. If the relevant file system does not have
the concept of inodes, the value of is -1. See also the check_spool_inodes option.

$spool_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim’s spool files
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to find the amount of free space (only true for experimental
systems), the space value is -1. For example, to check in an ACL that there is at least 50 megabytes
free on the spool, you could write:

condition = ${if > {$spool_space}{50000}}

See also the check_spool_space option.

$thisaddress
This variable is set only during the processing of the foranyaddress command in a filter file. Its
use is explained in the description of that command, which can be found in the separate document
entitled Exim’s interfaces to mail filtering.

$tls_in_bits
Contains an approximation of the TLS cipher’s bit-strength on the inbound connection; the mean-
ing of this depends upon the TLS implementation used. If TLS has not been negotiated, the value
will be 0. The value of this is automatically fed into the Cyrus SASL authenticator when acting as
a server, to specify the "external SSF" (a SASL term).

The deprecated $tls_bits variable refers to the inbound side except when used in the context of an
outbound SMTP delivery, when it refers to the outbound.

$tls_out_bits
Contains an approximation of the TLS cipher’s bit-strength on an outbound SMTP connection; the
meaning of this depends upon the TLS implementation used. If TLS has not been negotiated, the
value will be 0.

$tls_in_ourcert
This variable refers to the certificate presented to the peer of an inbound connection when the
message was received. It is only useful as the argument of a certextract expansion item, md5,
sha1 or sha256 operator, or a def condition.

Note: Under versions of OpenSSL preceding 1.1.1, when a list of more than one file is used for
tls_certificate, this variable is not reliable. The macro "_TLS_BAD_MULTICERT_IN_
OURCERT" will be defined for those versions.

$tls_in_peercert
This variable refers to the certificate presented by the peer of an inbound connection when the
message was received. It is only useful as the argument of a certextract expansion item, md5,
sha1 or sha256 operator, or a def condition. If certificate verification fails it may refer to a failing
chain element which is not the leaf.

$tls_out_ourcert
This variable refers to the certificate presented to the peer of an outbound connection. It is only
useful as the argument of a certextract expansion item, md5, sha1 or sha256 operator, or a def
condition.

$tls_out_peercert
This variable refers to the certificate presented by the peer of an outbound connection. It is only
useful as the argument of a certextract expansion item, md5, sha1 or sha256 operator, or a def
condition. If certificate verification fails it may refer to a failing chain element which is not the
leaf.

$tls_in_certificate_verified
This variable is set to “1” if a TLS certificate was verified when the message was received, and “0”
otherwise.

157 String expansions (11)

The deprecated $tls_certificate_verified variable refers to the inbound side except when used in the
context of an outbound SMTP delivery, when it refers to the outbound.

$tls_out_certificate_verified
This variable is set to “1” if a TLS certificate was verified when an outbound SMTP connection
was made, and “0” otherwise.

$tls_in_cipher
When a message is received from a remote host over an encrypted SMTP connection, this variable
is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other circum-
stances, in particular, for message received over unencrypted connections, the variable is empty.
Testing $tls_in_cipher for emptiness is one way of distinguishing between encrypted and non-
encrypted connections during ACL processing.

The deprecated $tls_cipher variable is the same as $tls_in_cipher during message reception, but in
the context of an outward SMTP delivery taking place via the smtp transport becomes the same as
$tls_out_cipher.

$tls_in_cipher_std
As above, but returning the RFC standard name for the cipher suite.

$tls_out_cipher
This variable is cleared before any outgoing SMTP connection is made, and then set to the
outgoing cipher suite if one is negotiated. See chapter 43 for details of TLS support and chapter 30
for details of the smtp transport.

$tls_out_cipher_std
As above, but returning the RFC standard name for the cipher suite.

$tls_out_dane
DANE active status. See section 43.12.

$tls_in_ocsp
When a message is received from a remote client connection the result of any OCSP request from
the client is encoded in this variable:

0 OCSP proof was not requested (default value)
1 No response to request
2 Response not verified
3 Verification failed
4 Verification succeeded

$tls_out_ocsp
When a message is sent to a remote host connection the result of any OCSP request made is
encoded in this variable. See $tls_in_ocsp for values.

$tls_in_peerdn
When a message is received from a remote host over an encrypted SMTP connection, and Exim is
configured to request a certificate from the client, the value of the Distinguished Name of the
certificate is made available in the $tls_in_peerdn during subsequent processing. If certificate
verification fails it may refer to a failing chain element which is not the leaf.

The deprecated $tls_peerdn variable refers to the inbound side except when used in the context of
an outbound SMTP delivery, when it refers to the outbound.

$tls_out_peerdn
When a message is being delivered to a remote host over an encrypted SMTP connection, and
Exim is configured to request a certificate from the server, the value of the Distinguished Name of
the certificate is made available in the $tls_out_peerdn during subsequent processing. If certificate
verification fails it may refer to a failing chain element which is not the leaf.

$tls_in_resumption
$tls_out_resumption

Observability for TLS session resumption. See 43.11 for details.

158 String expansions (11)

$tls_in_sni

Tainted

When a TLS session is being established, if the client sends the Server Name Indication extension,
the value will be placed in this variable. If the variable appears in tls_certificate then this option
and some others, described in 43.8, will be re-expanded early in the TLS session, to permit a
different certificate to be presented (and optionally a different key to be used) to the client, based
upon the value of the SNI extension.

The deprecated $tls_sni variable refers to the inbound side except when used in the context of an
outbound SMTP delivery, when it refers to the outbound.

$tls_out_sni
During outbound SMTP deliveries, this variable reflects the value of the tls_sni option on the
transport.

$tls_out_tlsa_usage
Bitfield of TLSA record types found. See section 43.12.

$tls_in_ver
When a message is received from a remote host over an encrypted SMTP connection this variable
is set to the protocol version, eg TLS1.2.

$tls_out_ver
When a message is being delivered to a remote host over an encrypted SMTP connection this
variable is set to the protocol version.

$tod_bsdinbox
The time of day and the date, in the format required for BSD-style mailbox files, for example: Thu
Oct 17 17:14:09 1995.

$tod_epoch
The time and date as a number of seconds since the start of the Unix epoch.

$tod_epoch_l
The time and date as a number of microseconds since the start of the Unix epoch.

$tod_full
A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The timezone
is always given as a numerical offset from UTC, with positive values used for timezones that are
ahead (east) of UTC, and negative values for those that are behind (west).

$tod_log
The time and date in the format used for writing Exim’s log files, for example: 1995-10-12
15:32:29, but without a timezone.

$tod_logfile
This variable contains the date in the format yyyymmdd. This is the format that is used for
datestamping log files when log_file_path contains the %D flag.

$tod_zone
This variable contains the numerical value of the local timezone, for example: -0500.

$tod_zulu
This variable contains the UTC date and time in “Zulu” format, as specified by ISO 8601, for
example: 20030221154023Z.

$transport_name
During the running of a transport, this variable contains its name.

$value
This variable contains the result of an expansion lookup, extraction operation, or external com-
mand, as described above. It is also used during a reduce expansion.

159 String expansions (11)

$verify_mode
While a router or transport is being run in verify mode or for cutthrough delivery, contains "S" for
sender-verification or "R" for recipient-verification. Otherwise, empty.

$version_number
The version number of Exim. Same as $exim_version, may be overridden by the exim_version
main config option.

$warn_message_delay
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 50.2.

$warn_message_recipients
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section 50.2.

160 String expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM_PERL = perl.o

in your Local/Makefile and then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutines is via a global configuration option called perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim configuration file then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If there is a perl_startup option then the associated value is taken to be Perl
code which is executed in a newly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl_startup = do '/etc/exim.pl'

where /etc/exim.pl is Perl code which defines any subroutines you want to use from Exim. Exim can
be configured either to start up a Perl interpreter as soon as it is entered, or to wait until the first time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two
ways:

• Setting perl_at_start (a boolean option) in the configuration requests a startup when Exim is
entered.

• The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

There is also a command line option -pd (for delay) which suppresses the initial startup, even if perl_
at_start is set.

• To provide more security executing Perl code via the embedded Perl interpreter, the perl_
taintmode option can be set. This enables the taint mode of the Perl interpreter. You are encour-
aged to set this option to a true value. To avoid breaking existing installations, it defaults to false.

Note: This is entirely separate from Exim’s tainted-data tracking.

12.2 Calling Perl subroutines

When the configuration file includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are defined by the perl_startup code. The operator is used in any
of the following forms:

${perl{foo}}
${perl{foo}{argument}}
${perl{foo}{argument1}{argument2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many arguments passed to Perl subroutine "foo" (max is 8)

The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to
Exim to be inserted into the expanded string. If the return value is undef, the expansion is forced to

161 Embedded Perl (12)

fail in the same way as an explicit “fail” on an if or lookup item. If the subroutine aborts by obeying
Perl’s die function, the expansion fails with the error message that was passed to die.

12.3 Calling Exim functions from Perl

Within any Perl code called from Exim, the function Exim::expand_string() is available to call back
into Exim’s string expansion function. For example, the Perl code

my $lp = Exim::expand_string('$local_part');

makes the current Exim $local_part available in the Perl variable $lp. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a “fail” item, the result of Exim::expand_string() is undef.
If there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the same way as if die were used.

Two other Exim functions are available for use from within Perl code. Exim::debug_write() writes a
string to the standard error stream if Exim’s debugging is enabled. If you want a newline at the end,
you must supply it. Exim::log_write() writes a string to Exim’s main log, adding a leading timestamp.
In this case, you should not supply a terminating newline.

12.4 Use of standard output and error by Perl

You should not write to the standard error or output streams from within your Perl code, as it is not
defined how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this
stream is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected to /dev/null in the daemon. The chaos is avoided, but the output is lost.

The Perl warn statement writes to the standard error stream by default. Calls to warn may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from the warn statement to be written to the Exim main log.
You can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discard warn output completely, you need this:

$SIG{__WARN__} = sub { };

Whenever a warn is obeyed, the anonymous subroutine is called. In this example, the code for the
subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
the warn message is passed as the first subroutine argument.

162 Embedded Perl (12)

13. Starting the daemon and the use of network interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be configured as one or more “logical” interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports “loopback” interfaces (127.0.0.1 in IPv4 and ::1 in
IPv6), which do not use any physical hardware. Exim requires knowledge about the host’s interfaces
for use in three different circumstances:

(1) When a listening daemon is started, Exim needs to know which interfaces and ports to listen on.

(2) When Exim is routing an address, it needs to know which IP addresses are associated with local
interfaces. This is required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
is routed to an IP address that in fact belongs to the local host. Unless the self router option or
the allow_localhost option of the smtp transport is set (as appropriate), this is treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim’s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want all its IP addresses to be treated in the same way, and you are using only
the standard SMTP port, you should not need to take any special action. The rest of this chapter does
not apply to you.

In a more complicated situation you may want to listen only on certain interfaces, or on different
ports, and for this reason there are a number of options that can be used to influence Exim’s behav-
iour. The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
$received_ip_address and $received_port.

13.1 Starting a listening daemon

When a listening daemon is started (by means of the -bd command line option), the interfaces and
ports on which it listens are controlled by the following options:

• daemon_smtp_ports contains a list of default ports or service names. (For backward compati-
bility, this option can also be specified in the singular.)

• local_interfaces contains list of interface IP addresses on which to listen. Each item may option-
ally also specify a port.

The default list separator in both cases is a colon, but this can be changed as described in section 6.21.
When IPv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

local_interfaces = <; 127.0.0.1 ; \
 192.168.23.65 ; \
 ::1 ; \
 3ffe:ffff:836f::fe86:a061

There are two different formats for specifying a port along with an IP address in local_interfaces:

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different IP addresses:

local_interfaces = <; 192.168.23.65.1234 ; \
 3ffe:ffff:836f::fe86:a061.1234

(2) The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example:

163 Starting the daemon (13)

local_interfaces = <; [192.168.23.65]:1234 ; \
 [3ffe:ffff:836f::fe86:a061]:1234

When a port is not specified, the value of daemon_smtp_ports is used. The default setting contains
just one port:

daemon_smtp_ports = smtp

If more than one port is listed, each interface that does not have its own port specified listens on all of
them. Ports that are listed in daemon_smtp_ports can be identified either by name (defined in
/etc/services) or by number. However, when ports are given with individual IP addresses in local_
interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specially. They are interpreted as “all IPv4 interfaces” and
“all IPv6 interfaces”, respectively. In each case, Exim tells the TCP/IP stack to “listen on all IPvx
interfaces” instead of setting up separate listening sockets for each interface. The default value of
local_interfaces is

local_interfaces = 0.0.0.0

when Exim is built without IPv6 support; otherwise it is:

local_interfaces = <; ::0 ; 0.0.0.0

Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -oX command line option can be used to override the values of daemon_smtp_ports and/or
local_interfaces for a particular daemon instance. Another way of doing this would be to use macros
and the -D option. However, -oX can be used by any admin user, whereas modification of the runtime
configuration by -D is allowed only when the caller is root or exim.

The value of -oX is a list of items. The default colon separator can be changed in the usual way (6.21)
if required. If there are any items that do not contain dots or colons (that is, are not IP addresses), the
value of daemon_smtp_ports is replaced by the list of those items. If there are any items that do
contain dots or colons, the value of local_interfaces is replaced by those items. Thus, for example,

-oX 1225

overrides daemon_smtp_ports, but leaves local_interfaces unchanged, whereas

-oX 192.168.34.5.1125

overrides local_interfaces, leaving daemon_smtp_ports unchanged. (However, since local_inter-
faces now contains no items without ports, the value of daemon_smtp_ports is no longer relevant in
this example.)

13.4 Support for the submissions (aka SSMTP or SMTPS) protocol

Exim supports the use of TLS-on-connect, used by mail clients in the “submissions” protocol, histori-
cally also known as SMTPS or SSMTP. For some years, IETF Standards Track documents only
blessed the STARTTLS-based Submission service (port 587) while common practice was to support
the same feature set on port 465, but using TLS-on-connect. If your installation needs to provide
service to mail clients (Mail User Agents, MUAs) then you should provide service on both the 587
and the 465 TCP ports.

If the tls_on_connect_ports option is set to a list of port numbers or service names, connections to
those ports must first establish TLS, before proceeding to the application layer use of the SMTP
protocol.

The common use of this option is expected to be

164 Starting the daemon (13)

tls_on_connect_ports = 465

per RFC 8314. There is also a command line option -tls-on-connect, which forces all ports to behave
in this way when a daemon is started.

Warning: Setting tls_on_connect_ports does not of itself cause the daemon to listen on those ports.
You must still specify them in daemon_smtp_ports, local_interfaces, or the -oX option. (This is
because tls_on_connect_ports applies to inetd connections as well as to connections via the
daemon.)

13.5 IPv6 address scopes

IPv6 addresses have “scopes”, and a host with multiple hardware interfaces can, in principle, have the
same link-local IPv6 address on different interfaces. Thus, additional information is needed, over and
above the IP address, to distinguish individual interfaces. A convention of using a percent sign
followed by something (often the interface name) has been adopted in some cases, leading to
addresses like this:

fe80::202:b3ff:fe03:45c1%eth0

To accommodate this usage, a percent sign followed by an arbitrary string is allowed at the end of an
IPv6 address. By default, Exim calls getaddrinfo() to convert a textual IPv6 address for actual use.
This function recognizes the percent convention in operating systems that support it, and it processes
the address appropriately. Unfortunately, some older libraries have problems with getaddrinfo(). If

IPV6_USE_INET_PTON=yes

is set in Local/Makefile (or an OS-dependent Makefile) when Exim is built, Exim uses inet_pton() to
convert a textual IPv6 address for actual use, instead of getaddrinfo(). (Before version 4.14, it always
used this function.) Of course, this means that the additional functionality of getaddrinfo() –
recognizing scoped addresses – is lost.

13.6 Disabling IPv6

Sometimes it happens that an Exim binary that was compiled with IPv6 support is run on a host
whose kernel does not support IPv6. The binary will fall back to using IPv4, but it may waste
resources looking up AAAA records, and trying to connect to IPv6 addresses, causing delays to mail
delivery. If you set the disable_ipv6 option true, even if the Exim binary has IPv6 support, no IPv6
activities take place. AAAA records are never looked up, and any IPv6 addresses that are listed in
local_interfaces, data for the manualroute router, etc. are ignored. If IP literals are enabled, the
ipliteral router declines to handle IPv6 literal addresses.

On the other hand, when IPv6 is in use, there may be times when you want to disable it for certain
hosts or domains. You can use the dns_ipv4_lookup option to globally suppress the lookup of AAAA
records for specified domains, and you can use the ignore_target_hosts generic router option to
ignore IPv6 addresses in an individual router.

13.7 Examples of starting a listening daemon

The default case in an IPv6 environment is

daemon_smtp_ports = smtp
local_interfaces = <; ::0 ; 0.0.0.0

This specifies listening on the smtp port on all IPv6 and IPv4 interfaces. Either one or two sockets
may be used, depending on the characteristics of the TCP/IP stack. (This is complicated and messy;
for more information, read the comments in the daemon.c source file.)

To specify listening on ports 25 and 26 on all interfaces:

daemon_smtp_ports = 25 : 26

(leaving local_interfaces at the default setting) or, more explicitly:

165 Starting the daemon (13)

local_interfaces = <; ::0.25 ; ::0.26 \
 0.0.0.0.25 ; 0.0.0.0.26

To listen on the default port on all IPv4 interfaces, and on port 26 on the IPv4 loopback address only:

local_interfaces = 0.0.0.0 : 127.0.0.1.26

To specify listening on the default port on specific interfaces only:

local_interfaces = 10.0.0.67 : 192.168.34.67

Warning: Such a setting excludes listening on the loopback interfaces.

13.8 Recognizing the local host

The local_interfaces option is also used when Exim needs to determine whether or not an IP address
refers to the local host. That is, the IP addresses of all the interfaces on which a daemon is listening
are always treated as local.

For this usage, port numbers in local_interfaces are ignored. If either of the items 0.0.0.0 or ::0 are
encountered, Exim gets a complete list of available interfaces from the operating system, and extracts
the relevant (that is, IPv4 or IPv6) addresses to use for checking.

Some systems set up large numbers of virtual interfaces in order to provide many virtual web servers.
In this situation, you may want to listen for email on only a few of the available interfaces, but
nevertheless treat all interfaces as local when routing. You can do this by setting extra_local_inter-
faces to a list of IP addresses, possibly including the “all” wildcard values. These addresses are
recognized as local, but are not used for listening. Consider this example:

local_interfaces = <; 127.0.0.1 ; ::1 ; \
 192.168.53.235 ; \
 3ffe:2101:12:1:a00:20ff:fe86:a061

extra_local_interfaces = <; ::0 ; 0.0.0.0

The daemon listens on the loopback interfaces and just one IPv4 and one IPv6 address, but all
available interface addresses are treated as local when Exim is routing.

In some environments the local host name may be in an MX list, but with an IP address that is not
assigned to any local interface. In other cases it may be desirable to treat other host names as if they
referred to the local host. Both these cases can be handled by setting the hosts_treat_as_local option.
This contains host names rather than IP addresses. When a host is referenced during routing, either
via an MX record or directly, it is treated as the local host if its name matches hosts_treat_as_local,
or if any of its IP addresses match local_interfaces or extra_local_interfaces.

13.9 Delivering to a remote host

Delivery to a remote host is handled by the smtp transport. By default, it allows the system’s TCP/IP
functions to choose which interface to use (if there is more than one) when connecting to a remote
host. However, the interface option can be set to specify which interface is used. See the description
of the smtp transport in chapter 30 for more details.

166 Starting the daemon (13)

14. Main configuration

The first part of the runtime configuration file contains three types of item:

• Macro definitions: These lines start with an upper case letter. See section 6.4 for details of macro
processing.

• Named list definitions: These lines start with one of the words “domainlist”, “hostlist”,
“addresslist”, or “localpartlist”. Their use is described in section 10.2.4.

• Main configuration settings: Each setting occupies one line of the file (with possible continu-
ations). If any setting is preceded by the word “hide”, the -bP command line option displays its
value to admin users only. See section 6.11 for a description of the syntax of these option settings.

This chapter specifies all the main configuration options, along with their types and default values.
For ease of finding a particular option, they appear in alphabetical order in section 14.23 below.
However, because there are now so many options, they are first listed briefly in functional groups, as
an aid to finding the name of the option you are looking for. Some options are listed in more than one
group.

14.1 Miscellaneous

add_environment environment variables
bi_command to run for -bi command line option
debug_store do extra internal checks
disable_ipv6 do no IPv6 processing
keep_environment environment variables
keep_malformed for broken files – should not happen
localhost_number for unique message ids in clusters
message_body_newlines retain newlines in $message_body
message_body_visible how much to show in $message_body
mua_wrapper run in “MUA wrapper” mode
print_topbitchars top-bit characters are printing
spool_wireformat use wire-format spool data files when possible
timezone force time zone

14.2 Exim parameters

exim_group override compiled-in value
exim_path override compiled-in value
exim_user override compiled-in value
primary_hostname default from uname()
split_spool_directory use multiple directories
spool_directory override compiled-in value

14.3 Privilege controls

admin_groups groups that are Exim admin users
commandline_checks_require_admin require admin for various checks
deliver_drop_privilege drop root for delivery processes
local_from_check insert Sender: if necessary
local_from_prefix for testing From: for local sender
local_from_suffix for testing From: for local sender
local_sender_retain keep Sender: from untrusted user
never_users do not run deliveries as these
prod_requires_admin forced delivery requires admin user
queue_list_requires_admin queue listing requires admin user
trusted_groups groups that are trusted
trusted_users users that are trusted

167 Main configuration (14)

14.4 Logging

event_action custom logging
hosts_connection_nolog exemption from connect logging
log_file_path override compiled-in value
log_selector set/unset optional logging
log_timezone add timezone to log lines
message_logs create per-message logs
preserve_message_logs after message completion
panic_coredump request coredump on fatal errors
process_log_path for SIGUSR1 and exiwhat
slow_lookup_log control logging of slow DNS lookups
syslog_duplication controls duplicate log lines on syslog
syslog_facility set syslog “facility” field
syslog_pid pid in syslog lines
syslog_processname set syslog “ident” field
syslog_timestamp timestamp syslog lines
write_rejectlog control use of message log

14.5 Frozen messages

auto_thaw sets time for retrying frozen messages
freeze_tell send message when freezing
move_frozen_messages to another directory
timeout_frozen_after keep frozen messages only so long

14.6 Data lookups

ibase_servers InterBase servers
ldap_ca_cert_dir dir of CA certs to verify LDAP server’s
ldap_ca_cert_file file of CA certs to verify LDAP server’s
ldap_cert_file client cert file for LDAP
ldap_cert_key client key file for LDAP
ldap_cipher_suite TLS negotiation preference control
ldap_default_servers used if no server in query
ldap_require_cert action to take without LDAP server cert
ldap_start_tls require TLS within LDAP
ldap_version set protocol version
lookup_open_max lookup files held open
mysql_servers default MySQL servers
oracle_servers Oracle servers
pgsql_servers default PostgreSQL servers
sqlite_lock_timeout as it says

14.7 Message ids

message_id_header_domain used to build Message-ID: header
message_id_header_text ditto

14.8 Embedded Perl Startup

perl_at_start always start the interpreter
perl_startup code to obey when starting Perl
perl_taintmode enable taint mode in Perl

168 Main configuration (14)

14.9 Daemon

daemon_smtp_ports default ports
daemon_startup_retries number of times to retry
daemon_startup_sleep time to sleep between tries
extra_local_interfaces not necessarily listened on
local_interfaces on which to listen, with optional ports
notifier_socket override compiled-in value
pid_file_path override compiled-in value
queue_run_max maximum simultaneous queue runners
smtp_backlog_monitor level to log listen backlog

14.10 Resource control

check_log_inodes before accepting a message
check_log_space before accepting a message
check_spool_inodes before accepting a message
check_spool_space before accepting a message
deliver_queue_load_max no queue deliveries if load high
queue_only_load queue incoming if load high
queue_only_load_latch don’t re-evaluate load for each message
queue_run_max maximum simultaneous queue runners
remote_max_parallel parallel SMTP delivery per message
smtp_accept_max simultaneous incoming connections
smtp_accept_max_nonmail non-mail commands
smtp_accept_max_nonmail_hosts hosts to which the limit applies
smtp_accept_max_per_connection messages per connection
smtp_accept_max_per_host connections from one host
smtp_accept_queue queue mail if more connections
smtp_accept_queue_per_connection queue if more messages per connection
smtp_accept_reserve only reserve hosts if more connections
smtp_check_spool_space from SIZE on MAIL command
smtp_connect_backlog passed to TCP/IP stack
smtp_load_reserve SMTP from reserved hosts if load high
smtp_reserve_hosts these are the reserve hosts

14.11 Policy controls

acl_not_smtp ACL for non-SMTP messages
acl_not_smtp_mime ACL for non-SMTP MIME parts
acl_not_smtp_start ACL for start of non-SMTP message
acl_smtp_auth ACL for AUTH
acl_smtp_connect ACL for connection
acl_smtp_data ACL for DATA
acl_smtp_data_prdr ACL for DATA, per-recipient
acl_smtp_dkim ACL for DKIM verification
acl_smtp_etrn ACL for ETRN
acl_smtp_expn ACL for EXPN
acl_smtp_helo ACL for EHLO or HELO
acl_smtp_mail ACL for MAIL
acl_smtp_mailauth ACL for AUTH on MAIL command
acl_smtp_mime ACL for MIME parts
acl_smtp_notquit ACL for non-QUIT terminations
acl_smtp_predata ACL for start of data
acl_smtp_quit ACL for QUIT
acl_smtp_rcpt ACL for RCPT
acl_smtp_starttls ACL for STARTTLS
acl_smtp_vrfy ACL for VRFY

169 Main configuration (14)

acl_smtp_wellknown ACL for WELLKNOWN
av_scanner specify virus scanner
check_rfc2047_length check length of RFC 2047 “encoded words”
dns_cname_loops follow CNAMEs returned by resolver
dns_csa_search_limit control CSA parent search depth
dns_csa_use_reverse en/disable CSA IP reverse search
header_maxsize total size of message header
header_line_maxsize individual header line limit
helo_accept_junk_hosts allow syntactic junk from these hosts
helo_allow_chars allow illegal chars in HELO names
helo_lookup_domains lookup hostname for these HELO names
helo_try_verify_hosts HELO soft-checked for these hosts
helo_verify_hosts HELO hard-checked for these hosts
host_lookup host name looked up for these hosts
host_lookup_order order of DNS and local name lookups
hosts_proxy use proxy protocol for these hosts
host_reject_connection reject connection from these hosts
hosts_treat_as_local useful in some cluster configurations
local_scan_timeout timeout for local_scan()
message_size_limit for all messages
percent_hack_domains recognize %-hack for these domains
proxy_protocol_timeout timeout for proxy protocol negotiation
spamd_address set interface to SpamAssassin
strict_acl_vars object to unset ACL variables
spf_smtp_comment_template template for $spf_smtp_comment

14.12 Callout cache

callout_domain_negative_expire timeout for negative domain cache item
callout_domain_positive_expire timeout for positive domain cache item
callout_negative_expire timeout for negative address cache item
callout_positive_expire timeout for positive address cache item
callout_random_local_part string to use for “random” testing

14.13 TLS

gnutls_compat_mode use GnuTLS compatibility mode
gnutls_allow_auto_pkcs11 allow GnuTLS to autoload PKCS11 modules
hosts_require_alpn mandatory ALPN
hosts_require_helo mandatory HELO/EHLO
openssl_options adjust OpenSSL compatibility options
tls_advertise_hosts advertise TLS to these hosts
tls_alpn acceptable protocol names
tls_certificate location of server certificate
tls_crl certificate revocation list
tls_dh_max_bits clamp D-H bit count suggestion
tls_dhparam DH parameters for server
tls_eccurve EC curve selection for server
tls_ocsp_file location of server certificate status proof
tls_on_connect_ports specify SSMTP (SMTPS) ports
tls_privatekey location of server private key
tls_remember_esmtp don’t reset after starting TLS
tls_require_ciphers specify acceptable ciphers
tls_try_verify_hosts try to verify client certificate
tls_verify_certificates expected client certificates
tls_verify_hosts insist on client certificate verify

170 Main configuration (14)

14.14 Local user handling

finduser_retries useful in NIS environments
gecos_name used when creating Sender:
gecos_pattern ditto
max_username_length for systems that truncate
unknown_login used when no login name found
unknown_username ditto
uucp_from_pattern for recognizing “From ” lines
uucp_from_sender ditto

14.15 All incoming messages (SMTP and non-SMTP)

header_maxsize total size of message header
header_line_maxsize individual header line limit
message_size_limit applies to all messages
percent_hack_domains recognize %-hack for these domains
received_header_text expanded to make Received:
received_headers_max for mail loop detection
recipients_max limit per message
recipients_max_reject permanently reject excess recipients

14.16 Non-SMTP incoming messages

receive_timeout for non-SMTP messages

14.17 Incoming SMTP messages

See also the Policy controls section above.

dkim_verify_hashes DKIM hash methods accepted for signatures
dkim_verify_keytypes DKIM key types accepted for signatures
dkim_verify_min_keysizes DKIM key sizes accepted for signatures
dkim_verify_signers DKIM domains for which DKIM ACL is run
dmarc_forensic_sender DMARC sender for report messages
dmarc_history_file DMARC results log
dmarc_tld_file DMARC toplevel domains file
host_lookup host name looked up for these hosts
host_lookup_order order of DNS and local name lookups
recipient_unqualified_hosts may send unqualified recipients
rfc1413_hosts make ident calls to these hosts
rfc1413_query_timeout zero disables ident calls
sender_unqualified_hosts may send unqualified senders
smtp_accept_keepalive some TCP/IP magic
smtp_accept_max simultaneous incoming connections
smtp_accept_max_nonmail non-mail commands
smtp_accept_max_nonmail_hosts hosts to which the limit applies
smtp_accept_max_per_connection messages per connection
smtp_accept_max_per_host connections from one host
smtp_accept_queue queue mail if more connections
smtp_accept_queue_per_connection queue if more messages per connection
smtp_accept_reserve only reserve hosts if more connections
smtp_active_hostname host name to use in messages
smtp_banner text for welcome banner
smtp_check_spool_space from SIZE on MAIL command
smtp_connect_backlog passed to TCP/IP stack
smtp_enforce_sync of SMTP command/responses
smtp_etrn_command what to run for ETRN
smtp_etrn_serialize only one at once

171 Main configuration (14)

smtp_load_reserve only reserve hosts if this load
smtp_max_unknown_commands before dropping connection
smtp_ratelimit_hosts apply ratelimiting to these hosts
smtp_ratelimit_mail ratelimit for MAIL commands
smtp_ratelimit_rcpt ratelimit for RCPT commands
smtp_receive_timeout per command or data line
smtp_reserve_hosts these are the reserve hosts
smtp_return_error_details give detail on rejections

14.18 SMTP extensions

accept_8bitmime advertise 8BITMIME
auth_advertise_hosts advertise AUTH to these hosts
chunking_advertise_hosts advertise CHUNKING to these hosts
dsn_advertise_hosts advertise DSN extensions to these hosts
ignore_fromline_hosts allow “From ” from these hosts
ignore_fromline_local allow “From ” from local SMTP
limits_advertise_hosts advertise LIMITS to these hosts
pipelining_advertise_hosts advertise pipelining to these hosts
pipelining_connect_advertise_hosts advertise pipelining to these hosts
prdr_enable advertise PRDR to all hosts
smtputf8_advertise_hosts advertise SMTPUTF8 to these hosts
tls_advertise_hosts advertise TLS to these hosts
wellknown_advertise_hosts advertise WELLKNOWN to these hosts

14.19 Processing messages

allow_domain_literals recognize domain literal syntax
allow_mx_to_ip allow MX to point to IP address
allow_utf8_domains in addresses
check_rfc2047_length check length of RFC 2047 “encoded words”
delivery_date_remove from incoming messages
envelope_to_remove from incoming messages
extract_addresses_remove_arguments affects -t processing
headers_charset default for translations
qualify_domain default for senders
qualify_recipient default for recipients
return_path_remove from incoming messages
strip_excess_angle_brackets in addresses
strip_trailing_dot at end of addresses
untrusted_set_sender untrusted can set envelope sender

14.20 System filter

system_filter locate system filter
system_filter_directory_transport transport for delivery to a directory
system_filter_file_transport transport for delivery to a file
system_filter_group group for filter running
system_filter_pipe_transport transport for delivery to a pipe
system_filter_reply_transport transport for autoreply delivery
system_filter_user user for filter running

14.21 Routing and delivery

disable_ipv6 do no IPv6 processing
dns_again_means_nonexist for broken domains
dns_check_names_pattern pre-DNS syntax check
dns_dnssec_ok parameter for resolver

172 Main configuration (14)

dns_ipv4_lookup only v4 lookup for these domains
dns_retrans parameter for resolver
dns_retry parameter for resolver
dns_trust_aa DNS zones trusted as authentic
dns_use_edns0 parameter for resolver
hold_domains hold delivery for these domains
local_interfaces for routing checks
queue_domains no immediate delivery for these
queue_fast_ramp parallel delivery with 2-phase queue run
queue_only no immediate delivery at all
queue_only_file no immediate delivery if file exists
queue_only_load no immediate delivery if load is high
queue_only_load_latch don’t re-evaluate load for each message
queue_only_override allow command line to override
queue_run_in_order order of arrival
queue_run_max of simultaneous queue runners
queue_smtp_domains no immediate SMTP delivery for these
remote_max_parallel parallel SMTP delivery per message
remote_sort_domains order of remote deliveries
retry_data_expire timeout for retry data
retry_interval_max safety net for retry rules

14.22 Bounce and warning messages

bounce_message_file content of bounce
bounce_message_text content of bounce
bounce_return_body include body if returning message
bounce_return_linesize_limit limit on returned message line length
bounce_return_message include original message in bounce
bounce_return_size_limit limit on returned message
bounce_sender_authentication send authenticated sender with bounce
dsn_from set From: contents in bounces
errors_copy copy bounce messages
errors_reply_to Reply-to: in bounces
delay_warning time schedule
delay_warning_condition condition for warning messages
ignore_bounce_errors_after discard undeliverable bounces
smtp_return_error_details give detail on rejections
warn_message_file content of warning message

14.23 Alphabetical list of main options

Those options that undergo string expansion before use are marked with †.

accept_8bitmime Use: main Type: boolean Default: true

This option causes Exim to send 8BITMIME in its response to an SMTP EHLO command, and to
accept the BODY= parameter on MAIL commands. However, though Exim is 8-bit clean, it is not a
protocol converter, and it takes no steps to do anything special with messages received by this route.

Historically Exim kept this option off by default, but the maintainers feel that in today’s Internet, this
causes more problems than it solves. It now defaults to true. A more detailed analysis of the issues is
provided by Dan Bernstein:

https://cr.yp.to/smtp/8bitmime.html

To log received 8BITMIME status use

log_selector = +8bitmime

173 Main configuration (14)

acl_not_smtp Use: main Type: string† Default: unset

This option defines the ACL that is run when a non-SMTP message has been read and is on the point
of being accepted. See section 44.2.1 for further details.

acl_not_smtp_mime Use: main Type: string† Default: unset

This option defines the ACL that is run for individual MIME parts of non-SMTP messages. It
operates in exactly the same way as acl_smtp_mime operates for SMTP messages.

acl_not_smtp_start Use: main Type: string† Default: unset

This option defines the ACL that is run before Exim starts reading a non-SMTP message. See section
44.2.1 for further details.

acl_smtp_auth Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP AUTH command is received. See chapter 44
for general information on ACLs, and chapter 33 for details of authentication.

acl_smtp_connect Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP connection is received. See section 44.2.2 for
further details.

acl_smtp_data Use: main Type: string† Default: unset

This option defines the ACL that is run after an SMTP DATA command has been processed and the
message itself has been received, but before the final acknowledgment is sent. See section 44.2.4 for
further details.

acl_smtp_data_prdr Use: main Type: string† Default: accept

This option defines the ACL that, if the PRDR feature has been negotiated, is run for each recipient
after an SMTP DATA command has been processed and the message itself has been received, but
before the acknowledgment is sent. See section 44.2.7 for further details.

acl_smtp_dkim Use: main Type: string† Default: unset

This option defines the ACL that is run for each DKIM signature (by default, or as specified in the
dkim_verify_signers option) of a received message. See section 58.1.2 for further details.

acl_smtp_etrn Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP ETRN command is received. See chapter 44
for further details.

acl_smtp_expn Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP EXPN command is received. See chapter 44
for further details.

174 Main configuration (14)

acl_smtp_helo Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP EHLO or HELO command is received. See
section 44.2.3 for further details.

acl_smtp_mail Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP MAIL command is received. See chapter 44
for further details.

acl_smtp_mailauth Use: main Type: string† Default: unset

This option defines the ACL that is run when there is an AUTH parameter on a MAIL command. See
chapter 44 for general information on ACLs, and chapter 33 for details of authentication.

acl_smtp_mime Use: main Type: string† Default: unset

This option is available when Exim is built with the content-scanning extension. It defines the ACL
that is run for each MIME part in a message. See section 45.4 for details.

acl_smtp_notquit Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP session ends without a QUIT command being
received. See section 44.2.10 for further details.

acl_smtp_predata Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP DATA command is received, before the
message itself is received. See chapter 44 for further details.

acl_smtp_quit Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP QUIT command is received. See chapter 44
for further details.

acl_smtp_rcpt Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP RCPT command is received. See section
44.2.9 for further details.

acl_smtp_starttls Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP STARTTLS command is received. See
chapter 44 for further details.

acl_smtp_vrfy Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP VRFY command is received. See chapter 44
for further details.

175 Main configuration (14)

acl_smtp_wellknown Use: main Type: string† Default: unset

This option defines the ACL that is run when an SMTP WELLKNOWN command is received. See
section 44.2.8 for further details.

add_environment Use: main Type: string list Default: empty

This option adds individual environment variables that the currently linked libraries and programs in
child processes may use. Each list element should be of the form “name=value”.

See 29.4 for the environment of pipe transports.

admin_groups Use: main Type: string list† Default: unset

This option is expanded just once, at the start of Exim’s processing. If the current group or any of the
supplementary groups of an Exim caller is in this colon-separated list, the caller has admin privileges.
If all your system programmers are in a specific group, for example, you can give them all Exim
admin privileges by putting that group in admin_groups. However, this does not permit them to read
Exim’s spool files (whose group owner is the Exim gid). To permit this, you have to add individuals to
the Exim group.

allow_domain_literals Use: main Type: boolean Default: false

If this option is set, the RFC 2822 domain literal format is permitted in email addresses. The option is
not set by default, because the domain literal format is not normally required these days, and few
people know about it. It has, however, been exploited by mail abusers.

Unfortunately, it seems that some DNS black list maintainers are using this format to report black
listing to postmasters. If you want to accept messages addressed to your hosts by IP address, you need
to set allow_domain_literals true, and also to add @[] to the list of local domains (defined in the
named domain list local_domains in the default configuration). This “magic string” matches the
domain literal form of all the local host’s IP addresses.

allow_mx_to_ip Use: main Type: boolean Default: false

It appears that more and more DNS zone administrators are breaking the rules and putting domain
names that look like IP addresses on the right hand side of MX records. Exim follows the rules and
rejects this, giving an error message that explains the misconfiguration. However, some other MTAs
support this practice, so to avoid “Why can’t Exim do this?” complaints, allow_mx_to_ip exists, in
order to enable this heinous activity. It is not recommended, except when you have no other choice.

allow_utf8_domains Use: main Type: boolean Default: false

Lots of discussion is going on about internationalized domain names. One camp is strongly in favour
of just using UTF-8 characters, and it seems that at least two other MTAs permit this. This option
allows Exim users to experiment if they wish.

If it is set true, Exim’s domain parsing function allows valid UTF-8 multicharacters to appear in
domain name components, in addition to letters, digits, and hyphens.

If Exim is built with internationalization support and the SMTPUTF8 ESMTP option is in use (see
chapter 60) this option can be left as default. Without that, if you want to look up such domain names
in the DNS, you must also adjust the value of dns_check_names_pattern to match the extended
form. A suitable setting is:

dns_check_names_pattern = (?i)^(?>(?(1)\.|())[a-z0-9\xc0-\xff]\
 (?>[-a-z0-9\x80-\xff]*[a-z0-9\x80-\xbf])?)+$

176 Main configuration (14)

Alternatively, you can just disable this feature by setting

dns_check_names_pattern =

That is, set the option to an empty string so that no check is done.

auth_advertise_hosts Use: main Type: host list† Default: *

If any server authentication mechanisms are configured, Exim advertises them in response to an
EHLO command only if the calling host matches this list. Otherwise, Exim does not advertise AUTH.
Exim does not accept AUTH commands from clients to which it has not advertised the availability of
AUTH. The advertising of individual authentication mechanisms can be controlled by the use of the
server_advertise_condition generic authenticator option on the individual authenticators. See chap-
ter 33 for further details.

Certain mail clients (for example, Netscape) require the user to provide a name and password for
authentication if AUTH is advertised, even though it may not be needed (the host may accept mess-
ages from hosts on its local LAN without authentication, for example). The auth_advertise_hosts
option can be used to make these clients more friendly by excluding them from the set of hosts to
which Exim advertises AUTH.

If you want to advertise the availability of AUTH only when the connection is encrypted using TLS,
you can make use of the fact that the value of this option is expanded, with a setting like this:

auth_advertise_hosts = ${if eq{$tls_in_cipher}{}{}{*}}

If $tls_in_cipher is empty, the session is not encrypted, and the result of the expansion is empty, thus
matching no hosts. Otherwise, the result of the expansion is *, which matches all hosts.

auto_thaw Use: main Type: time Default: 0s

If this option is set to a time greater than zero, a queue runner will try a new delivery attempt on any
frozen message, other than a bounce message, if this much time has passed since it was frozen. This
may result in the message being re-frozen if nothing has changed since the last attempt. It is a way of
saying “keep on trying, even though there are big problems”.

Note: This is an old option, which predates timeout_frozen_after and ignore_bounce_errors_after.
It is retained for compatibility, but it is not thought to be very useful any more, and its use should
probably be avoided.

av_scanner Use: main Type: string Default: see below

This option is available if Exim is built with the content-scanning extension. It specifies which
anti-virus scanner to use. The default value is:

sophie:/var/run/sophie

If the value of av_scanner starts with a dollar character, it is expanded before use. See section 45.1
for further details.

bi_command Use: main Type: string Default: unset

This option supplies the name of a command that is run when Exim is called with the -bi option (see
chapter 5). The string value is just the command name, it is not a complete command line. If an
argument is required, it must come from the -oA command line option.

177 Main configuration (14)

bounce_message_file Use: main Type: string† Default: unset

This option defines a template file containing paragraphs of text to be used for constructing bounce
messages. Details of the file’s contents are given in chapter 50. The option is expanded to give the file
path, which must be absolute and untainted. See also warn_message_file.

bounce_message_text Use: main Type: string Default: unset

When this option is set, its contents are included in the default bounce message immediately after
“This message was created automatically by mail delivery software.” It is not used if bounce_
message_file is set.

bounce_return_body Use: main Type: boolean Default: true

This option controls whether the body of an incoming message is included in a bounce message when
bounce_return_message is true. The default setting causes the entire message, both header and body,
to be returned (subject to the value of bounce_return_size_limit). If this option is false, only the
message header is included. In the case of a non-SMTP message containing an error that is detected
during reception, only those header lines preceding the point at which the error was detected are
returned.

bounce_return_linesize_limit Use: main Type: integer Default: 998

This option sets a limit in bytes on the line length of messages that are returned to senders due to
delivery problems, when bounce_return_message is true. The default value corresponds to RFC
limits. If the message being returned has lines longer than this value it is treated as if the bounce_
return_size_limit (below) restriction was exceeded.

The option also applies to bounces returned when an error is detected during reception of a message.
In this case lines from the original are truncated.

The option does not apply to messages generated by an autoreply transport.

bounce_return_message Use: main Type: boolean Default: true

If this option is set false, none of the original message is included in bounce messages generated by
Exim. See also bounce_return_size_limit and bounce_return_body.

bounce_return_size_limit Use: main Type: integer Default: 100K

This option sets a limit in bytes on the size of messages that are returned to senders as part of bounce
messages when bounce_return_message is true. The limit should be less than the value of the global
message_size_limit and of any message_size_limit settings on transports, to allow for the bounce
text that Exim generates. If this option is set to zero there is no limit.

When the body of any message that is to be included in a bounce message is greater than the limit, it
is truncated, and a comment pointing this out is added at the top. The actual cutoff may be greater
than the value given, owing to the use of buffering for transferring the message in chunks (typically
8K in size). The idea is to save bandwidth on those undeliverable 15-megabyte messages.

bounce_sender_authentication Use: main Type: string Default: unset

This option provides an authenticated sender address that is sent with any bounce messages generated
by Exim that are sent over an authenticated SMTP connection. A typical setting might be:

bounce_sender_authentication = mailer-daemon@my.domain.example

178 Main configuration (14)

which would cause bounce messages to be sent using the SMTP command:

MAIL FROM:<> AUTH=mailer-daemon@my.domain.example

The value of bounce_sender_authentication must always be a complete email address.

callout_domain_negative_expire Use: main Type: time Default: 3h

This option specifies the expiry time for negative callout cache data for a domain. See section 44.22
for details of callout verification, and section 44.22.2 for details of the caching.

callout_domain_positive_expire Use: main Type: time Default: 7d

This option specifies the expiry time for positive callout cache data for a domain. See section 44.22
for details of callout verification, and section 44.22.2 for details of the caching.

callout_negative_expire Use: main Type: time Default: 2h

This option specifies the expiry time for negative callout cache data for an address. See section 44.22
for details of callout verification, and section 44.22.2 for details of the caching.

callout_positive_expire Use: main Type: time Default: 24h

This option specifies the expiry time for positive callout cache data for an address. See section 44.22
for details of callout verification, and section 44.22.2 for details of the caching.

callout_random_local_part Use: main Type: string† Default: see below

This option defines the “random” local part that can be used as part of callout verification. The default
value is

$primary_hostname-$tod_epoch-testing

See section 44.22.1 for details of how this value is used.

check_log_inodes Use: main Type: integer Default: 100
check_log_space Use: main Type: integer Default: 10M

See check_spool_space below.

check_rfc2047_length Use: main Type: boolean Default: true

RFC 2047 defines a way of encoding non-ASCII characters in headers using a system of “encoded
words”. The RFC specifies a maximum length for an encoded word; strings to be encoded that exceed
this length are supposed to use multiple encoded words. By default, Exim does not recognize encoded
words that exceed the maximum length. However, it seems that some software, in violation of the
RFC, generates overlong encoded words. If check_rfc2047_length is set false, Exim recognizes
encoded words of any length.

check_spool_inodes Use: main Type: integer Default: 100
check_spool_space Use: main Type: integer Default: 10M

The four check_... options allow for checking of disk resources before a message is accepted.

179 Main configuration (14)

When any of these options are nonzero, they apply to all incoming messages. If you want to apply
different checks to different kinds of message, you can do so by testing the variables $log_inodes,
$log_space, $spool_inodes, and $spool_space in an ACL with appropriate additional conditions.

check_spool_space and check_spool_inodes check the spool partition if either value is greater than
zero, for example:

check_spool_space = 100M
check_spool_inodes = 100

The spool partition is the one that contains the directory defined by SPOOL_DIRECTORY in
Local/Makefile. It is used for holding messages in transit.

check_log_space and check_log_inodes check the partition in which log files are written if either is
greater than zero. These should be set only if log_file_path and spool_directory refer to different
partitions.

If there is less space or fewer inodes than requested, Exim refuses to accept incoming mail. In the
case of SMTP input this is done by giving a 452 temporary error response to the MAIL command. If
ESMTP is in use and there was a SIZE parameter on the MAIL command, its value is added to the
check_spool_space value, and the check is performed even if check_spool_space is zero, unless no_
smtp_check_spool_space is set.

The values for check_spool_space and check_log_space are held as a number of kilobytes (though
specified in bytes). If a non-multiple of 1024 is specified, it is rounded up.

For non-SMTP input and for batched SMTP input, the test is done at start-up; on failure a message is
written to stderr and Exim exits with a non-zero code, as it obviously cannot send an error message of
any kind.

There is a slight performance penalty for these checks. Versions of Exim preceding 4.88 had these
disabled by default; high-rate installations confident they will never run out of resources may wish to
deliberately disable them.

chunking_advertise_hosts Use: main Type: host list† Default: *

The CHUNKING extension (RFC3030) will be advertised in the EHLO message to these hosts. Hosts
may use the BDAT command as an alternate to DATA.

commandline_checks_require_adminUse: main Type: boolean Default: false

This option restricts various basic checking features to require an administrative user. This affects
most of the -b* options, such as -be.

debug_store Use: main Type: boolean Default: false

This option, when true, enables extra checking in Exim’s internal memory management. For use when
a memory corruption issue is being investigated, it should normally be left as default.

daemon_smtp_ports Use: main Type: string Default: smtp

This option specifies one or more default SMTP ports on which the Exim daemon listens. See chapter
13 for details of how it is used. For backward compatibility, daemon_smtp_port (singular) is a
synonym.

daemon_startup_retries Use: main Type: integer Default: 9
daemon_startup_sleep Use: main Type: time Default: 30s

180 Main configuration (14)

These options control the retrying done by the daemon at startup when it cannot immediately bind a
listening socket (typically because the socket is already in use): daemon_startup_retries defines the
number of retries after the first failure, and daemon_startup_sleep defines the length of time to wait
between retries.

delay_warning Use: main Type: time list Default: 24h

When a message is delayed, Exim sends a warning message to the sender at intervals specified by this
option. The data is a colon-separated list of times after which to send warning messages. If the value
of the option is an empty string or a zero time, no warnings are sent. Up to 10 times may be given. If a
message has been in the queue for longer than the last time, the last interval between the times is used
to compute subsequent warning times. For example, with

delay_warning = 4h:8h:24h

the first message is sent after 4 hours, the second after 8 hours, and the third one after 24 hours. After
that, messages are sent every 16 hours, because that is the interval between the last two times on the
list. If you set just one time, it specifies the repeat interval. For example, with:

delay_warning = 6h

messages are repeated every six hours. To stop warnings after a given time, set a very large time at the
end of the list. For example:

delay_warning = 2h:12h:99d

Note that the option is only evaluated at the time a delivery attempt fails, which depends on retry
and queue-runner configuration. Typically retries will be configured more frequently than warning
messages.

delay_warning_condition Use: main Type: string† Default: see below

The string is expanded at the time a warning message might be sent. If all the deferred addresses have
the same domain, it is set in $domain during the expansion. Otherwise $domain is empty. If the result
of the expansion is a forced failure, an empty string, or a string matching any of “0”, “no” or “false”
(the comparison being done caselessly) then the warning message is not sent. The default is:

delay_warning_condition = ${if or {\
 { !eq{$h_list-id:$h_list-post:$h_list-subscribe:}{} }\
 { match{$h_precedence:}{(?i)bulk|list|junk} }\
 { match{$h_auto-submitted:}{(?i)auto-generated|auto-replied} }\
 } {no}{yes}}

This suppresses the sending of warnings for messages that contain List-ID:, List-Post:, or List-
Subscribe: headers, or have “bulk”, “list” or “junk” in a Precedence: header, or have “auto-generated”
or “auto-replied” in an Auto-Submitted: header.

deliver_drop_privilege Use: main Type: boolean Default: false

If this option is set true, Exim drops its root privilege at the start of a delivery process, and runs as the
Exim user throughout. This severely restricts the kinds of local delivery that are possible, but is viable
in certain types of configuration. There is a discussion about the use of root privilege in chapter 56.

deliver_queue_load_max Use: main Type: fixed-point Default: unset

When this option is set, a queue run is abandoned if the system load average becomes greater than the
value of the option. The option has no effect on ancient operating systems on which Exim cannot
determine the load average. See also queue_only_load and smtp_load_reserve.

181 Main configuration (14)

delivery_date_remove Use: main Type: boolean Default: true

Exim’s transports have an option for adding a Delivery-date: header to a message when it is delivered,
in exactly the same way as Return-path: is handled. Delivery-date: records the actual time of delivery.
Such headers should not be present in incoming messages, and this option causes them to be removed
at the time the message is received, to avoid any problems that might occur when a delivered message
is subsequently sent on to some other recipient.

disable_fsync Use: main Type: boolean Default: false

This option is available only if Exim was built with the compile-time option ENABLE_DISABLE_
FSYNC. When this is not set, a reference to disable_fsync in a runtime configuration generates an
“unknown option” error. You should not build Exim with ENABLE_DISABLE_FSYNC or set
disable_fsync unless you really, really, really understand what you are doing. No pre-compiled distri-
butions of Exim should ever make this option available.

When disable_fsync is set true, Exim no longer calls fsync() to force updated files’ data to be written
to disc before continuing. Unexpected events such as crashes and power outages may cause data to be
lost or scrambled. Here be Dragons. Beware.

disable_ipv6 Use: main Type: boolean Default: false

If this option is set true, even if the Exim binary has IPv6 support, no IPv6 activities take place.
AAAA records are never looked up, and any IPv6 addresses that are listed in local_interfaces, data
for the manualroute router, etc. are ignored. If IP literals are enabled, the ipliteral router declines to
handle IPv6 literal addresses.

dkim_verify_hashes Use: main Type: string list Default: sha256 :
sha512

This option gives a list of hash types which are acceptable in signatures, and an order of processing.
Signatures with algorithms not in the list will be ignored.

Acceptable values include:

sha1
sha256
sha512

Note that the acceptance of sha1 violates RFC 8301.

dkim_verify_keytypes Use: main Type: string list Default: ed25519 :
rsa

This option gives a list of key types which are acceptable in signatures, and an order of processing.
Signatures with algorithms not in the list will be ignored.

dkim_verify_min_keysizes Use: main Type: string list Default: rsa=1024
ed25519=250

This option gives a list of key sizes which are acceptable in signatures. The list is keyed by the
algorithm type for the key; the values are in bits. Signatures with keys smaller than given by this
option will fail verification.

The default enforces the RFC 8301 minimum key size for RSA signatures.

182 Main configuration (14)

dkim_verify_minimal Use: main Type: boolean Default: false

If set to true, verification of signatures will terminate after the first success.

dkim_verify_signers Use: main Type: domain list† Default:
$dkim_signers

This option gives a list of DKIM domains for which the DKIM ACL is run. It is expanded after the
message is received; by default it runs the ACL once for each signature in the message. See section
58.1.2.

dmarc_forensic_sender Use: main Type: string† Default: unset

These options control DMARC processing. See section 58.3 for details.

dns_again_means_nonexist Use: main Type: domain list† Default: unset

DNS lookups give a “try again” response for the DNS errors “non-authoritative host not found” and
“SERVERFAIL”. This can cause Exim to keep trying to deliver a message, or to give repeated
temporary errors to incoming mail. Sometimes the effect is caused by a badly set up name server and
may persist for a long time. If a domain which exhibits this problem matches anything in dns_again_
means_nonexist, it is treated as if it did not exist. This option should be used with care. You can
make it apply to reverse lookups by a setting such as this:

dns_again_means_nonexist = *.in-addr.arpa

This option applies to all DNS lookups that Exim does, except for TLSA lookups (where knowing
about such failures is security-relevant). It also applies when the gethostbyname() or
getipnodebyname() functions give temporary errors, since these are most likely to be caused by DNS
lookup problems. The dnslookup router has some options of its own for controlling what happens
when lookups for MX or SRV records give temporary errors. These more specific options are applied
after this global option.

dns_check_names_pattern Use: main Type: string Default: see below

When this option is set to a non-empty string, it causes Exim to check domain names for characters
that are not allowed in host names before handing them to the DNS resolver, because some resolvers
give temporary errors for names that contain unusual characters. If a domain name contains any
unwanted characters, a “not found” result is forced, and the resolver is not called. The check is done
by matching the domain name against a regular expression, which is the value of this option. The
default pattern is

dns_check_names_pattern = \
 (?i)^(?>(?(1)\.|())[^\W_](?>[a-z0-9/-]*[^\W_])?)+$

which permits only letters, digits, slashes, and hyphens in components, but they must start and end
with a letter or digit. Slashes are not, in fact, permitted in host names, but they are found in certain NS
records (which can be accessed in Exim by using a dnsdb lookup). If you set allow_utf8_domains,
you must modify this pattern, or set the option to an empty string.

dns_csa_search_limit Use: main Type: integer Default: 5

This option controls the depth of parental searching for CSA SRV records in the DNS, as described in
more detail in section 44.26.

183 Main configuration (14)

dns_csa_use_reverse Use: main Type: boolean Default: true

This option controls whether or not an IP address, given as a CSA domain, is reversed and looked up
in the reverse DNS, as described in more detail in section 44.26.

dns_cname_loops Use: main Type: integer Default: 1

This option controls the following of CNAME chains, needed if the resolver does not do it internally.
As of 2018 most should, and the default can be left. If you have an ancient one, a value of 10 is likely
needed.

The default value of one CNAME-follow is needed thanks to the observed return for an MX request,
given no MX presence but a CNAME to an A, of the CNAME.

dns_dnssec_ok Use: main Type: integer Default: -1

If this option is set to a non-negative number then Exim will initialise the DNS resolver library to
either use or not use DNSSEC, overriding the system default. A value of 0 coerces DNSSEC off, a
value of 1 coerces DNSSEC on.

If the resolver library does not support DNSSEC then this option has no effect.

On Linux with glibc 2.31 or newer this is insufficient, the resolver library will default to stripping out
a successful validation status. This will break a previously working Exim installation. Provided that
you do trust the resolver (ie, is on localhost) you can tell glibc to pass through any successful
validation with a new option in /etc/resolv.conf:

options trust-ad

dns_ipv4_lookup Use: main Type: domain list† Default: unset

When Exim is compiled with IPv6 support and disable_ipv6 is not set, it looks for IPv6 address
records (AAAA records) as well as IPv4 address records (A records) when trying to find IP addresses
for hosts, unless the host’s domain matches this list.

This is a fudge to help with name servers that give big delays or otherwise do not work for the AAAA
record type. In due course, when the world’s name servers have all been upgraded, there should be no
need for this option. Note that all lookups, including those done for verification, are affected; this will
result in verify failure for IPv6 connections or ones using names only valid for IPv6 addresses.

dns_retrans Use: main Type: time Default: 0s

The options dns_retrans and dns_retry can be used to set the retransmission and retry parameters
for DNS lookups. Values of zero (the defaults) leave the system default settings unchanged. The first
value is the time between retries, and the second is the number of retries. It isn’t totally clear exactly
how these settings affect the total time a DNS lookup may take. I haven’t found any documentation
about timeouts on DNS lookups; these parameter values are available in the external resolver interface
structure, but nowhere does it seem to describe how they are used or what you might want to set in
them. See also the slow_lookup_log option.

dns_retry Use: main Type: integer Default: 0

See dns_retrans above.

184 Main configuration (14)

dns_trust_aa Use: main Type: domain list† Default: unset

If this option is set then lookup results marked with the AA bit (Authoritative Answer) are trusted the
same way as if they were DNSSEC-verified. The authority section’s name of the answer must match
with this expanded domain list.

Use this option only if you talk directly to a resolver that is authoritative for some zones and does not
set the AD (Authentic Data) bit in the answer. Some DNS servers may have an configuration option to
mark the answers from their own zones as verified (they set the AD bit). Others do not have this
option. It is considered as poor practice using a resolver that is an authoritative server for some zones.

Use this option only if you really have to (e.g. if you want to use DANE for remote delivery to a
server that is listed in the DNS zones that your resolver is authoritative for).

If the DNS answer packet has the AA bit set and contains resource record in the answer section, the
name of the first NS record appearing in the authority section is compared against the list. If the
answer packet is authoritative but the answer section is empty, the name of the first SOA record in the
authoritative section is used instead.

dns_use_edns0 Use: main Type: integer Default: -1

If this option is set to a non-negative number then Exim will initialise the DNS resolver library to
either use or not use EDNS0 extensions, overriding the system default. A value of 0 coerces EDNS0
off, a value of 1 coerces EDNS0 on.

If the resolver library does not support EDNS0 then this option has no effect.

OpenBSD’s asr resolver routines are known to ignore the EDNS0 option; this means that DNSSEC
will not work with Exim on that platform either, unless Exim is linked against an alternative DNS
client library.

drop_cr Use: main Type: boolean Default: false

This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
characters in incoming messages. What happens now is described in section 48.2.

dsn_advertise_hosts Use: main Type: host list† Default: unset

DSN extensions (RFC3461) will be advertised in the EHLO message to, and accepted from, these
hosts. Hosts may use the NOTIFY and ORCPT options on RCPT TO commands, and RET and
ENVID options on MAIL FROM commands. A NOTIFY=SUCCESS option requests success-DSN
messages. A NOTIFY= option with no argument requests that no delay or failure DSNs are sent.
Note: Supplying success-DSN messages has been criticised on privacy grounds; it can leak details of
internal forwarding.

dsn_from Use: main Type: string† Default: see below

This option can be used to vary the contents of From: header lines in bounces and other automatically
generated messages (“Delivery Status Notifications” – hence the name of the option). The default
setting is:

dsn_from = Mail Delivery System <Mailer-Daemon@$qualify_domain>

The value is expanded every time it is needed. If the expansion fails, a panic is logged, and the default
value is used.

185 Main configuration (14)

envelope_to_remove Use: main Type: boolean Default: true

Exim’s transports have an option for adding an Envelope-to: header to a message when it is delivered,
in exactly the same way as Return-path: is handled. Envelope-to: records the original recipient
address from the message’s envelope that caused the delivery to happen. Such headers should not be
present in incoming messages, and this option causes them to be removed at the time the message is
received, to avoid any problems that might occur when a delivered message is subsequently sent on to
some other recipient.

errors_copy Use: main Type: string list† Default: unset

Setting this option causes Exim to send bcc copies of bounce messages that it generates to other
addresses. Note: This does not apply to bounce messages coming from elsewhere. The value of the
option is a colon-separated list of items. Each item consists of a pattern, terminated by white space,
followed by a comma-separated list of email addresses. If a pattern contains spaces, it must be
enclosed in double quotes.

Each pattern is processed in the same way as a single item in an address list (see section 10.5). When
a pattern matches the recipient of the bounce message, the message is copied to the addresses on the
list. The items are scanned in order, and once a matching one is found, no further items are examined.
For example:

errors_copy = spqr@mydomain postmaster@mydomain.example :\
 rqps@mydomain hostmaster@mydomain.example,\
 postmaster@mydomain.example

The address list is expanded before use. The expansion variables $local_part and $domain are set
from the original recipient of the error message, and if there was any wildcard matching in the
pattern, the expansion variables $0, $1, etc. are set in the normal way.

errors_reply_to Use: main Type: string Default: unset

By default, Exim’s bounce and delivery warning messages contain the header line

From: Mail Delivery System <Mailer-Daemon@qualify-domain>

where qualify-domain is the value of the qualify_domain option. A warning message that is gener-
ated by the quota_warn_message option in an appendfile transport may contain its own From:
header line that overrides the default.

Experience shows that people reply to bounce messages. If the errors_reply_to option is set, a
Reply-To: header is added to bounce and warning messages. For example:

errors_reply_to = postmaster@my.domain.example

The value of the option is not expanded. It must specify a valid RFC 2822 address. However, if a
warning message that is generated by the quota_warn_message option in an appendfile transport
contain its own Reply-To: header line, the value of the errors_reply_to option is not used.

event_action Use: main Type: string† Default: unset

This option declares a string to be expanded for Exim’s events mechanism. For details see chapter 61.

exim_group Use: main Type: string Default: compile-
time configured

This option changes the gid under which Exim runs when it gives up root privilege. The default value
is compiled into the binary. The value of this option is used only when exim_user is also set. Unless

186 Main configuration (14)

it consists entirely of digits, the string is looked up using getgrnam(), and failure causes a configur-
ation error. See chapter 56 for a discussion of security issues.

exim_path Use: main Type: string Default: see below

This option specifies the path name of the Exim binary, which is used when Exim needs to re-exec
itself. The default is set up to point to the file exim in the directory configured at compile time by the
BIN_DIRECTORY setting. It is necessary to change exim_path if, exceptionally, Exim is run from
some other place. Warning: Do not use a macro to define the value of this option, because you will
break those Exim utilities that scan the configuration file to find where the binary is. (They then use
the -bP option to extract option settings such as the value of spool_directory.)

exim_user Use: main Type: string Default: compile-
time configured

This option changes the uid under which Exim runs when it gives up root privilege. The default value
is compiled into the binary. Ownership of the run time configuration file and the use of the -C and -D
command line options is checked against the values in the binary, not what is set here.

Unless it consists entirely of digits, the string is looked up using getpwnam(), and failure causes a
configuration error. If exim_group is not also supplied, the gid is taken from the result of getpwnam()
if it is used. See chapter 56 for a discussion of security issues.

exim_version Use: main Type: string Default: current
version

This option overrides the $version_number/$exim_version that Exim reports in various places. Use
with care; this may fool stupid security scanners.

extra_local_interfaces Use: main Type: string list Default: unset

This option defines network interfaces that are to be considered local when routing, but which are not
used for listening by the daemon. See section 13.8 for details.

extract_addresses_remove_argumentsUse: main Type: boolean Default: true

According to some Sendmail documentation (Sun, IRIX, HP-UX), if any addresses are present on the
command line when the -t option is used to build an envelope from a message’s To:, Cc: and Bcc:
headers, the command line addresses are removed from the recipients list. This is also how Smail
behaves. However, other Sendmail documentation (the O’Reilly book) states that command line
addresses are added to those obtained from the header lines. When extract_addresses_remove_
arguments is true (the default), Exim subtracts argument headers. If it is set false, Exim adds rather
than removes argument addresses.

finduser_retries Use: main Type: integer Default: 0

On systems running NIS or other schemes in which user and group information is distributed from a
remote system, there can be times when getpwnam() and related functions fail, even when given valid
data, because things time out. Unfortunately these failures cannot be distinguished from genuine “not
found” errors. If finduser_retries is set greater than zero, Exim will try that many extra times to find
a user or a group, waiting for one second between retries.

You should not set this option greater than zero if your user information is in a traditional /etc/passwd
file, because it will cause Exim needlessly to search the file multiple times for non-existent users, and
also cause delay.

187 Main configuration (14)

freeze_tell Use: main Type: string list,
comma separated

Default: unset

On encountering certain errors, or when configured to do so in a system filter, ACL, or special router,
Exim freezes a message. This means that no further delivery attempts take place until an administrator
thaws the message, or the auto_thaw, ignore_bounce_errors_after, or timeout_frozen_after fea-
ture cause it to be processed. If freeze_tell is set, Exim generates a warning message whenever it
freezes something, unless the message it is freezing is a locally-generated bounce message. (Without
this exception there is the possibility of looping.) The warning message is sent to the addresses
supplied as the comma-separated value of this option. If several of the message’s addresses cause
freezing, only a single message is sent. If the freezing was automatic, the reason(s) for freezing can be
found in the message log. If you configure freezing in a filter or ACL, you must arrange for any
logging that you require.

gecos_name Use: main Type: string† Default: unset
gecos_pattern Use: main Type: string Default: unset

Some operating systems, notably HP-UX, use the “gecos” field in the system password file to hold
other information in addition to users’ real names. Exim looks up this field for use when it is creating
Sender: or From: headers. If either gecos_pattern or gecos_name are unset, the contents of the field
are used unchanged, except that, if an ampersand is encountered, it is replaced by the user’s login
name with the first character forced to upper case, since this is a convention that is observed on many
systems.

When these options are set, gecos_pattern is treated as a regular expression that is to be applied to
the field (again with & replaced by the login name), and if it matches, gecos_name is expanded and
used as the user’s name.

Numeric variables such as $1, $2, etc. can be used in the expansion to pick up sub-fields that were
matched by the pattern. In HP-UX, where the user’s name terminates at the first comma, the following
can be used:

gecos_pattern = ([^,]*)
gecos_name = $1

gnutls_compat_mode Use: main Type: boolean Default: unset

This option controls whether GnuTLS is used in compatibility mode in an Exim server. This reduces
security slightly, but improves interworking with older implementations of TLS.

gnutls_allow_auto_pkcs11 Use: main Type: boolean Default: unset

This option will let GnuTLS (2.12.0 or later) autoload PKCS11 modules with the p11-kit configur-
ation files in /etc/pkcs11/modules/.

See https://www.gnutls.org/manual/gnutls.html#Smart-cards-and-HSMs for documentation.

headers_charset Use: main Type: string Default: see below

This option sets a default character set for translating from encoded MIME “words” in header lines,
when referenced by an $h_xxx expansion item. The default is the value of HEADERS_CHARSET in
Local/Makefile. The ultimate default is ISO-8859-1. For more details see the description of header
insertions in section 11.5.

188 Main configuration (14)

header_maxsize Use: main Type: integer Default: see below

This option controls the overall maximum size of a message’s header section. The default is the value
of HEADER_MAXSIZE in Local/Makefile; the default for that is 1M. Messages with larger header
sections are rejected.

header_line_maxsize Use: main Type: integer Default: 0

This option limits the length of any individual header line in a message, after all the continuations
have been joined together. Messages with individual header lines that are longer than the limit are
rejected. The default value of zero means “no limit”.

helo_accept_junk_hosts Use: main Type: host list† Default: unset

Exim checks the syntax of HELO and EHLO commands for incoming SMTP mail, and gives an error
response for invalid data. Unfortunately, there are some SMTP clients that send syntactic junk. They
can be accommodated by setting this option. Note that this is a syntax check only. See helo_verify_
hosts if you want to do semantic checking. See also helo_allow_chars for a way of extending the
permitted character set.

helo_allow_chars Use: main Type: string Default: unset

This option can be set to a string of rogue characters that are permitted in non-ip-literal EHLO and
HELO names in addition to the standard letters, digits, hyphens, and dots. For examplem if you really
must allow underscores, you can set

helo_allow_chars = _

This option does not apply to names that look like ip-literals. Note that the value is one string, not a
list.

helo_lookup_domains Use: main Type: domain list† Default: @:@[]

If the domain given by a client in a HELO or EHLO command matches this list, a reverse lookup is
done in order to establish the host’s true name. The default forces a lookup if the client host gives the
server’s name or any of its IP addresses (in brackets), something that broken clients have been seen to
do.

helo_try_verify_hosts Use: main Type: host list† Default: unset

By default, Exim just checks the syntax of HELO and EHLO commands (see helo_accept_junk_
hosts and helo_allow_chars). However, some sites like to do more extensive checking of the data
supplied by these commands. The ACL condition verify = helo is provided to make this
possible. Formerly, it was necessary also to set this option (helo_try_verify_hosts) to force the check
to occur. From release 4.53 onwards, this is no longer necessary. If the check has not been done
before verify = helo is encountered, it is done at that time. Consequently, this option is
obsolete. Its specification is retained here for backwards compatibility.

When an EHLO or HELO command is received, if the calling host matches helo_try_verify_hosts,
Exim checks that the host name given in the HELO or EHLO command either:

• is an IP literal matching the calling address of the host, or

• matches the host name that Exim obtains by doing a reverse lookup of the calling host address, or

• when looked up in DNS yields the calling host address.

189 Main configuration (14)

However, the EHLO or HELO command is not rejected if any of the checks fail. Processing con-
tinues, but the result of the check is remembered, and can be detected later in an ACL by the verify
= helo condition.

If DNS was used for successful verification, the variable $helo_verify_dnssec records the DNSSEC
status of the lookups.

helo_verify_hosts Use: main Type: host list† Default: unset

Like helo_try_verify_hosts, this option is obsolete, and retained only for backwards compatibility.
For hosts that match this option, Exim checks the host name given in the HELO or EHLO in the same
way as for helo_try_verify_hosts. If the check fails, the HELO or EHLO command is rejected with a
550 error, and entries are written to the main and reject logs. If a MAIL command is received before
EHLO or HELO, it is rejected with a 503 error.

hold_domains Use: main Type: domain list† Default: unset

This option allows mail for particular domains to be held in the queue manually. The option is
overridden if a message delivery is forced with the -M, -qf, -Rf or -Sf options, and also while testing
or verifying addresses using -bt or -bv. Otherwise, if a domain matches an item in hold_domains, no
routing or delivery for that address is done, and it is deferred every time the message is looked at.

This option is intended as a temporary operational measure for delaying the delivery of mail while
some problem is being sorted out, or some new configuration tested. If you just want to delay the
processing of some domains until a queue run occurs, you should use queue_domains or queue_
smtp_domains, not hold_domains.

A setting of hold_domains does not override Exim’s code for removing messages from the queue if
they have been there longer than the longest retry time in any retry rule. If you want to hold messages
for longer than the normal retry times, insert a dummy retry rule with a long retry time.

host_lookup Use: main Type: host list† Default: unset

Exim does not look up the name of a calling host from its IP address unless it is required to compare
against some host list, or the host matches helo_try_verify_hosts or helo_verify_hosts, or the host
matches this option (which normally contains IP addresses rather than host names). The default
configuration file contains

host_lookup = *

which causes a lookup to happen for all hosts. If the expense of these lookups is felt to be too great,
the setting can be changed or removed.

After a successful reverse lookup, Exim does a forward lookup on the name it has obtained, to verify
that it yields the IP address that it started with. If this check fails, Exim behaves as if the name lookup
failed.

After any kind of failure, the host name (in $sender_host_name) remains unset, and $host_lookup_
failed is set to the string “1”. See also dns_again_means_nonexist, helo_lookup_domains, and
verify = reverse_host_lookup in ACLs.

host_lookup_order Use: main Type: string list Default:
bydns:byaddr

This option specifies the order of different lookup methods when Exim is trying to find a host name
from an IP address. The default is to do a DNS lookup first, and then to try a local lookup (using
gethostbyaddr() or equivalent) if that fails. You can change the order of these lookups, or omit one
entirely, if you want.

190 Main configuration (14)

Warning: The “byaddr” method does not always yield aliases when there are multiple PTR records in
the DNS and the IP address is not listed in /etc/hosts. Different operating systems give different
results in this case. That is why the default tries a DNS lookup first.

host_reject_connection Use: main Type: host list† Default: unset

If this option is set, incoming SMTP calls from the hosts listed are rejected as soon as the connection
is made. This option is obsolete, and retained only for backward compatibility, because nowadays the
ACL specified by acl_smtp_connect can also reject incoming connections immediately.

If the connection is on a TLS-on-connect port then the TCP connection is just dropped. Otherwise, an
SMTP error is sent first.

The ability to give an immediate rejection (either by this option or using an ACL) is provided for use
in unusual cases. Many hosts will just try again, sometimes without much delay. Normally, it is better
to use an ACL to reject incoming messages at a later stage, such as after RCPT commands. See
chapter 44.

hosts_connection_nolog Use: main Type: host list† Default: unset

This option defines a list of hosts for which connection logging does not happen, even though the
smtp_connection log selector is set. For example, you might want not to log SMTP connections from
local processes, or from 127.0.0.1, or from your local LAN. This option is consulted in the main loop
of the daemon; you should therefore strive to restrict its value to a short inline list of IP addresses and
networks. To disable logging SMTP connections from local processes, you must create a host list with
an empty item. For example:

hosts_connection_nolog = :

The hosts affected by this option also do not log "no MAIL in SMTP connection" lines, as may
commonly be produced by a monitoring system.

hosts_require_alpn Use: main Type: host list† Default: unset

If the TLS library supports ALPN then a successful negotiation of ALPN will be required for any
client matching the list, for TLS to be used. See also the tls_alpn option.

Note: prevention of fallback to in-clear connection is not managed by this option, and should be done
separately.

hosts_require_helo Use: main Type: host list† Default: *

Exim will require an accepted HELO or EHLO command from a host matching this list, before
accepting a MAIL command.

hosts_proxy Use: main Type: host list† Default: unset

This option enables use of Proxy Protocol proxies for incoming connections. For details see section
59.1.

hosts_treat_as_local Use: main Type: domain list† Default: unset

If this option is set, any host names that match the domain list are treated as if they were the local host
when Exim is scanning host lists obtained from MX records or other sources. Note that the value of
this option is a domain list, not a host list, because it is always used to check host names, not IP
addresses.

191 Main configuration (14)

This option also applies when Exim is matching the special items @mx_any, @mx_primary, and
@mx_secondary in a domain list (see section 10.3), and when checking the hosts option in the
smtp transport for the local host (see the allow_localhost option in that transport). See also local_
interfaces, extra_local_interfaces, and chapter 13, which contains a discussion about local network
interfaces and recognizing the local host.

ibase_servers Use: main Type: string list Default: unset

This option provides a list of InterBase servers and associated connection data, to be used in conjunc-
tion with ibase lookups (see section 9.13.1). The option is available only if Exim has been built with
InterBase support.

ignore_bounce_errors_after Use: main Type: time Default: 10w

This option affects the processing of bounce messages that cannot be delivered, that is, those that
suffer a permanent delivery failure. (Bounce messages that suffer temporary delivery failures are of
course retried in the usual way.)

After a permanent delivery failure, bounce messages are frozen, because there is no sender to whom
they can be returned. When a frozen bounce message has been in the queue for more than the given
time, it is unfrozen at the next queue run, and a further delivery is attempted. If delivery fails again,
the bounce message is discarded. This makes it possible to keep failed bounce messages around for a
shorter time than the normal maximum retry time for frozen messages. For example,

ignore_bounce_errors_after = 12h

retries failed bounce message deliveries after 12 hours, discarding any further failures. If the value of
this option is set to a zero time period, bounce failures are discarded immediately. Setting a very long
time (as in the default value) has the effect of disabling this option. For ways of automatically dealing
with other kinds of frozen message, see auto_thaw and timeout_frozen_after.

ignore_fromline_hosts Use: main Type: host list† Default: unset
ignore_fromline_local Use: main Type: boolean Default: false

Some broken SMTP clients insist on sending a UUCP-like “From ” line before the headers of a
message. By default this is treated as the start of the message’s body, which means that any following
headers are not recognized as such. Exim can be made to ignore it by setting ignore_fromline_hosts
to match those hosts that insist on sending it. If the sender is actually a local process rather than a
remote host, and is using -bs to inject the messages, ignore_fromline_local must be set to achieve
this effect.

keep_environment Use: main Type: string list Default: unset

This option contains a string list of environment variables to keep. You have to trust these variables or
you have to be sure that these variables do not impose any security risk. Keep in mind that during the
startup phase Exim is running with an effective UID 0 in most installations. As the default value is an
empty list, the default environment for using libraries, running embedded Perl code, or running
external binaries is empty, and does not not even contain PATH or HOME.

Actually the list is interpreted as a list of patterns (10.2), except that it is not expanded first.

WARNING: Macro substitution is still done first, so having a macro FOO and having FOO_HOME in
your keep_environment option may have unexpected results. You may work around this using a
regular expression that does not match the macro name: ^[F]OO_HOME$.

Current versions of Exim issue a warning during startup if you do not mention keep_environment in
your runtime configuration file and if your current environment is not empty. Future versions may not
issue that warning anymore.

192 Main configuration (14)

See the add_environment main config option for a way to set environment variables to a fixed value.
The environment for pipe transports is handled separately, see section 29.4 for details.

keep_malformed Use: main Type: time Default: 4d

This option specifies the length of time to keep messages whose spool files have been corrupted in
some way. This should, of course, never happen. At the next attempt to deliver such a message, it gets
removed. The incident is logged.

ldap_ca_cert_dir Use: main Type: string Default: unset

This option indicates which directory contains CA certificates for verifying a TLS certificate pres-
ented by an LDAP server. While Exim does not provide a default value, your SSL library may.
Analogous to tls_verify_certificates but as a client-side option for LDAP and constrained to be a
directory.

ldap_ca_cert_file Use: main Type: string Default: unset

This option indicates which file contains CA certificates for verifying a TLS certificate presented by
an LDAP server. While Exim does not provide a default value, your SSL library may. Analogous to
tls_verify_certificates but as a client-side option for LDAP and constrained to be a file.

ldap_cert_file Use: main Type: string Default: unset

This option indicates which file contains an TLS client certificate which Exim should present to the
LDAP server during TLS negotiation. Should be used together with ldap_cert_key.

ldap_cert_key Use: main Type: string Default: unset

This option indicates which file contains the secret/private key to use to prove identity to the LDAP
server during TLS negotiation. Should be used together with ldap_cert_file, which contains the
identity to be proven.

ldap_cipher_suite Use: main Type: string Default: unset

This controls the TLS cipher-suite negotiation during TLS negotiation with the LDAP server. See
43.4 for more details of the format of cipher-suite options with OpenSSL (as used by LDAP client
libraries).

ldap_default_servers Use: main Type: string list Default: unset

This option provides a list of LDAP servers which are tried in turn when an LDAP query does not
contain a server. See section 9.11.1 for details of LDAP queries. This option is available only when
Exim has been built with LDAP support.

ldap_require_cert Use: main Type: string Default: unset.

This should be one of the values "hard", "demand", "allow", "try" or "never". A value other than one
of these is interpreted as "never". See the entry "TLS_REQCERT" in your system man page for
ldap.conf(5). Although Exim does not set a default, the LDAP library probably defaults to
hard/demand.

193 Main configuration (14)

ldap_start_tls Use: main Type: boolean Default: false

If set, Exim will attempt to negotiate TLS with the LDAP server when connecting on a regular LDAP
port. This is the LDAP equivalent of SMTP’s "STARTTLS". This is distinct from using "ldaps",
which is the LDAP form of SSL-on-connect. In the event of failure to negotiate TLS, the action taken
is controlled by ldap_require_cert. This option is ignored for ldapi connections.

ldap_version Use: main Type: integer Default: unset

This option can be used to force Exim to set a specific protocol version for LDAP. If it option is
unset, it is shown by the -bP command line option as -1. When this is the case, the default is 3 if
LDAP_VERSION3 is defined in the LDAP headers; otherwise it is 2. This option is available only
when Exim has been built with LDAP support.

limits_advertise_hosts Use: main Type: host list† Default: *

This option can be used to suppress the advertisement of the SMTP LIMITS extension (RFC 9422) to
specific hosts. If permitted, Exim as a servier will advertise in the EHLO response the limit for RCPT
commands set by the recipients_max option (if it is set) and the limit for MAIL commands set by the
smtp_accept_max_per_connection option.

local_from_check Use: main Type: boolean Default: true

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line, and checks that the From: header line matches the
login of the calling user and the domain specified by qualify_domain.

Note: An unqualified address (no domain) in the From: header in a locally submitted message is
automatically qualified by Exim, unless the -bnq command line option is used.

You can use local_from_prefix and local_from_suffix to permit affixes on the local part. If the From:
header line does not match, Exim adds a Sender: header with an address constructed from the calling
user’s login and the default qualify domain.

If local_from_check is set false, the From: header check is disabled, and no Sender: header is ever
added. If, in addition, you want to retain Sender: header lines supplied by untrusted users, you must
also set local_sender_retain to be true.

These options affect only the header lines in the message. The envelope sender is still forced to be the
login id at the qualify domain unless untrusted_set_sender permits the user to supply an envelope
sender.

For messages received over TCP/IP, an ACL can specify “submission mode” to request similar header
line checking. See section 48.5.12, which has more details about Sender: processing.

local_from_prefix Use: main Type: string Default: unset
local_from_suffix Use: main Type: string Default: unset

When Exim checks the From: header line of locally submitted messages for matching the login id
(see local_from_check above), it can be configured to ignore certain prefixes and suffixes in the local
part of the address. This is done by setting local_from_prefix and/or local_from_suffix to appropri-
ate lists, in the same form as the local_part_prefix and local_part_suffix router options (see chapter
15). For example, if

local_from_prefix = *-

is set, a From: line containing

From: anything-user@your.domain.example

194 Main configuration (14)

will not cause a Sender: header to be added if user@your.domain.example matches the actual sender
address that is constructed from the login name and qualify domain.

local_interfaces Use: main Type: string list Default: see below

This option controls which network interfaces are used by the daemon for listening; they are also used
to identify the local host when routing. Chapter 13 contains a full description of this option and the
related options daemon_smtp_ports, extra_local_interfaces, hosts_treat_as_local, and tls_on_
connect_ports. The default value for local_interfaces is

local_interfaces = 0.0.0.0

when Exim is built without IPv6 support; otherwise it is

local_interfaces = <; ::0 ; 0.0.0.0

local_scan_timeout Use: main Type: time Default: 5m

This timeout applies to the local_scan() function (see chapter 46). Zero means “no timeout”. If the
timeout is exceeded, the incoming message is rejected with a temporary error if it is an SMTP
message. For a non-SMTP message, the message is dropped and Exim ends with a non-zero code.
The incident is logged on the main and reject logs.

local_sender_retain Use: main Type: boolean Default: false

When a message is submitted locally (that is, not over a TCP/IP connection) by an untrusted user,
Exim removes any existing Sender: header line. If you do not want this to happen, you must set
local_sender_retain, and you must also set local_from_check to be false (Exim will complain if you
do not). See also the ACL modifier control = suppress_local_fixups. Section 48.5.12
has more details about Sender: processing.

localhost_number Use: main Type: string† Default: unset

Exim’s message ids are normally unique only within the local host. If uniqueness among a set of hosts
is required (eg. because they share a spool directory), each host must set a different value for the
localhost_number option. The string is expanded immediately after reading the configuration file (so
that a number can be computed from the host name, for example) and the result of the expansion must
be a number in the range 0–16 (or 0–10 on operating systems with case-insensitive file systems). This
is available in subsequent string expansions via the variable $localhost_number. When localhost_
number is set, the final four characters of the message id, instead of just being a fractional part of the
time, are computed from the time and the local host number as described in section 3.4.

log_file_path Use: main Type: string list† Default: set at com-
pile time

This option sets the path which is used to determine the names of Exim’s log files, or indicates that
logging is to be to syslog, or both. It is expanded when Exim is entered, so it can, for example,
contain a reference to the host name. If no specific path is set for the log files at compile or runtime,
or if the option is unset at runtime (i.e. log_file_path =) they are written in a sub-directory
called log in Exim’s spool directory. A path must start with a slash. To send to syslog, use the word
“syslog”. Chapter 53 contains further details about Exim’s logging, and section 53.1 describes how
the contents of log_file_path are used. If this string is fixed at your installation (contains no expan-
sion variables) it is recommended that you do not set this option in the configuration file, but instead
supply the path using LOG_FILE_PATH in Local/Makefile so that it is available to Exim for logging
errors detected early on – in particular, failure to read the configuration file.

195 Main configuration (14)

log_selector Use: main Type: string Default: unset

This option can be used to reduce or increase the number of things that Exim writes to its log files. Its
argument is made up of names preceded by plus or minus characters. For example:

log_selector = +arguments -retry_defer

A list of possible names and what they control is given in the chapter on logging, in section 53.15.

log_timezone Use: main Type: boolean Default: false

By default, the timestamps on log lines are in local time without the timezone. This means that if your
timezone changes twice a year, the timestamps in log lines are ambiguous for an hour when the clocks
go back. One way of avoiding this problem is to set the timezone to UTC. An alternative is to set log_
timezone true. This turns on the addition of the timezone offset to timestamps in log lines. Turning on
this option can add quite a lot to the size of log files because each line is extended by 6 characters.
Note that the $tod_log variable contains the log timestamp without the zone, but there is another
variable called $tod_zone that contains just the timezone offset.

lookup_open_max Use: main Type: integer Default: 25

This option limits the number of simultaneously open files for single-key lookups that use regular
files (that is, lsearch, dbm, and cdb). Exim normally keeps these files open during routing, because
often the same file is required several times. If the limit is reached, Exim closes the least recently used
file. Note that if you are using the ndbm library, it actually opens two files for each logical DBM
database, though it still counts as one for the purposes of lookup_open_max. If you are getting “too
many open files” errors with NDBM, you need to reduce the value of lookup_open_max.

max_username_length Use: main Type: integer Default: 0

Some operating systems are broken in that they truncate long arguments to getpwnam() to eight
characters, instead of returning “no such user”. If this option is set greater than zero, any attempt to
call getpwnam() with an argument that is longer behaves as if getpwnam() failed.

message_body_newlines Use: main Type: bool Default: false

By default, newlines in the message body are replaced by spaces when setting the $message_body and
$message_body_end expansion variables. If this option is set true, this no longer happens.

message_body_visible Use: main Type: integer Default: 500

This option specifies how much of a message’s body is to be included in the $message_body and
$message_body_end expansion variables.

message_id_header_domain Use: main Type: string† Default: unset

If this option is set, the string is expanded and used as the right hand side (domain) of the Message-
ID: header that Exim creates if a locally-originated incoming message does not have one. “Locally-
originated” means “not received over TCP/IP.” Otherwise, the primary host name is used. Only letters,
digits, dot and hyphen are accepted; any other characters are replaced by hyphens. If the expansion is
forced to fail, or if the result is an empty string, the option is ignored.

196 Main configuration (14)

message_id_header_text Use: main Type: string† Default: unset

If this variable is set, the string is expanded and used to augment the text of the Message-id: header
that Exim creates if a locally-originated incoming message does not have one. The text of this header
is required by RFC 2822 to take the form of an address. By default, Exim uses its internal message id
as the local part, and the primary host name as the domain. If this option is set, it is expanded, and
provided the expansion is not forced to fail, and does not yield an empty string, the result is inserted
into the header immediately before the @, separated from the internal message id by a dot. Any
characters that are illegal in an address are automatically converted into hyphens. This means that
variables such as $tod_log can be used, because the spaces and colons will become hyphens.

message_logs Use: main Type: boolean Default: true

If this option is turned off, per-message log files are not created in the msglog spool sub-directory.
This reduces the amount of disk I/O required by Exim, by reducing the number of files involved in
handling a message from a minimum of four (header spool file, body spool file, delivery journal, and
per-message log) to three. The other major I/O activity is Exim’s main log, which is not affected by
this option.

message_size_limit Use: main Type: string† Default: 50M

This option limits the maximum size of message that Exim will process. The value is expanded for
each incoming connection so, for example, it can be made to depend on the IP address of the remote
host for messages arriving via TCP/IP. After expansion, the value must be a sequence of decimal
digits, optionally followed by K or M.

If nonzero the value will be advertised as a parameter to the ESMTP SIZE service extension keyword.

Note: This limit cannot be made to depend on a message’s sender or any other properties of an
individual message, because it has to be advertised in the server’s response to EHLO. String expan-
sion failure causes a temporary error. A value of zero means no limit, but its use is not recommended.
See also bounce_return_size_limit.

Incoming SMTP messages are failed with a 552 error if the limit is exceeded; locally-generated
messages either get a stderr message or a delivery failure message to the sender, depending on the -oe
setting. Rejection of an oversized message is logged in both the main and the reject logs. See also the
generic transport option message_size_limit, which limits the size of message that an individual
transport can process.

If you use a virus-scanner and set this option to to a value larger than the maximum size that your
virus-scanner is configured to support, you may get failures triggered by large mails. The right size to
configure for the virus-scanner depends upon what data is passed and the options in use but it’s
probably safest to just set it to a little larger than this value. E.g., with a default Exim message size of
50M and a default ClamAV StreamMaxLength of 10M, some problems may result.

A value of 0 will disable size limit checking; Exim will still advertise the SIZE extension in an EHLO
response, but without a limit, so as to permit SMTP clients to still indicate the message size along
with the MAIL verb.

move_frozen_messages Use: main Type: boolean Default: false

This option, which is available only if Exim has been built with the setting

SUPPORT_MOVE_FROZEN_MESSAGES=yes

in Local/Makefile, causes frozen messages and their message logs to be moved from the input and
msglog directories on the spool to Finput and Fmsglog, respectively. There is currently no support in
Exim or the standard utilities for handling such moved messages, and they do not show up in lists
generated by -bp or by the Exim monitor.

197 Main configuration (14)

mua_wrapper Use: main Type: boolean Default: false

Setting this option true causes Exim to run in a very restrictive mode in which it passes messages
synchronously to a smart host. Chapter 52 contains a full description of this facility.

mysql_servers Use: main Type: string list Default: unset

This option provides a list of MySQL servers and associated connection data, to be used in conjunc-
tion with mysql lookups (see section 9.13.1). The option is available only if Exim has been built with
MySQL support.

never_users Use: main Type: string list† Default: unset

This option is expanded just once, at the start of Exim’s processing. Local message deliveries are
normally run in processes that are setuid to the recipient, and remote deliveries are normally run
under Exim’s own uid and gid. It is usually desirable to prevent any deliveries from running as root,
as a safety precaution.

When Exim is built, an option called FIXED_NEVER_USERS can be set to a list of users that must
not be used for local deliveries. This list is fixed in the binary and cannot be overridden by the
configuration file. By default, it contains just the single user name “root”. The never_users runtime
option can be used to add more users to the fixed list.

If a message is to be delivered as one of the users on the fixed list or the never_users list, an error
occurs, and delivery is deferred. A common example is

never_users = root:daemon:bin

Including root is redundant if it is also on the fixed list, but it does no harm. This option overrides the
pipe_as_creator option of the pipe transport driver.

notifier_socket Use: main Type: string Default:
$spool_directory/exim_daemon_notify

This option gives the name for a unix-domain socket on which the daemon listens for work and
information-requests. Only installations running multiple daemons sharing a spool directory should
need to modify the default.

The option is expanded before use. If the platform supports Linux-style abstract socket names, the
result is used with a nul byte prefixed. Otherwise, it should be a full path name and use a directory
accessible to Exim.

If this option is set as empty, or the command line -oY option is used, or the command line uses a -oX
option and does not use -oP, then a notifier socket is not created.

openssl_options Use: main Type: string list Default: +no_sslv2
+no_sslv3

+single_dh_use
+no_ticket

+no_renegotiation

This option allows an administrator to adjust the SSL options applied by OpenSSL to connections. It
is given as a space-separated list of items, each one to be +added or -subtracted from the current
value.

This option is only available if Exim is built against OpenSSL. The values available for this option
vary according to the age of your OpenSSL install. The “all” value controls a subset of flags which
are available, typically the bug workaround options. The SSL_CTX_set_options man page will list the

198 Main configuration (14)

values known on your system and Exim should support all the “bug workaround” options and many
of the “modifying” options. The Exim names lose the leading “SSL_OP_” and are lower-cased.

Note that adjusting the options can have severe impact upon the security of SSL as used by Exim. It is
possible to disable safety checks and shoot yourself in the foot in various unpleasant ways. This
option should not be adjusted lightly. An unrecognised item will be detected at startup, by invoking
Exim with the -bV flag.

The option affects Exim operating both as a server and as a client.

Historical note: prior to release 4.80, Exim defaulted this value to "+dont_insert_empty_fragments",
which may still be needed for compatibility with some clients, but which lowers security by increas-
ing exposure to some now infamous attacks.

Examples:

Make both old MS and old Eudora happy:
openssl_options = -all +microsoft_big_sslv3_buffer \
 +dont_insert_empty_fragments

Disable older protocol versions:
openssl_options = +no_sslv2 +no_sslv3

Possible options may include:

• all

• allow_unsafe_legacy_renegotiation

• cipher_server_preference

• dont_insert_empty_fragments

• ephemeral_rsa

• legacy_server_connect

• microsoft_big_sslv3_buffer

• microsoft_sess_id_bug

• msie_sslv2_rsa_padding

• netscape_challenge_bug

• netscape_reuse_cipher_change_bug

• no_compression

• no_session_resumption_on_renegotiation

• no_sslv2

• no_sslv3

• no_ticket

• no_tlsv1

• no_tlsv1_1

• no_tlsv1_2

• safari_ecdhe_ecdsa_bug

• single_dh_use

• single_ecdh_use

• ssleay_080_client_dh_bug

• sslref2_reuse_cert_type_bug

199 Main configuration (14)

• tls_block_padding_bug

• tls_d5_bug

• tls_rollback_bug

As an aside, the safari_ecdhe_ecdsa_bug item is a misnomer and affects all clients connect-
ing using the MacOS SecureTransport TLS facility prior to MacOS 10.8.4, including email clients. If
you see old MacOS clients failing to negotiate TLS then this option value might help, provided that
your OpenSSL release is new enough to contain this work-around. This may be a situation where you
have to upgrade OpenSSL to get buggy clients working.

oracle_servers Use: main Type: string list Default: unset

This option provides a list of Oracle servers and associated connection data, to be used in conjunction
with oracle lookups (see section 9.13.1). The option is available only if Exim has been built with
Oracle support.

panic_coredump Use: main Type: boolean Default: false

This option is rarely needed but can help for some debugging investigations. If set, when an internal
error is detected by Exim which is sufficient to terminate the process (all such are logged in the
paniclog) then a coredump is requested.

Note that most systems require additional administrative configuration to permit write a core file for a
setuid program, which is Exim’s common installed configuration.

percent_hack_domains Use: main Type: domain list† Default: unset

The “percent hack” is the convention whereby a local part containing a percent sign is re-interpreted
as a new email address, with the percent replaced by @. This is sometimes called “source routing”,
though that term is also applied to RFC 2822 addresses that begin with an @ character. If this option
is set, Exim implements the percent facility for those domains listed, but no others. This happens
before an incoming SMTP address is tested against an ACL.

Warning: The “percent hack” has often been abused by people who are trying to get round relaying
restrictions. For this reason, it is best avoided if at all possible. Unfortunately, a number of less
security-conscious MTAs implement it unconditionally. If you are running Exim on a gateway host,
and routing mail through to internal MTAs without processing the local parts, it is a good idea to
reject recipient addresses with percent characters in their local parts. Exim’s default configuration
does this.

perl_at_start Use: main Type: boolean Default: false
perl_startup Use: main Type: string Default: unset

These options are available only when Exim is built with an embedded Perl interpreter. See chapter 12
for details of their use.

perl_taintmode Use: main Type: boolean Default: false

This option enables the taint mode of the embedded Perl interpreter.

pgsql_servers Use: main Type: string list Default: unset

This option provides a list of PostgreSQL servers and associated connection data, to be used in
conjunction with pgsql lookups (see section 9.13.1). The option is available only if Exim has been
built with PostgreSQL support.

200 Main configuration (14)

pid_file_path Use: main Type: string† Default: set at com-
pile time

This option sets the name of the file to which the Exim daemon writes its process id. The string is
expanded, so it can contain, for example, references to the host name:

pid_file_path = /var/log/$primary_hostname/exim.pid

If no path is set, the pid is written to the file exim-daemon.pid in Exim’s spool directory. The value set
by the option can be overridden by the -oP command line option. A pid file is not written if a
“non-standard” daemon is run by means of the -oX option, unless a path is explicitly supplied by -oP.

pipelining_advertise_hosts Use: main Type: host list† Default: *

This option can be used to suppress the advertisement of the SMTP PIPELINING extension to
specific hosts. See also the no_pipelining control in section 44.13. When PIPELINING is not
advertised and smtp_enforce_sync is true, an Exim server enforces strict synchronization for each
SMTP command and response. When PIPELINING is advertised, Exim assumes that clients will use
it; “out of order” commands that are “expected” do not count as protocol errors (see smtp_max_
synprot_errors).

pipelining_connect_advertise_hostsUse: main Type: host list† Default: *

If Exim is built without the DISABLE_PIPE_CONNECT build option this option controls which
hosts the facility is advertised to and from which pipeline early-connection (before MAIL) SMTP
commands are acceptable. When used, the pipelining saves on roundtrip times.

See also the hosts_pipe_connect smtp transport option.

The SMTP service extension keyword advertised is “PIPECONNECT”; it permits the client to pipe-
line TCP connection and hello command (inclear phase), or TLS-establishment and hello command
(encrypted phase), on later connections to the same host.

prdr_enable Use: main Type: boolean Default: false

This option can be used to enable the Per-Recipient Data Response extension to SMTP, defined by
Eric Hall. If the option is set, PRDR is advertised by Exim when operating as a server. If the client
requests PRDR, and more than one recipient, for a message an additional ACL is called for each
recipient after the message content is received. See section 44.2.7.

preserve_message_logs Use: main Type: boolean Default: false

If this option is set, message log files are not deleted when messages are completed. Instead, they are
moved to a sub-directory of the spool directory called msglog.OLD, where they remain available for
statistical or debugging purposes. This is a dangerous option to set on systems with any appreciable
volume of mail. Use with care!

primary_hostname Use: main Type: string Default: see below

This specifies the name of the current host. It is used in the default EHLO or HELO command for
outgoing SMTP messages (changeable via the helo_data option in the smtp transport), and as the
default for qualify_domain. The value is also used by default in some SMTP response messages
from an Exim server. This can be changed dynamically by setting smtp_active_hostname.

If primary_hostname is not set, Exim calls uname() to find the host name. If this fails, Exim panics
and dies. If the name returned by uname() contains only one component, Exim passes it to
gethostbyname() (or getipnodebyname() when available) in order to obtain the fully qualified version.

201 Main configuration (14)

The variable $primary_hostname contains the host name, whether set explicitly by this option, or
defaulted.

print_topbitchars Use: main Type: boolean Default: false

By default, Exim considers only those characters whose codes lie in the range 32–126 to be printing
characters. In a number of circumstances (for example, when writing log entries) non-printing charac-
ters are converted into escape sequences, primarily to avoid messing up the layout. If print_
topbitchars is set, code values of 128 and above are also considered to be printing characters.

This option also affects the header syntax checks performed by the autoreply transport, and whether
Exim uses RFC 2047 encoding of the user’s full name when constructing From: and Sender:
addresses (as described in section 48.7). Setting this option can cause Exim to generate eight bit
message headers that do not conform to the standards.

process_log_path Use: main Type: string Default: unset

This option sets the name of the file to which an Exim process writes its “process log” when sent a
USR1 signal. This is used by the exiwhat utility script. If this option is unset, the file called exim-
process.info in Exim’s spool directory is used. The ability to specify the name explicitly can be useful
in environments where two different Exims are running, using different spool directories.

prod_requires_admin Use: main Type: boolean Default: true

The -M, -R, and -q command-line options require the caller to be an admin user unless prod_
requires_admin is set false. See also queue_list_requires_admin and commandline_checks_
require_admin.

proxy_protocol_timeout Use: main Type: time Default: 3s

This option sets the timeout for proxy protocol negotiation. For details see section 59.1.

qualify_domain Use: main Type: string Default: see below

This option specifies the domain name that is added to any envelope sender addresses that do not
have a domain qualification. It also applies to recipient addresses if qualify_recipient is not set.
Unqualified addresses are accepted by default only for locally-generated messages. Qualification is
also applied to addresses in header lines such as From: and To: for locally-generated messages, unless
the -bnq command line option is used.

Messages from external sources must always contain fully qualified addresses, unless the sending host
matches sender_unqualified_hosts or recipient_unqualified_hosts (as appropriate), in which case
incoming addresses are qualified with qualify_domain or qualify_recipient as necessary. Internally,
Exim always works with fully qualified envelope addresses. If qualify_domain is not set, it defaults
to the primary_hostname value.

qualify_recipient Use: main Type: string Default: see below

This option allows you to specify a different domain for qualifying recipient addresses to the one that
is used for senders. See qualify_domain above.

202 Main configuration (14)

queue_domains Use: main Type: domain list† Default: unset

This option lists domains for which immediate delivery is not required. A delivery process is started
whenever a message is received, but only those domains that do not match are processed. All other
deliveries wait until the next queue run. See also hold_domains and queue_smtp_domains.

queue_fast_ramp Use: main Type: boolean Default: true

If set to true, two-phase queue runs, initiated using -qq on the command line, may start parallel
delivery processes during their first phase. This will be done when a threshold number of messages
have been routed for a single host.

queue_list_requires_admin Use: main Type: boolean Default: true

The -bp command-line option, which lists the messages that are on the queue, requires the caller to be
an admin user unless queue_list_requires_admin is set false. See also prod_requires_admin and
commandline_checks_require_admin.

queue_only Use: main Type: boolean Default: false

If queue_only is set, a delivery process is not automatically started whenever a message is received.
Instead, the message waits in the queue for the next queue run. Even if queue_only is false, incoming
messages may not get delivered immediately when certain conditions (such as heavy load) occur.

The -odq command line has the same effect as queue_only. The -odb and -odi command line options
override queue_only unless queue_only_override is set false. See also queue_only_file, queue_
only_load, and smtp_accept_queue.

queue_only_file Use: main Type: string list Default: unset

This option can be set to a colon-separated list of absolute path names, each one optionally preceded
by “smtp”. When Exim is receiving a message, it tests for the existence of each listed path using a call
to stat(). For each path that exists, the corresponding queueing option is set. For paths with no prefix,
queue_only is set; for paths prefixed by “smtp”, queue_smtp_domains is set to match all domains.
So, for example,

queue_only_file = smtp/some/file

causes Exim to behave as if queue_smtp_domains were set to “*” whenever /some/file exists.

queue_only_load Use: main Type: fixed-point Default: unset

If the system load average is higher than this value, incoming messages from all sources are queued,
and no automatic deliveries are started. If this happens during local or remote SMTP input, all
subsequent messages received on the same SMTP connection are queued by default, whatever hap-
pens to the load in the meantime, but this can be changed by setting queue_only_load_latch false.

Deliveries will subsequently be performed by queue runner processes. This option has no effect on
ancient operating systems on which Exim cannot determine the load average. See also deliver_
queue_load_max and smtp_load_reserve.

queue_only_load_latch Use: main Type: boolean Default: true

When this option is true (the default), once one message has been queued because the load average is
higher than the value set by queue_only_load, all subsequent messages received on the same SMTP
connection are also queued. This is a deliberate choice; even though the load average may fall below

203 Main configuration (14)

the threshold, it doesn’t seem right to deliver later messages on the same connection when not
delivering earlier ones. However, there are special circumstances such as very long-lived connections
from scanning appliances where this is not the best strategy. In such cases, queue_only_load_latch
should be set false. This causes the value of the load average to be re-evaluated for each message.

queue_only_override Use: main Type: boolean Default: true

When this option is true, the -odx command line options override the setting of queue_only or
queue_only_file in the configuration file. If queue_only_override is set false, the -odx options
cannot be used to override; they are accepted, but ignored.

queue_run_in_order Use: main Type: boolean Default: false

If this option is set, queue runs happen in order of message arrival instead of in an arbitrary order. For
this to happen, a complete list of the entire queue must be set up before the deliveries start. When the
queue is all held in a single directory (the default), a single list is created for both the ordered and the
non-ordered cases. However, if split_spool_directory is set, a single list is not created when queue_
run_in_order is false. In this case, the sub-directories are processed one at a time (in a random
order), and this avoids setting up one huge list for the whole queue. Thus, setting queue_run_in_
order with split_spool_directory may degrade performance when the queue is large, because of the
extra work in setting up the single, large list. In most situations, queue_run_in_order should not be
set.

queue_run_max Use: main Type: integer† Default: 5

This controls the maximum number of queue runner processes that an Exim daemon can run simulta-
neously. This does not mean that it starts them all at once, but rather that if the maximum number are
still running when the time comes to start another one, it refrains from starting another one. This can
happen with very large queues and/or very sluggish deliveries. This option does not, however, inter-
lock with other processes, so additional queue runners can be started by other means, or by killing
and restarting the daemon.

Setting this option to zero does not suppress queue runs; rather, it disables the limit, allowing any
number of simultaneous queue runner processes to be run. If you do not want queue runs to occur,
omit the -qxx setting on the daemon’s command line.

To set limits for different named queues use an expansion depending on the $queue_name variable.

queue_smtp_domains Use: main Type: domain list† Default: unset

When this option is set, a delivery process is started whenever a message is received, routing is
performed, and local deliveries take place. However, if any SMTP deliveries are required for domains
that match queue_smtp_domains, they are not immediately delivered, but instead the message waits
in the queue for the next queue run. Since routing of the message has taken place, Exim knows to
which remote hosts it must be delivered, and so when the queue run happens, multiple messages for
the same host are delivered over a single SMTP connection. The -odqs command line option causes
all SMTP deliveries to be queued in this way, and is equivalent to setting queue_smtp_domains to
“*”. See also hold_domains and queue_domains.

receive_timeout Use: main Type: time Default: 0s

This option sets the timeout for accepting a non-SMTP message, that is, the maximum time that Exim
waits when reading a message on the standard input. If the value is zero, it will wait forever. This
setting is overridden by the -or command line option. The timeout for incoming SMTP messages is
controlled by smtp_receive_timeout.

204 Main configuration (14)

received_header_text Use: main Type: string† Default: see below

This string defines the contents of the Received: message header that is added to each message, except
for the timestamp, which is automatically added on at the end (preceded by a semicolon). The string
is expanded each time it is used. If the expansion yields an empty string, no Received: header line is
added to the message. Otherwise, the string should start with the text “Received:” and conform to the
RFC 2822 specification for Received: header lines. The default setting is:

received_header_text = Received: \
 ${if def:sender_rcvhost {from $sender_rcvhost\n\t}\
 {${if def:sender_ident \
 {from ${quote_local_part:$sender_ident} }}\
 ${if def:sender_helo_name {(helo=$sender_helo_name)\n\t}}}}\
 by $primary_hostname \
 ${if def:received_protocol {with $received_protocol }}\
 ${if def:tls_in_ver { ($tls_in_ver)}}\
 ${if def:tls_in_cipher_std { tls $tls_in_cipher_std\n\t}}\
 (Exim $version_number)\n\t\
 ${if def:sender_address \
 {(envelope-from <$sender_address>)\n\t}}\
 id $message_exim_id\
 ${if def:received_for {\n\tfor $received_for}}

The references to the TLS version and cipher are omitted when Exim is built without TLS support.
The use of conditional expansions ensures that this works for both locally generated messages and
messages received from remote hosts, giving header lines such as the following:

Received: from scrooge.carol.example ([192.168.12.25] ident=root)
by marley.carol.example with esmtp (Exim 4.00)
(envelope-from <bob@carol.example>)
id 16IOWa-00019l-00
for chas@dickens.example; Tue, 25 Dec 2001 14:43:44 +0000
Received: by scrooge.carol.example with local (Exim 4.00)
id 16IOWW-000083-00; Tue, 25 Dec 2001 14:43:41 +0000

Until the body of the message has been received, the timestamp is the time when the message started
to be received. Once the body has arrived, and all policy checks have taken place, the timestamp is
updated to the time at which the message was accepted.

received_headers_max Use: main Type: integer Default: 30

When a message is to be delivered, the number of Received: headers is counted, and if it is greater
than this parameter, a mail loop is assumed to have occurred, the delivery is abandoned, and an error
message is generated. This applies to both local and remote deliveries.

recipient_unqualified_hosts Use: main Type: host list† Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified recipient addresses in
message envelopes. The addresses are made fully qualified by the addition of the qualify_recipient
value. This option also affects message header lines. Exim does not reject unqualified recipient
addresses in headers, but it qualifies them only if the message came from a host that matches
recipient_unqualified_hosts, or if the message was submitted locally (not using TCP/IP), and the
-bnq option was not set.

recipients_max Use: main Type: integer† Default: 50000

If the value resulting from expanding this option is set greater than zero, it specifies the maximum
number of original recipients for any message. Additional recipients that are generated by aliasing or

205 Main configuration (14)

forwarding do not count. SMTP messages get a 452 response for all recipients over the limit; earlier
recipients are delivered as normal. Non-SMTP messages with too many recipients are failed, and no
deliveries are done.

For SMTP message the expansion is done after the connection is accepted (but before any SMTP
conversation) and may depend on the IP addresses and port numbers of the connection. Note: If an
expansion is used for the option, care should be taken that a resonable value results for non-SMTP
messages.

Note: The RFCs specify that an SMTP server should accept at least 100 RCPT commands in a single
message.

recipients_max_reject Use: main Type: boolean Default: false

If this option is set true, Exim rejects SMTP messages containing too many recipients by giving 552
errors to the surplus RCPT commands, and a 554 error to the eventual DATA command. Otherwise
(the default) it gives a 452 error to the surplus RCPT commands and accepts the message on behalf of
the initial set of recipients. The remote server should then re-send the message for the remaining
recipients at a later time.

remote_max_parallel Use: main Type: integer Default: 4

This option controls parallel delivery of one message to a number of remote hosts. If the value is less
than 2, parallel delivery is disabled, and Exim does all the remote deliveries for a message one by one.
Otherwise, if a single message has to be delivered to more than one remote host, or if several copies
have to be sent to the same remote host, up to remote_max_parallel deliveries are done simulta-
neously. If more than remote_max_parallel deliveries are required, the maximum number of pro-
cesses are started, and as each one finishes, another is begun. The order of starting processes is the
same as if sequential delivery were being done, and can be controlled by the remote_sort_domains
option. If parallel delivery takes place while running with debugging turned on, the debugging output
from each delivery process is tagged with its process id.

This option controls only the maximum number of parallel deliveries for one message in one Exim
delivery process. Because Exim has no central queue manager, there is no way of controlling the total
number of simultaneous deliveries if the configuration allows a delivery attempt as soon as a message
is received.

See also the max_parallel generic transport option, and the serialize_hosts smtp transport option.

If you want to control the total number of deliveries on the system, you need to set the queue_only
option. This ensures that all incoming messages are added to the queue without starting a delivery
process. Then set up an Exim daemon to start queue runner processes at appropriate intervals
(probably fairly often, for example, every minute), and limit the total number of queue runners by
setting the queue_run_max parameter. Because each queue runner delivers only one message at a
time, the maximum number of deliveries that can then take place at once is queue_run_max multi-
plied by remote_max_parallel.

If it is purely remote deliveries you want to control, use queue_smtp_domains instead of queue_
only. This has the added benefit of doing the SMTP routing before queueing, so that several messages
for the same host will eventually get delivered down the same connection.

remote_sort_domains Use: main Type: domain list† Default: unset

When there are a number of remote deliveries for a message, they are sorted by domain into the order
given by this list. For example,

remote_sort_domains = *.cam.ac.uk:*.uk

would attempt to deliver to all addresses in the cam.ac.uk domain first, then to those in the uk
domain, then to any others.

206 Main configuration (14)

retry_data_expire Use: main Type: time Default: 7d

This option sets a “use before” time on retry information in Exim’s hints database. Any older retry
data is ignored. This means that, for example, once a host has not been tried for 7 days, Exim behaves
as if it has no knowledge of past failures.

retry_interval_max Use: main Type: time Default: 24h

Chapter 32 describes Exim’s mechanisms for controlling the intervals between delivery attempts for
messages that cannot be delivered straight away. This option sets an overall limit to the length of time
between retries. It cannot be set greater than 24 hours; any attempt to do so forces the default value.

return_path_remove Use: main Type: boolean Default: true

RFC 2821, section 4.4, states that an SMTP server must insert a Return-path: header line into a
message when it makes a “final delivery”. The Return-path: header preserves the sender address as
received in the MAIL command. This description implies that this header should not be present in an
incoming message. If return_path_remove is true, any existing Return-path: headers are removed
from messages at the time they are received. Exim’s transports have options for adding Return-path:
headers at the time of delivery. They are normally used only for final local deliveries.

return_size_limit Use: main Type: integer Default: 100K

This option is an obsolete synonym for bounce_return_size_limit.

rfc1413_hosts Use: main Type: host list† Default: @[]

RFC 1413 identification calls are made to any client host which matches an item in the list. The
default value specifies just this host, being any local interface for the system.

rfc1413_query_timeout Use: main Type: time Default: 0s

This sets the timeout on RFC 1413 identification calls. If it is set to zero, no RFC 1413 calls are ever
made.

sender_unqualified_hosts Use: main Type: host list† Default: unset

This option lists those hosts from which Exim is prepared to accept unqualified sender addresses. The
addresses are made fully qualified by the addition of qualify_domain. This option also affects mess-
age header lines. Exim does not reject unqualified addresses in headers that contain sender addresses,
but it qualifies them only if the message came from a host that matches sender_unqualified_hosts, or
if the message was submitted locally (not using TCP/IP), and the -bnq option was not set.

slow_lookup_log Use: main Type: integer Default: 0

This option controls logging of slow lookups. If the value is nonzero it is taken as a number of
milliseconds and lookups taking longer than this are logged. Currently this applies only to DNS
lookups.

smtp_accept_keepalive Use: main Type: boolean Default: true

This option controls the setting of the SO_KEEPALIVE option on incoming TCP/IP socket connec-
tions. When set, it causes the kernel to probe idle connections periodically, by sending packets with

207 Main configuration (14)

“old” sequence numbers. The other end of the connection should send an acknowledgment if the
connection is still okay or a reset if the connection has been aborted. The reason for doing this is that
it has the beneficial effect of freeing up certain types of connection that can get stuck when the remote
host is disconnected without tidying up the TCP/IP call properly. The keepalive mechanism takes
several hours to detect unreachable hosts.

smtp_accept_max Use: main Type: integer Default: 20

This option specifies the maximum number of simultaneous incoming SMTP calls that Exim will
accept. It applies only to the listening daemon; there is no control (in Exim) when incoming SMTP is
being handled by inetd. If the value is set to zero, no limit is applied. However, it is required to be
non-zero if either smtp_accept_max_per_host or smtp_accept_queue is set. See also smtp_
accept_reserve and smtp_load_reserve.

A new SMTP connection is immediately rejected if the smtp_accept_max limit has been reached. If
not, Exim first checks smtp_accept_max_per_host. If that limit has not been reached for the client
host, smtp_accept_reserve and smtp_load_reserve are then checked before accepting the
connection.

smtp_accept_max_nonmail Use: main Type: integer Default: 10

Exim counts the number of “non-mail” commands in an SMTP session, and drops the connection
if there are too many. This option defines “too many”. The check catches some denial-of-service
attacks, repeated failing AUTHs, or a mad client looping sending EHLO, for example. The check is
applied only if the client host matches smtp_accept_max_nonmail_hosts.

When a new message is expected, one occurrence of RSET is not counted. This allows a client to
send one RSET between messages (this is not necessary, but some clients do it). Exim also allows one
uncounted occurrence of HELO or EHLO, and one occurrence of STARTTLS between messages.
After starting up a TLS session, another EHLO is expected, and so it too is not counted. The first
occurrence of AUTH in a connection, or immediately following STARTTLS is not counted.
Otherwise, all commands other than MAIL, RCPT, DATA, and QUIT are counted.

smtp_accept_max_nonmail_hosts Use: main Type: host list† Default: *

You can control which hosts are subject to the smtp_accept_max_nonmail check by setting this
option. The default value makes it apply to all hosts. By changing the value, you can exclude any
badly-behaved hosts that you have to live with.

smtp_accept_max_per_connectionUse: main Type: integer† Default: 1000

The value of this option limits the number of MAIL commands that Exim is prepared to accept over a
single SMTP connection, whether or not each command results in the transfer of a message. After the
limit is reached, a 421 response is given to subsequent MAIL commands. This limit is a safety
precaution against a client that goes mad (incidents of this type have been seen). The option is
expanded after the HELO or EHLO is received and may depend on values available at that time. An
empty or zero value after expansion removes the limit.

smtp_accept_max_per_host Use: main Type: string† Default: unset

This option restricts the number of simultaneous IP connections from a single host (strictly, from a
single IP address) to the Exim daemon. The option is expanded, to enable different limits to be
applied to different hosts by reference to $sender_host_address. Once the limit is reached, additional
connection attempts from the same host are rejected with error code 421. This is entirely independent
of smtp_accept_reserve. The option’s default value of zero imposes no limit. If this option is set
greater than zero, it is required that smtp_accept_max be non-zero.

208 Main configuration (14)

Warning: When setting this option you should not use any expansion constructions that take an
appreciable amount of time. The expansion and test happen in the main daemon loop, in order to
reject additional connections without forking additional processes (otherwise a denial-of-service
attack could cause a vast number or processes to be created). While the daemon is doing this process-
ing, it cannot accept any other incoming connections.

smtp_accept_queue Use: main Type: integer Default: 0

If the number of simultaneous incoming SMTP connections being handled via the listening daemon
exceeds this value, messages received by SMTP are just placed in the queue; no delivery processes
are started automatically. The count is fixed at the start of an SMTP connection. It cannot be updated
in the subprocess that receives messages, and so the queueing or not queueing applies to all messages
received in the same connection.

A value of zero implies no limit, and clearly any non-zero value is useful only if it is less than the
smtp_accept_max value (unless that is zero). See also queue_only, queue_only_load, queue_
smtp_domains, and the various -odx command line options.

smtp_accept_queue_per_connectionUse: main Type: integer Default: 10

This option limits the number of delivery processes that Exim starts automatically when receiving
messages via SMTP, whether via the daemon or by the use of -bs or -bS. If the value of the option is
greater than zero, and the number of messages received in a single SMTP session exceeds this
number, subsequent messages are placed in the queue, but no delivery processes are started. This
helps to limit the number of Exim processes when a server restarts after downtime and there is a lot of
mail waiting for it on other systems. On large systems, the default should probably be increased, and
on dial-in client systems it should probably be set to zero (that is, disabled).

smtp_accept_reserve Use: main Type: integer Default: 0

When smtp_accept_max is set greater than zero, this option specifies a number of SMTP connec-
tions that are reserved for connections from the hosts that are specified in smtp_reserve_hosts. The
value set in smtp_accept_max includes this reserve pool. The specified hosts are not restricted to this
number of connections; the option specifies a minimum number of connection slots for them, not a
maximum. It is a guarantee that this group of hosts can always get at least smtp_accept_reserve
connections. However, the limit specified by smtp_accept_max_per_host is still applied to each
individual host.

For example, if smtp_accept_max is set to 50 and smtp_accept_reserve is set to 5, once there are 45
active connections (from any hosts), new connections are accepted only from hosts listed in smtp_
reserve_hosts, provided the other criteria for acceptance are met.

smtp_active_hostname Use: main Type: string† Default: unset

This option is provided for multi-homed servers that want to masquerade as several different hosts. At
the start of an incoming SMTP connection, its value is expanded and used instead of the value of
$primary_hostname in SMTP responses. For example, it is used as domain name in the response to an
incoming HELO or EHLO command.

The active hostname is placed in the $smtp_active_hostname variable, which is saved with any
messages that are received. It is therefore available for use in routers and transports when the message
is later delivered.

If this option is unset, or if its expansion is forced to fail, or if the expansion results in an empty
string, the value of $primary_hostname is used. Other expansion failures cause a message to be
written to the main and panic logs, and the SMTP command receives a temporary error. Typically, the
value of smtp_active_hostname depends on the incoming interface address. For example:

209 Main configuration (14)

smtp_active_hostname = ${if eq{$received_ip_address}{10.0.0.1}\
 {cox.mydomain}{box.mydomain}}

Although $smtp_active_hostname is primarily concerned with incoming messages, it is also used as
the default for HELO commands in callout verification if there is no remote transport from which to
obtain a helo_data value.

smtp_backlog_monitor Use: main Type: integer Default: 0

If this option is set to greater than zero, and the backlog of available TCP connections on a socket
listening for SMTP is larger than it, a line is logged giving the value and the socket address and port.
The value is retrived jsut before an accept call. This facility is only available on Linux.

smtp_banner Use: main Type: string† Default: see below

If a connect ACL does not supply a message, this string (which is expanded every time it is used) is
output as the initial positive response to an SMTP connection. The default setting is:

smtp_banner = $smtp_active_hostname ESMTP Exim \
 $version_number $tod_full

Failure to expand the string causes a panic error; a forced fail just closes the connection. If you want
to create a multiline response to the initial SMTP connection, use “\n” in the string at appropriate
points, but not at the end. Note that the 220 code is not included in this string. Exim adds it automati-
cally (several times in the case of a multiline response).

smtp_check_spool_space Use: main Type: boolean Default: true

When this option is set, if an incoming SMTP session encounters the SIZE option on a MAIL
command, it checks that there is enough space in the spool directory’s partition to accept a message of
that size, while still leaving free the amount specified by check_spool_space (even if that value is
zero). If there isn’t enough space, a temporary error code is returned.

smtp_connect_backlog Use: main Type: integer Default: 20

This option specifies a maximum number of waiting SMTP connections. Exim passes this value to the
TCP/IP system when it sets up its listener. Once this number of connections are waiting for the
daemon’s attention, subsequent connection attempts are refused at the TCP/IP level. At least, that is
what the manuals say; in some circumstances such connection attempts have been observed to time
out instead. For large systems it is probably a good idea to increase the value (to 50, say). It also gives
some protection against denial-of-service attacks by SYN flooding.

smtp_enforce_sync Use: main Type: boolean Default: true

The SMTP protocol specification requires the client to wait for a response from the server at certain
points in the dialogue. Without PIPELINING these synchronization points are after every command;
with PIPELINING they are fewer, but they still exist.

Some spamming sites send out a complete set of SMTP commands without waiting for any response.
Exim protects against this by rejecting a message if the client has sent further input when it should not
have. The error response “554 SMTP synchronization error” is sent, and the connection is dropped.
Testing for this error cannot be perfect because of transmission delays (unexpected input may be on
its way but not yet received when Exim checks). However, it does detect many instances.

The check can be globally disabled by setting smtp_enforce_sync false. If you want to disable the
check selectively (for example, only for certain hosts), you can do so by an appropriate use of a
control modifier in an ACL (see section 44.13). See also pipelining_advertise_hosts.

210 Main configuration (14)

smtp_etrn_command Use: main Type: string† Default: unset

If this option is set, the given command is run whenever an SMTP ETRN command is received from a
host that is permitted to issue such commands (see chapter 44). The string is split up into separate
arguments which are independently expanded. The expansion variable $domain is set to the argument
of the ETRN command, and no syntax checking is done on it. For example:

smtp_etrn_command = /etc/etrn_command $domain \
 $sender_host_address

If the option is not set, the argument for the ETRN command must be a # followed by an address
string. In this case an exim -R <string> command is used; if the ETRN ACL has set up a named-
queue then -MCG <queue> is appended.

A new process is created to run the command, but Exim does not wait for it to complete.
Consequently, its status cannot be checked. If the command cannot be run, a line is written to the
panic log, but the ETRN caller still receives a 250 success response. Exim is normally running under
its own uid when receiving SMTP, so it is not possible for it to change the uid before running the
command.

Serialization of ETRN commands is based on the MD5 hash of the command’s argument. No more
than one ETRN command with the same hash of its arguments can run at a given time. Other ETRN
commands get a 458 SMTP rejection.

To protect against attacks flooding the ETRN serialization table, you should consider rate limiting the
ETRN command.

deny
 ratelimit = 3 / 1m / per_cmd / $sender_host_address
 message = rate for ETRN is over the limit ($sender_rate > $sender_rate_limit)

accept

smtp_etrn_serialize Use: main Type: boolean Default: true

When this option is set, it prevents the simultaneous execution of more than one identical command
as a result of ETRN in an SMTP connection. See section 49.2.5 for details.

smtp_load_reserve Use: main Type: fixed-point Default: unset

If the system load average ever gets higher than this, incoming SMTP calls are accepted only from
those hosts that match an entry in smtp_reserve_hosts. If smtp_reserve_hosts is not set, no
incoming SMTP calls are accepted when the load is over the limit. The option has no effect on
ancient operating systems on which Exim cannot determine the load average. See also deliver_
queue_load_max and queue_only_load.

smtp_max_synprot_errors Use: main Type: integer Default: 3

Exim rejects SMTP commands that contain syntax or protocol errors. In particular, a syntactically
invalid email address, as in this command:

RCPT TO:<abc xyz@a.b.c>

causes immediate rejection of the command, before any other tests are done. (The ACL cannot be run
if there is no valid address to set up for it.) An example of a protocol error is receiving RCPT before
MAIL. If there are too many syntax or protocol errors in one SMTP session, the connection is
dropped. The limit is set by this option.

When the PIPELINING extension to SMTP is in use, some protocol errors are “expected”, for
instance, a RCPT command after a rejected MAIL command. Exim assumes that PIPELINING will

211 Main configuration (14)

be used if it advertises it (see pipelining_advertise_hosts), and in this situation, “expected” errors do
not count towards the limit.

smtp_max_unknown_commands Use: main Type: integer Default: 3

If there are too many unrecognized commands in an incoming SMTP session, an Exim server drops
the connection. This is a defence against some kinds of abuse that subvert web clients into making
connections to SMTP ports; in these circumstances, a number of non-SMTP command lines are sent
first.

smtp_ratelimit_hosts Use: main Type: host list† Default: unset
smtp_ratelimit_mail Use: main Type: string Default: unset
smtp_ratelimit_rcpt Use: main Type: string Default: unset

Some sites find it helpful to be able to limit the rate at which certain hosts can send them messages,
and the rate at which an individual message can specify recipients.

Exim has two rate-limiting facilities. This section describes the older facility, which can limit rates
within a single connection. The newer ratelimit ACL condition can limit rates across all connections.
See section 44.20 for details of the newer facility.

When a host matches smtp_ratelimit_hosts, the values of smtp_ratelimit_mail and smtp_
ratelimit_rcpt are used to control the rate of acceptance of MAIL and RCPT commands in a single
SMTP session, respectively. Each option, if set, must contain a set of four comma-separated values:

• A threshold, before which there is no rate limiting.

• An initial time delay. Unlike other times in Exim, numbers with decimal fractional parts are
allowed here.

• A factor by which to increase the delay each time.

• A maximum value for the delay. This should normally be less than 5 minutes, because after that
time, the client is liable to timeout the SMTP command.

For example, these settings have been used successfully at the site which first suggested this feature,
for controlling mail from their customers:

smtp_ratelimit_mail = 2,0.5s,1.05,4m
smtp_ratelimit_rcpt = 4,0.25s,1.015,4m

The first setting specifies delays that are applied to MAIL commands after two have been received
over a single connection. The initial delay is 0.5 seconds, increasing by a factor of 1.05 each time.
The second setting applies delays to RCPT commands when more than four occur in a single
message.

smtp_receive_timeout Use: main Type: time† Default: 5m

This sets a timeout value for SMTP reception. It applies to all forms of SMTP input, including batch
SMTP. If a line of input (either an SMTP command or a data line) is not received within this time, the
SMTP connection is dropped and the message is abandoned. A line is written to the log containing
one of the following messages:

SMTP command timeout on connection from...
SMTP data timeout on connection from...

The former means that Exim was expecting to read an SMTP command; the latter means that it was in
the DATA phase, reading the contents of a message.

If the first character of the option is a “$” the option is expanded before use and may depend on
$sender_host_name, $sender_host_address and $sender_host_port.

212 Main configuration (14)

The value set by this option can be overridden by the -os command-line option. A setting of zero time
disables the timeout, but this should never be used for SMTP over TCP/IP. (It can be useful in some
cases of local input using -bs or -bS.) For non-SMTP input, the reception timeout is controlled by
receive_timeout and -or.

smtp_reserve_hosts Use: main Type: host list† Default: unset

This option defines hosts for which SMTP connections are reserved; see smtp_accept_reserve and
smtp_load_reserve above.

smtp_return_error_details Use: main Type: boolean Default: false

In the default state, Exim uses bland messages such as “Administrative prohibition” when it rejects
SMTP commands for policy reasons. Many sysadmins like this because it gives away little infor-
mation to spammers. However, some other sysadmins who are applying strict checking policies want
to give out much fuller information about failures. Setting smtp_return_error_details true causes
Exim to be more forthcoming. For example, instead of “Administrative prohibition”, it might give:

550-Rejected after DATA: '>' missing at end of address:
550 failing address in "From" header is: <user@dom.ain

smtputf8_advertise_hosts Use: main Type: host list† Default: *

When Exim is built with support for internationalised mail names, the availability thereof is
advertised in response to EHLO only to those client hosts that match this option. See chapter 60 for
details of Exim’s support for internationalisation.

spamd_address Use: main Type: string Default: 127.0.0.1
783

This option is available when Exim is compiled with the content-scanning extension. It specifies how
Exim connects to SpamAssassin’s spamd daemon. See section 45.2 for more details.

spf_guess Use: main Type: string Default: v=spf1 a/24
mx/24 ptr ?all

This option is available when Exim is compiled with SPF support. See section 58.2 for more details.

spf_smtp_comment_template Use: main Type: string† Default:
Please%_see%_http://www.open-spf.org/Why

This option is available when Exim is compiled with SPF support. It allows the customisation of the
SMTP comment that the SPF library generates. You are strongly encouraged to link to your own
explanative site. The template must not contain spaces. If you need spaces in the output, use the
proper placeholder. If libspf2 can not parse the template, it uses a built-in default broken link. The
following placeholders (along with Exim variables (but see below)) are allowed in the template:

• %_: A space.

• %{L}: Envelope sender’s local part.

• %{S}: Envelope sender.

• %{O}: Envelope sender’s domain.

• %{D}: Current(?) domain.

• %{I}: SMTP client Ip.

213 Main configuration (14)

• %{C}: SMTP client pretty IP.

• %{T}: Epoch time (UTC).

• %{P}: SMTP client domain name.

• %{V}: IP version.

• %{H}: EHLO/HELO domain.

• %{R}: Receiving domain.

The capitalized placeholders do proper URL encoding, if you use them lowercased, no encoding takes
place. This list was compiled from the libspf2 sources.

A note on using Exim variables: As currently the SPF library is initialized before the SMTP EHLO
phase, the variables useful for expansion are quite limited.

split_spool_directory Use: main Type: boolean Default: false

If this option is set, it causes Exim to split its input directory into 62 subdirectories, each with a single
alphanumeric character as its name. The sixth character of the message id is used to allocate messages
to subdirectories; this is the least significant base-62 digit of the time of arrival of the message.

Splitting up the spool in this way may provide better performance on systems where there are long
mail queues, by reducing the number of files in any one directory. The msglog directory is also split
up in a similar way to the input directory; however, if preserve_message_logs is set, all old msglog
files are still placed in the single directory msglog.OLD.

It is not necessary to take any special action for existing messages when changing split_spool_
directory. Exim notices messages that are in the “wrong” place, and continues to process them. If the
option is turned off after a period of being on, the subdirectories will eventually empty and be
automatically deleted.

When split_spool_directory is set, the behaviour of queue runner processes changes. Instead of
creating a list of all messages in the queue, and then trying to deliver each one, in turn, it constructs a
list of those in one sub-directory and tries to deliver them, before moving on to the next sub-directory.
The sub-directories are processed in a random order. This spreads out the scanning of the input
directories, and uses less memory. It is particularly beneficial when there are lots of messages in the
queue. However, if queue_run_in_order is set, none of this new processing happens. The entire
queue has to be scanned and sorted before any deliveries can start.

spool_directory Use: main Type: string† Default: set at com-
pile time

This defines the directory in which Exim keeps its spool, that is, the messages it is waiting to deliver.
The default value is taken from the compile-time configuration setting, if there is one. If not, this
option must be set. The string is expanded, so it can contain, for example, a reference to $primary_
hostname.

If the spool directory name is fixed on your installation, it is recommended that you set it at build time
rather than from this option, particularly if the log files are being written to the spool directory (see
log_file_path). Otherwise log files cannot be used for errors that are detected early on, such as
failures in the configuration file.

By using this option to override the compiled-in path, it is possible to run tests of Exim without using
the standard spool.

214 Main configuration (14)

spool_wireformat Use: main Type: boolean Default: false

If this option is set, Exim may for some messages use an alternative format for data-files in the spool
which matches the wire format. Doing this permits more efficient message reception and trans-
mission. Currently it is only done for messages received using the ESMTP CHUNKING option.

The following variables will not have useful values:

$max_received_linelength
$body_linecount
$body_zerocount

Users of the local_scan() API (see 46), and any external programs which are passed a reference to a
message data file (except via the “regex”, “malware” or “spam”) ACL conditions) will need to be
aware of the different formats potentially available.

Using any of the ACL conditions noted will negate the reception benefit (as a Unix-mbox-format file
is constructed for them). The transmission benefit is maintained.

sqlite_lock_timeout Use: main Type: time Default: 5s

This option controls the timeout that the sqlite lookup uses when trying to access an SQLite database.
See section 9.13.5 for more details.

strict_acl_vars Use: main Type: boolean Default: false

This option controls what happens if a syntactically valid but undefined ACL variable is referenced. If
it is false (the default), an empty string is substituted; if it is true, an error is generated. See section
44.10 for details of ACL variables.

strip_excess_angle_brackets Use: main Type: boolean Default: false

If this option is set, redundant pairs of angle brackets round “route-addr” items in addresses are
stripped. For example, <<xxx@a.b.c.d>> is treated as <xxx@a.b.c.d>. If this is in the envelope and
the message is passed on to another MTA, the excess angle brackets are not passed on. If this option is
not set, multiple pairs of angle brackets cause a syntax error.

strip_trailing_dot Use: main Type: boolean Default: false

If this option is set, a trailing dot at the end of a domain in an address is ignored. If this is in the
envelope and the message is passed on to another MTA, the dot is not passed on. If this option is not
set, a dot at the end of a domain causes a syntax error. However, addresses in header lines are checked
only when an ACL requests header syntax checking.

syslog_duplication Use: main Type: boolean Default: true

When Exim is logging to syslog, it writes the log lines for its three separate logs at different syslog
priorities so that they can in principle be separated on the logging hosts. Some installations do not
require this separation, and in those cases, the duplication of certain log lines is a nuisance. If syslog_
duplication is set false, only one copy of any particular log line is written to syslog. For lines that
normally go to both the main log and the reject log, the reject log version (possibly containing
message header lines) is written, at LOG_NOTICE priority. Lines that normally go to both the main
and the panic log are written at the LOG_ALERT priority.

215 Main configuration (14)

syslog_facility Use: main Type: string Default: unset

This option sets the syslog “facility” name, used when Exim is logging to syslog. The value must be
one of the strings “mail”, “user”, “news”, “uucp”, “daemon”, or “localx” where x is a digit between 0
and 7. If this option is unset, “mail” is used. See chapter 53 for details of Exim’s logging.

syslog_pid Use: main Type: boolean Default: true

If syslog_pid is set false, the PID on Exim’s log lines are omitted when these lines are sent to syslog.
(Syslog normally prefixes the log lines with the PID of the logging process automatically.) You need
to enable the +pid log selector item, if you want Exim to write it’s PID into the logs.) See chapter 53
for details of Exim’s logging.

syslog_processname Use: main Type: string Default: exim

This option sets the syslog “ident” name, used when Exim is logging to syslog. The value must be no
longer than 32 characters. See chapter 53 for details of Exim’s logging.

syslog_timestamp Use: main Type: boolean Default: true

If syslog_timestamp is set false, the timestamps on Exim’s log lines are omitted when these lines are
sent to syslog. See chapter 53 for details of Exim’s logging.

system_filter Use: main Type: string† Default: unset

This option specifies an Exim filter file that is applied to all messages at the start of each delivery
attempt, before any routing is done. System filters must be Exim filters; they cannot be Sieve filters. If
the system filter generates any deliveries to files or pipes, or any new mail messages, the appropriate
system_filter_..._transport option(s) must be set, to define which transports are to be used. Details
of this facility are given in chapter 47. A forced expansion failure results in no filter operation.

system_filter_directory_transport Use: main Type: string† Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path ending in “/”, implying delivery of each message into a separate file in
some directory. During the delivery, the variable $address_file contains the path name.

system_filter_file_transport Use: main Type: string† Default: unset

This sets the name of the transport driver that is to be used when the save command in a system
message filter specifies a path not ending in “/”. During the delivery, the variable $address_file
contains the path name.

system_filter_group Use: main Type: string Default: unset

This option is used only when system_filter_user is also set. It sets the gid under which the system
filter is run, overriding any gid that is associated with the user. The value may be numerical or
symbolic.

system_filter_pipe_transport Use: main Type: string† Default: unset

This specifies the transport driver that is to be used when a pipe command is used in a system filter.
During the delivery, the variable $address_pipe contains the pipe command.

216 Main configuration (14)

system_filter_reply_transport Use: main Type: string† Default: unset

This specifies the transport driver that is to be used when a mail command is used in a system filter.

system_filter_user Use: main Type: string Default: unset

If this option is set to root, the system filter is run in the main Exim delivery process, as root.
Otherwise, the system filter runs in a separate process, as the given user, defaulting to the Exim
run-time user. Unless the string consists entirely of digits, it is looked up in the password data. Failure
to find the named user causes a configuration error. The gid is either taken from the password data, or
specified by system_filter_group. When the uid is specified numerically, system_filter_group is
required to be set.

If the system filter generates any pipe, file, or reply deliveries, the uid under which the filter is run is
used when transporting them, unless a transport option overrides.

tcp_nodelay Use: main Type: boolean Default: true

If this option is set false, it stops the Exim daemon setting the TCP_NODELAY option on its listening
sockets. Setting TCP_NODELAY turns off the “Nagle algorithm”, which is a way of improving
network performance in interactive (character-by-character) situations. Turning it off should improve
Exim’s performance a bit, so that is what happens by default. However, it appears that some broken
clients cannot cope, and time out. Hence this option. It affects only those sockets that are set up for
listening by the daemon. Sockets created by the smtp transport for delivering mail always set TCP_
NODELAY.

timeout_frozen_after Use: main Type: time Default: 0s

If timeout_frozen_after is set to a time greater than zero, a frozen message of any kind that has been
in the queue for longer than the given time is automatically cancelled at the next queue run. If the
frozen message is a bounce message, it is just discarded; otherwise, a bounce is sent to the sender, in a
similar manner to cancellation by the -Mg command line option. If you want to timeout frozen
bounce messages earlier than other kinds of frozen message, see ignore_bounce_errors_after.

Note: the default value of zero means no timeouts; with this setting, frozen messages remain in the
queue forever (except for any frozen bounce messages that are released by ignore_bounce_errors_
after).

timezone Use: main Type: string Default: unset

The value of timezone is used to set the environment variable TZ while running Exim (if it is
different on entry). This ensures that all timestamps created by Exim are in the required timezone. If
you want all your timestamps to be in UTC (aka GMT) you should set

timezone = UTC

The default value is taken from TIMEZONE_DEFAULT in Local/Makefile, or, if that is not set, from
the value of the TZ environment variable when Exim is built. If timezone is set to the empty string,
either at build or run time, any existing TZ variable is removed from the environment when Exim
runs. This is appropriate behaviour for obtaining wall-clock time on some, but unfortunately not all,
operating systems.

tls_advertise_hosts Use: main Type: host list† Default: *

When Exim is built with support for TLS encrypted connections, the availability of the STARTTLS
command to set up an encrypted session is advertised in response to EHLO only to those client hosts

217 Main configuration (14)

that match this option. See chapter 43 for details of Exim’s support for TLS. Note that the default
value requires that a certificate be supplied using the tls_certificate option. If TLS support for
incoming connections is not required the tls_advertise_hosts option should be set empty.

tls_alpn Use: main Type: string list† Default: smtp :
esmtp

If this option is set, the TLS library supports ALPN, and the client offers either more than one ALPN
name or a name which does not match the list, the TLS connection is declined.

tls_certificate Use: main Type: string list† Default: unset

The value of this option is expanded, and must then be a list of absolute paths to files which contain
the server’s certificates (in PEM format). Commonly only one file is needed. The server’s private key
is also assumed to be in this file if tls_privatekey is unset. See chapter 43 for further details.

Note: The certificates defined by this option are used only when Exim is receiving incoming mess-
ages as a server. If you want to supply certificates for use when sending messages as a client, you
must set the tls_certificate option in the relevant smtp transport.

Note: If you use filenames based on IP addresses, change the list separator in the usual way (6.21) to
avoid confusion under IPv6.

Note: Under versions of OpenSSL preceding 1.1.1, when a list of more than one file is used, the $tls_
in_ourcert variable is unreliable. The macro "_TLS_BAD_MULTICERT_IN_OURCERT" will be
defined for those versions.

If the option contains $tls_out_sni and Exim is built against OpenSSL, then if the OpenSSL build
supports TLS extensions and the TLS client sends the Server Name Indication extension, then this
option and others documented in 43.8 will be re-expanded.

If this option is unset or empty a self-signed certificate will be used. Under Linux this is generated at
daemon startup; on other platforms it will be generated fresh for every connection.

tls_crl Use: main Type: string† Default: unset

This option specifies a certificate revocation list. The expanded value must be the name of a file that
contains CRLs in PEM format.

Under OpenSSL the option can specify a directory with CRL files.

Note: Under OpenSSL the option must, if given, supply a CRL for each signing element of the
certificate chain (i.e. all but the leaf). For the file variant this can be multiple PEM blocks in the one
file.

See 43.8 for discussion of when this option might be re-expanded.

tls_dh_max_bits Use: main Type: integer Default: 2236

The number of bits used for Diffie-Hellman key-exchange may be suggested by the chosen TLS
library. That value might prove to be too high for interoperability. This option provides a maximum
clamp on the value suggested, trading off security for interoperability.

The value must be at least 1024.

The value 2236 was chosen because, at time of adding the option, it was the hard-coded maximum
value supported by the NSS cryptographic library, as used by Thunderbird, while GnuTLS was
suggesting 2432 bits as normal.

If you prefer more security and are willing to break some clients, raise this number.

218 Main configuration (14)

Note that the value passed to GnuTLS for *generating* a new prime may be a little less than this
figure, because GnuTLS is inexact and may produce a larger prime than requested.

tls_dhparam Use: main Type: string† Default: unset

The value of this option is expanded and indicates the source of DH parameters to be used by Exim.

Note: The Exim Maintainers strongly recommend using a filename with site-generated local DH
parameters, which has been supported across all versions of Exim. The other specific constants
available are a fallback so that even when "unconfigured", Exim can offer Perfect Forward Secrecy in
older ciphersuites in TLS.

If tls_dhparam is a filename starting with a /, then it names a file from which DH parameters should
be loaded. If the file exists, it should hold a PEM-encoded PKCS#3 representation of the DH prime. If
the file does not exist, for OpenSSL it is an error. For GnuTLS, Exim will attempt to create the file
and fill it with a generated DH prime. For OpenSSL, if the DH bit-count from loading the file is
greater than tls_dh_max_bits then it will be ignored, and treated as though the tls_dhparam were set
to "none".

If this option expands to the string "none", then no DH parameters will be loaded by Exim.

If this option expands to the string "historic" and Exim is using GnuTLS, then Exim will attempt to
load a file from inside the spool directory. If the file does not exist, Exim will attempt to create it. See
section 43.3 for further details.

If Exim is using OpenSSL and this option is empty or unset, then Exim will load a default DH prime;
the default is Exim-specific but lacks verifiable provenance.

In older versions of Exim the default was the 2048 bit prime described in section 2.2 of RFC 5114,
"2048-bit MODP Group with 224-bit Prime Order Subgroup", which in IKE is assigned number 23.

Otherwise, the option must expand to the name used by Exim for any of a number of DH primes
specified in RFC 2409, RFC 3526, RFC 5114, RFC 7919, or from other sources. As names, Exim
uses a standard specified name, else "ike" followed by the number used by IKE, or "default" which
corresponds to exim.dev.20160529.3.

The available standard primes are: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144,
ffdhe8192, ike1, ike2, ike5, ike14, ike15, ike16, ike17, ike18, ike22, ike23 and
ike24.

The available additional primes are: exim.dev.20160529.1, exim.dev.20160529.2 and
exim.dev.20160529.3.

Some of these will be too small to be accepted by clients. Some may be too large to be accepted by
clients. The open cryptographic community has suspicions about the integrity of some of the later
IKE values, which led into RFC7919 providing new fixed constants (the "ffdhe" identifiers).

At this point, all of the "ike" values should be considered obsolete; they are still in Exim to avoid
breaking unusual configurations, but are candidates for removal the next time we have backwards-
incompatible changes. Two of them in particular (ike1 and ike22) are called out by RFC 8247 as
MUST NOT use for IPSEC, and two more (ike23 and ike24) as SHOULD NOT. Because of this,
Exim regards them as deprecated; if either of the first pair are used, warnings will be logged in the
paniclog, and if any are used then warnings will be logged in the mainlog. All four will be removed in
a future Exim release.

The TLS protocol does not negotiate an acceptable size for this; clients tend to hard-drop connections
if what is offered by the server is unacceptable, whether too large or too small, and there’s no
provision for the client to tell the server what these constraints are. Thus, as a server operator, you
need to make an educated guess as to what is most likely to work for your userbase.

Some known size constraints suggest that a bit-size in the range 2048 to 2236 is most likely to
maximise interoperability. The upper bound comes from applications using the Mozilla Network
Security Services (NSS) library, which used to set its DH_MAX_P_BITS upper-bound to 2236. This

219 Main configuration (14)

affects many mail user agents (MUAs). The lower bound comes from Debian installs of Exim4 prior
to the 4.80 release, as Debian used to patch Exim to raise the minimum acceptable bound from 1024
to 2048.

tls_eccurve Use: main Type: string Default: list†

This option selects EC curves for use by Exim when used with OpenSSL. It has no effect when Exim
is used with GnuTLS (the equivalent can be done using a priority string for the tls_require_ciphers
option).

After expansion it must contain one or (only for OpenSSL versiona 1.1.1 onwards) more EC curve
names, such as prime256v1, secp384r1, or P-521. Consult your OpenSSL manual for valid
curve names.

For OpenSSL versions before (and not including) 1.0.2, the string auto selects prime256v1. For
more recent OpenSSL versions auto tells the library to choose.

If the option expands to an empty string, the effect is undefined.

tls_ocsp_file Use: main Type: string† Default: unset

This option must if set expand to the absolute path to a file which contains a current status proof for
the server’s certificate, as obtained from the Certificate Authority.

Usable for GnuTLS 3.4.4 or 3.3.17 or OpenSSL 1.1.0 (or later). The macro "_HAVE_TLS_OCSP"
will be defined for those versions.

For OpenSSL 1.1.0 or later, and for GnuTLS 3.5.6 or later the expanded value of this option can be a
list of files, to match a list given for the tls_certificate option. The ordering of the two lists must
match. The macro "_HAVE_TLS_OCSP_LIST" will be defined for those versions.

The file(s) should be in DER format, except for GnuTLS 3.6.3 or later or for OpenSSL, when an
optional filetype prefix can be used. The prefix must be one of "DER" or "PEM", followed by a single
space. If one is used it sets the format for subsequent files in the list; the initial format is DER. If
multiple proofs are wanted, for multiple chain elements (this only works under TLS1.3) they must be
coded as a combined OCSP response.

Although GnuTLS will accept PEM files with multiple separate PEM blobs (ie. separate OCSP
responses), it sends them in the TLS Certificate record interleaved with the certificates of the chain;
although a GnuTLS client is happy with that, an OpenSSL client is not.

tls_on_connect_ports Use: main Type: string list Default: unset

This option specifies a list of incoming SSMTP (aka SMTPS) ports that should operate the SSMTP
(SMTPS) protocol, where a TLS session is immediately set up without waiting for the client to issue a
STARTTLS command. For further details, see section 13.4.

tls_privatekey Use: main Type: string list† Default: unset

The value of this option is expanded, and must then be a list of absolute paths to files which contains
the server’s private keys. If this option is unset, or if the expansion is forced to fail, or the result is an
empty string, the private key is assumed to be in the same file as the server’s certificates. See chapter
43 for further details.

See 43.8 for discussion of when this option might be re-expanded.

220 Main configuration (14)

tls_remember_esmtp Use: main Type: boolean Default: false

If this option is set true, Exim violates the RFCs by remembering that it is in “esmtp” state after
successfully negotiating a TLS session. This provides support for broken clients that fail to send a
new EHLO after starting a TLS session.

tls_require_ciphers Use: main Type: string† Default: unset

This option controls which ciphers can be used for incoming TLS connections. The smtp transport has
an option of the same name for controlling outgoing connections. This option is expanded for each
connection, so can be varied for different clients if required. The value of this option must be a list of
permitted cipher suites. The OpenSSL and GnuTLS libraries handle cipher control in somewhat
different ways. If GnuTLS is being used, the client controls the preference order of the available
ciphers. Details are given in sections 43.4 and 43.5.

tls_resumption_hosts Use: main Type: host list† Default: unset

This option controls which connections to offer the TLS resumption feature. See 43.11 for details.

tls_try_verify_hosts Use: main Type: host list† Default: unset

See tls_verify_hosts below.

tls_verify_certificates Use: main Type: string† Default: system

The value of this option is expanded, and must then be either the word "system" or the absolute path
to a file or directory containing permitted certificates for clients that match tls_verify_hosts or tls_
try_verify_hosts.

The "system" value for the option will use a system default location compiled into the SSL library.
This is not available for GnuTLS versions preceding 3.0.20, and will be taken as empty; an explicit
location must be specified.

The use of a directory for the option value is not available for GnuTLS versions preceding 3.3.6 and a
single file must be used.

With OpenSSL the certificates specified explicitly either by file or directory are added to those given
by the system default location.

These certificates should be for the certificate authorities trusted, rather than the public cert of individ-
ual clients. With both OpenSSL and GnuTLS, if the value is a file then the certificates are sent by
Exim as a server to connecting clients, defining the list of accepted certificate authorities. Thus the
values defined should be considered public data. To avoid this, use the explicit directory version. (If
your peer is Exim up to 4.85, using GnuTLS, you may need to send the CAs (thus using the file
variant). Otherwise the peer doesn’t send its certificate.)

See 43.8 for discussion of when this option might be re-expanded.

A forced expansion failure or setting to an empty string is equivalent to being unset.

tls_verify_hosts Use: main Type: host list† Default: unset

This option, along with tls_try_verify_hosts, controls the checking of certificates from clients. The
expected certificates are defined by tls_verify_certificates, which must be set. A configuration error
occurs if either tls_verify_hosts or tls_try_verify_hosts is set and tls_verify_certificates is not set.

Any client that matches tls_verify_hosts is constrained by tls_verify_certificates. When the client
initiates a TLS session, it must present one of the listed certificates. If it does not, the connection is

221 Main configuration (14)

aborted. Warning: Including a host in tls_verify_hosts does not require the host to use TLS. It can
still send SMTP commands through unencrypted connections. Forcing a client to use TLS has to be
done separately using an ACL to reject inappropriate commands when the connection is not
encrypted.

A weaker form of checking is provided by tls_try_verify_hosts. If a client matches this option (but
not tls_verify_hosts), Exim requests a certificate and checks it against tls_verify_certificates, but
does not abort the connection if there is no certificate or if it does not match. This state can be
detected in an ACL, which makes it possible to implement policies such as “accept for relay only if a
verified certificate has been received, but accept for local delivery if encrypted, even without a verified
certificate”.

Client hosts that match neither of these lists are not asked to present certificates.

trusted_groups Use: main Type: string list† Default: unset

This option is expanded just once, at the start of Exim’s processing. If this option is set, any process
that is running in one of the listed groups, or which has one of them as a supplementary group, is
trusted. The groups can be specified numerically or by name. See section 5.2 for details of what
trusted callers are permitted to do. If neither trusted_groups nor trusted_users is set, only root and
the Exim user are trusted.

trusted_users Use: main Type: string list† Default: unset

This option is expanded just once, at the start of Exim’s processing. If this option is set, any process
that is running as one of the listed users is trusted. The users can be specified numerically or by name.
See section 5.2 for details of what trusted callers are permitted to do. If neither trusted_groups nor
trusted_users is set, only root and the Exim user are trusted.

unknown_login Use: main Type: string† Default: unset

This is a specialized feature for use in unusual configurations. By default, if the uid of the caller of
Exim cannot be looked up using getpwuid(), Exim gives up. The unknown_login option can be used
to set a login name to be used in this circumstance. It is expanded, so values like user$caller_uid can
be set. When unknown_login is used, the value of unknown_username is used for the user’s real
name (gecos field), unless this has been set by the -F option.

unknown_username Use: main Type: string Default: unset

See unknown_login.

untrusted_set_sender Use: main Type: address list† Default: unset

When an untrusted user submits a message to Exim using the standard input, Exim normally creates
an envelope sender address from the user’s login and the default qualification domain. Data from the
-f option (for setting envelope senders on non-SMTP messages) or the SMTP MAIL command (if -bs
or -bS is used) is ignored.

However, untrusted users are permitted to set an empty envelope sender address, to declare that a
message should never generate any bounces. For example:

exim -f '<>' user@domain.example

The untrusted_set_sender option allows you to permit untrusted users to set other envelope sender
addresses in a controlled way. When it is set, untrusted users are allowed to set envelope sender
addresses that match any of the patterns in the list. Like all address lists, the string is expanded. The

222 Main configuration (14)

identity of the user is in $sender_ident, so you can, for example, restrict users to setting senders that
start with their login ids followed by a hyphen by a setting like this:

untrusted_set_sender = ^$sender_ident-

If you want to allow untrusted users to set envelope sender addresses without restriction, you can use

untrusted_set_sender = *

The untrusted_set_sender option applies to all forms of local input, but only to the setting of the
envelope sender. It does not permit untrusted users to use the other options which trusted user can use
to override message parameters. Furthermore, it does not stop Exim from removing an existing
Sender: header in the message, or from adding a Sender: header if necessary. See local_sender_
retain and local_from_check for ways of overriding these actions. The handling of the Sender:
header is also described in section 48.5.12.

The log line for a message’s arrival shows the envelope sender following “<=”. For local messages,
the user’s login always follows, after “U=”. In -bp displays, and in the Exim monitor, if an untrusted
user sets an envelope sender address, the user’s login is shown in parentheses after the sender address.

uucp_from_pattern Use: main Type: string Default: see below

Some applications that pass messages to an MTA via a command line interface use an initial line
starting with “From ” to pass the envelope sender. In particular, this is used by UUCP software. Exim
recognizes such a line by means of a regular expression that is set in uucp_from_pattern. When the
pattern matches, the sender address is constructed by expanding the contents of uucp_from_sender,
provided that the caller of Exim is a trusted user. The default pattern recognizes lines in the following
two forms:

From ph10 Fri Jan 5 12:35 GMT 1996
From ph10 Fri, 7 Jan 97 14:00:00 GMT

The pattern can be seen by running

exim -bP uucp_from_pattern

It checks only up to the hours and minutes, and allows for a 2-digit or 4-digit year in the second case.
The first word after “From ” is matched in the regular expression by a parenthesized subpattern. The
default value for uucp_from_sender is “$1”, which therefore just uses this first word (“ph10” in the
example above) as the message’s sender. See also ignore_fromline_hosts.

uucp_from_sender Use: main Type: string† Default: $1

See uucp_from_pattern above.

warn_message_file Use: main Type: string† Default: unset

This option defines a template file containing paragraphs of text to be used for constructing the
warning message which is sent by Exim when a message has been in the queue for a specified amount
of time, as specified by delay_warning. Details of the file’s contents are given in chapter 50. The
option is expanded to give the file path, which must be absolute and untainted. See also bounce_
message_file.

wellknown_advertise_hosts Use: main Type: boolean Default: unset

This option enables the advertising of the SMTP WELLKNOWN extension. See also the acl_smtp_
wellknown ACL (44.2.8).

223 Main configuration (14)

write_rejectlog Use: main Type: boolean Default: true

If this option is set false, Exim no longer writes anything to the reject log. See chapter 53 for details
of what Exim writes to its logs.

224 Main configuration (14)

15. Generic options for routers

This chapter describes the generic options that apply to all routers. Those that are preconditions are
marked with ‡ in the “use” field.

For a general description of how a router operates, see sections 3.10 and 3.12. The latter specifies the
order in which the preconditions are tested. The order of expansion of the options that provide data
for a transport is: errors_to, headers_add, headers_remove, transport.

The name of a router is limited to be 64 ASCII characters long; prior to Exim 4.95 names would be
silently truncated at this length, but now it is enforced.

address_data Use: routers Type: string† Default: unset

The string is expanded just before the router is run, that is, after all the precondition tests have
succeeded. If the expansion is forced to fail, the router declines, the value of address_data remains
unchanged, and the more option controls what happens next. Other expansion failures cause delivery
of the address to be deferred.

When the expansion succeeds, the value is retained with the address, and can be accessed using the
variable $address_data in the current router, subsequent routers, and the eventual transport.

Warning: If the current or any subsequent router is a redirect router that runs a user’s filter file, the
contents of $address_data are accessible in the filter. This is not normally a problem, because such
data is usually either not confidential or it “belongs” to the current user, but if you do put confidential
data into $address_data you need to remember this point.

Even if the router declines or passes, the value of $address_data remains with the address, though it
can be changed by another address_data setting on a subsequent router. If a router generates child
addresses, the value of $address_data propagates to them. This also applies to the special kind of
“child” that is generated by a router with the unseen option.

The idea of address_data is that you can use it to look up a lot of data for the address once, and then
pick out parts of the data later. For example, you could use a single LDAP lookup to return a string of
the form

uid=1234 gid=5678 mailbox=/mail/xyz forward=/home/xyz/.forward

In the transport you could pick out the mailbox by a setting such as

file = ${extract{mailbox}{$address_data}}

This makes the configuration file less messy, and also reduces the number of lookups (though Exim
does cache lookups).

See also the set option below.

The address_data facility is also useful as a means of passing information from one router to another,
and from a router to a transport. In addition, if $address_data is set by a router when verifying a
recipient address from an ACL, it remains available for use in the rest of the ACL statement. After
verifying a sender, the value is transferred to $sender_address_data.

address_test Use: routers‡ Type: boolean Default: true

If this option is set false, the router is skipped when routing is being tested by means of the -bt
command line option. This can be a convenience when your first router sends messages to an external
scanner, because it saves you having to set the “already scanned” indicator when testing real address
routing.

225 Generic options for routers (15)

cannot_route_message Use: routers Type: string† Default: unset

This option specifies a text message that is used when an address cannot be routed because Exim has
run out of routers. The default message is “Unrouteable address”. This option is useful only on
routers that have more set false, or on the very last router in a configuration, because the value that is
used is taken from the last router that is considered. This includes a router that is skipped because its
preconditions are not met, as well as a router that declines. For example, using the default configur-
ation, you could put:

cannot_route_message = Remote domain not found in DNS

on the first router, which is a dnslookup router with more set false, and

cannot_route_message = Unknown local user

on the final router that checks for local users. If string expansion fails for this option, the default
message is used. Unless the expansion failure was explicitly forced, a message about the failure is
written to the main and panic logs, in addition to the normal message about the routing failure.

caseful_local_part Use: routers Type: boolean Default: false

By default, routers handle the local parts of addresses in a case-insensitive manner, though the actual
case is preserved for transmission with the message. If you want the case of letters to be significant in
a router, you must set this option true. For individual router options that contain address or local part
lists (for example, local_parts), case-sensitive matching can be turned on by “+caseful” as a list item.
See section 10.5.1 for more details.

The value of the $local_part variable is forced to lower case while a router is running unless caseful_
local_part is set. When a router assigns an address to a transport, the value of $local_part when the
transport runs is the same as it was in the router. Similarly, when a router generates child addresses by
aliasing or forwarding, the values of $original_local_part and $parent_local_part are those that were
used by the redirecting router.

This option applies to the processing of an address by a router. When a recipient address is being
processed in an ACL, there is a separate control modifier that can be used to specify case-sensitive
processing within the ACL (see section 44.13).

check_local_user Use: routers‡ Type: boolean Default: false

When this option is true, Exim checks that the local part of the recipient address (with affixes
removed if relevant) is the name of an account on the local system. The check is done by calling the
getpwnam() function rather than trying to read /etc/passwd directly. This means that other methods of
holding password data (such as NIS) are supported. If the local part is a local user, $local_part_data
is set to an untainted version of the local part and $home is set from the password data. The latter can
be tested in other preconditions that are evaluated after this one (the order of evaluation is given in
section 3.12). However, the value of $home can be overridden by router_home_directory. If the
local part is not a local user, the router is skipped.

If you want to check that the local part is either the name of a local user or matches something else,
you cannot combine check_local_user with a setting of local_parts, because that specifies the logical
and of the two conditions. However, you can use a passwd lookup in a local_parts setting to achieve
this. For example:

local_parts = passwd;$local_part : lsearch;/etc/other/users

Note, however, that the side effects of check_local_user (such as setting up a home directory) do not
occur when a passwd lookup is used in a local_parts (or any other) precondition.

226 Generic options for routers (15)

condition Use: routers‡ Type: string† Default: unset

This option specifies a general precondition test that has to succeed for the router to be called. The
condition option is the last precondition to be evaluated (see section 3.12). The string is expanded,
and if the result is a forced failure, or an empty string, or one of the strings “0” or “no” or “false”
(checked without regard to the case of the letters), the router is skipped, and the address is offered to
the next one.

If the result is any other value, the router is run (as this is the last precondition to be evaluated, all the
other preconditions must be true).

This option is unusual in that multiple condition options may be present. All condition options must
succeed.

The condition option provides a means of applying custom conditions to the running of routers. Note
that in the case of a simple conditional expansion, the default expansion values are exactly what is
wanted. For example:

condition = ${if >{$message_age}{600}}

Because of the default behaviour of the string expansion, this is equivalent to

condition = ${if >{$message_age}{600}{true}{}}

A multiple condition example, which succeeds:

condition = ${if >{$message_age}{600}}
condition = ${if !eq{${lc:$local_part}}{postmaster}}
condition = foobar

If the expansion fails (other than forced failure) delivery is deferred. Some of the other precondition
options are common special cases that could in fact be specified using condition.

Historical note: We have condition on ACLs and on Routers. Routers are far older, and use one set of
semantics. ACLs are newer and when they were created, the ACL condition process was given far
stricter parse semantics. The bool{} expansion condition uses the same rules as ACLs. The bool_lax{}
expansion condition uses the same rules as Routers. More pointedly, the bool_lax{} was written to
match the existing Router rules processing behavior.

This is best illustrated in an example:

If used in an ACL condition will fail with a syntax error, but
in a router condition any extra characters are treated as a string

$ exim -be '${if eq {${lc:GOOGLE.com}} {google.com}} {yes} {no}}'
true {yes} {no}}

$ exim -be '${if eq {${lc:WHOIS.com}} {google.com}} {yes} {no}}'
 {yes} {no}}

In each example above, the if statement actually ends after “{google.com}}”. Since no true or false
braces were defined, the default if behavior is to return a boolean true or a null answer (which
evaluates to false). The rest of the line is then treated as a string. So the first example resulted in the
boolean answer “true” with the string “ {yes} {no}}” appended to it. The second example resulted in
the null output (indicating false) with the string “ {yes} {no}}” appended to it.

In fact you can put excess forward braces in too. In the router condition, Exim’s parser only looks for
“{” symbols when they mean something, like after a “$” or when required as part of a conditional.
But otherwise “{” and “}” are treated as ordinary string characters.

Thus, in a Router, the above expansion strings will both always evaluate true, as the result of expan-
sion is a non-empty string which doesn’t match an explicit false value. This can be tricky to debug.
By contrast, in an ACL either of those strings will always result in an expansion error because the
result doesn’t look sufficiently boolean.

227 Generic options for routers (15)

debug_print Use: routers Type: string† Default: unset

If this option is set and debugging is enabled (see the -d command line option) or in address-testing
mode (see the -bt command line option), the string is expanded and included in the debugging output.
If expansion of the string fails, the error message is written to the debugging output, and Exim carries
on processing. This option is provided to help with checking out the values of variables and so on
when debugging router configurations. For example, if a condition option appears not to be working,
debug_print can be used to output the variables it references. The output happens after checks for
domains, local_parts, and check_local_user but before any other preconditions are tested. A
newline is added to the text if it does not end with one. The variable $router_name contains the name
of the router.

disable_logging Use: routers Type: boolean Default: false

If this option is set true, nothing is logged for any routing errors or for any deliveries caused by this
router. You should not set this option unless you really, really know what you are doing. See also the
generic transport option of the same name.

dnssec_request_domains Use: routers Type: domain list† Default: *

DNS lookups for domains matching dnssec_request_domains will be done with the DNSSEC
request bit set. This applies to all of the SRV, MX, AAAA, A lookup sequence.

dnssec_require_domains Use: routers Type: domain list† Default: unset

DNS lookups for domains matching dnssec_require_domains will be done with the DNSSEC
request bit set. Any returns not having the Authenticated Data bit (AD bit) set will be ignored and
logged as a host-lookup failure. This applies to all of the SRV, MX, AAAA, A lookup sequence.

domains Use: routers‡ Type: domain list† Default: unset

If this option is set, the router is skipped unless the current domain matches the list. The data returned
by the list check is placed in $domain_data for use in string expansions of the driver’s private options
and in the transport. See section 3.12 for a list of the order in which preconditions are evaluated.

A complex example, using a file like:

alice@dom1
bill@dom1
maggie@dom1

and checking both domain and local_part

domains = ${domain:${lookup {$local_part@$domain} lseach,ret=key {/path/to/accountsfile}}}
local_parts = ${local_part:${lookup {$local_part@$domain} lseach,ret=key {/path/to/accountsfile}}}

driver Use: routers Type: string Default: unset

This option must always be set. It specifies which of the available routers is to be used.

dsn_lasthop Use: routers Type: boolean Default: false

If this option is set true, and extended DSN (RFC3461) processing is in effect, Exim will not pass on
DSN requests to downstream DSN-aware hosts but will instead send a success DSN as if the next hop
does not support DSN. Not effective on redirect routers.

228 Generic options for routers (15)

errors_to Use: routers Type: string† Default: unset

If a router successfully handles an address, it may assign the address to a transport for delivery or it
may generate child addresses. In both cases, if there is a delivery problem during later processing, the
resulting bounce message is sent to the address that results from expanding this string, provided that
the address verifies successfully. The errors_to option is expanded before headers_add, headers_
remove, and transport.

The errors_to setting associated with an address can be overridden if it subsequently passes through
other routers that have their own errors_to settings, or if the message is delivered by a transport with
a return_path setting.

If errors_to is unset, or the expansion is forced to fail, or the result of the expansion fails to verify,
the errors address associated with the incoming address is used. At top level, this is the envelope
sender. A non-forced expansion failure causes delivery to be deferred.

If an address for which errors_to has been set ends up being delivered over SMTP, the envelope
sender for that delivery is the errors_to value, so that any bounces that are generated by other MTAs
on the delivery route are also sent there. You can set errors_to to the empty string by either of these
settings:

errors_to =
errors_to = ""

An expansion item that yields an empty string has the same effect. If you do this, a locally detected
delivery error for addresses processed by this router no longer gives rise to a bounce message; the
error is discarded. If the address is delivered to a remote host, the return path is set to <>, unless
overridden by the return_path option on the transport.

If for some reason you want to discard local errors, but use a non-empty MAIL command for remote
delivery, you can preserve the original return path in $address_data in the router, and reinstate it in
the transport by setting return_path.

The most common use of errors_to is to direct mailing list bounces to the manager of the list, as
described in section 51.2, or to implement VERP (Variable Envelope Return Paths) (see section 51.6).

expn Use: routers‡ Type: boolean Default: true

If this option is turned off, the router is skipped when testing an address as a result of processing an
SMTP EXPN command. You might, for example, want to turn it off on a router for users’ .forward
files, while leaving it on for the system alias file. See section 3.12 for a list of the order in which
preconditions are evaluated.

The use of the SMTP EXPN command is controlled by an ACL (see chapter 44). When Exim is
running an EXPN command, it is similar to testing an address with -bt. Compare VRFY, whose
counterpart is -bv.

fail_verify Use: routers Type: boolean Default: false

Setting this option has the effect of setting both fail_verify_sender and fail_verify_recipient to the
same value.

fail_verify_recipient Use: routers Type: boolean Default: false

If this option is true and an address is accepted by this router when verifying a recipient, verification
fails.

229 Generic options for routers (15)

fail_verify_sender Use: routers Type: boolean Default: false

If this option is true and an address is accepted by this router when verifying a sender, verification
fails.

fallback_hosts Use: routers Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses. The list separator can be changed (see section 6.21), and a port can be
specified with each name or address. In fact, the format of each item is exactly the same as defined for
the list of hosts in a manualroute router (see section 20.5).

If a router queues an address for a remote transport, this host list is associated with the address, and
used instead of the transport’s fallback host list. If hosts_randomize is set on the transport, the order
of the list is randomized for each use. See the fallback_hosts option of the smtp transport for further
details.

group Use: routers Type: string† Default: see below

When a router queues an address for a transport, and the transport does not specify a group, the group
given here is used when running the delivery process. The group may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. The default is unset, unless
check_local_user is set, when the default is taken from the password information. See also
initgroups and user and the discussion in chapter 23.

headers_add Use: routers Type: list† Default: unset

This option specifies a list of text headers, newline-separated (by default, changeable in the usual way
6.21), that is associated with any addresses that are accepted by the router. Each item is separately
expanded, at routing time. However, this option has no effect when an address is just being verified.
The way in which the text is used to add header lines at transport time is described in section 48.6.
New header lines are not actually added until the message is in the process of being transported. This
means that references to header lines in string expansions in the transport’s configuration do not “see”
the added header lines.

The headers_add option is expanded after errors_to, but before headers_remove and transport. If
an item is empty, or if an item expansion is forced to fail, the item has no effect. Other expansion
failures are treated as configuration errors.

Unlike most options, headers_add can be specified multiple times for a router; all listed headers are
added.

Warning 1: The headers_add option cannot be used for a redirect router that has the one_time
option set.

Warning 2: If the unseen option is set on the router, all header additions are deleted when the address
is passed on to subsequent routers. For a redirect router, if a generated address is the same as the
incoming address, this can lead to duplicate addresses with different header modifications. Exim does
not do duplicate deliveries (except, in certain circumstances, to pipes -- see section 22.7), but it is
undefined which of the duplicates is discarded, so this ambiguous situation should be avoided. The
repeat_use option of the redirect router may be of help.

headers_remove Use: routers Type: list† Default: unset

This option specifies a list of text headers, colon-separated (by default, changeable in the usual way
6.21), that is associated with any addresses that are accepted by the router. However, the option has no
effect when an address is just being verified. Each list item is separately expanded, at transport time.

230 Generic options for routers (15)

If an item ends in *, it will match any header with the given prefix. The way in which the text is used
to remove header lines at transport time is described in section 48.6. Header lines are not actually
removed until the message is in the process of being transported. This means that references to header
lines in string expansions in the transport’s configuration still “see” the original header lines.

The headers_remove option is handled after errors_to and headers_add, but before transport. If an
item expansion is forced to fail, the item has no effect. Other expansion failures are treated as
configuration errors.

Unlike most options, headers_remove can be specified multiple times for a router; all listed headers
are removed.

Warning 1: The headers_remove option cannot be used for a redirect router that has the one_time
option set.

Warning 2: If the unseen option is set on the router, all header removal requests are deleted when the
address is passed on to subsequent routers, and this can lead to problems with duplicates -- see the
similar warning for headers_add above.

Warning 3: Because of the separate expansion of the list items, items that contain a list separator
must have it doubled. To avoid this, change the list separator (6.21).

ignore_target_hosts Use: routers Type: host list† Default: unset

Although this option is a host list, it should normally contain IP address entries rather than names. If
any host that is looked up by the router has an IP address that matches an item in this list, Exim
behaves as if that IP address did not exist. This option allows you to cope with rogue DNS entries like

remote.domain.example. A 127.0.0.1

by setting

ignore_target_hosts = 127.0.0.1

on the relevant router. If all the hosts found by a dnslookup router are discarded in this way, the router
declines. In a conventional configuration, an attempt to mail to such a domain would normally
provoke the “unrouteable domain” error, and an attempt to verify an address in the domain would fail.
Similarly, if ignore_target_hosts is set on an ipliteral router, the router declines if presented with one
of the listed addresses.

You can use this option to disable the use of IPv4 or IPv6 for mail delivery by means of the first or the
second of the following settings, respectively:

ignore_target_hosts = 0.0.0.0/0
ignore_target_hosts = <; 0::0/0

The pattern in the first line matches all IPv4 addresses, whereas the pattern in the second line matches
all IPv6 addresses.

This option may also be useful for ignoring link-local and site-local IPv6 addresses. Because, like all
host lists, the value of ignore_target_hosts is expanded before use as a list, it is possible to make it
dependent on the domain that is being routed.

During its expansion, $host_address is set to the IP address that is being checked.

initgroups Use: routers Type: boolean Default: false

If the router queues an address for a transport, and this option is true, and the uid supplied by the
router is not overridden by the transport, the initgroups() function is called when running the transport
to ensure that any additional groups associated with the uid are set up. See also group and user and
the discussion in chapter 23.

231 Generic options for routers (15)

local_part_prefix Use: routers‡ Type: string list Default: unset

If this option is set, the router is skipped unless the local part starts with one of the given strings, or
local_part_prefix_optional is true. See section 3.12 for a list of the order in which preconditions are
evaluated.

The list is scanned from left to right, and the first prefix that matches is used. A limited form of
wildcard is available; if the prefix begins with an asterisk, it matches the longest possible sequence of
arbitrary characters at the start of the local part. An asterisk should therefore always be followed by
some character that does not occur in normal local parts. Wildcarding can be used to set up multiple
user mailboxes, as described in section 51.8.

During the testing of the local_parts option, and while the router is running, the prefix is removed
from the local part, and is available in the expansion variable $local_part_prefix. When a message is
being delivered, if the router accepts the address, this remains true during subsequent delivery by a
transport. In particular, the local part that is transmitted in the RCPT command for LMTP, SMTP, and
BSMTP deliveries has the prefix removed by default. This behaviour can be overridden by setting
rcpt_include_affixes true on the relevant transport.

If wildcarding (above) was used then the part of the prefix matching the wildcard is available in
$local_part_prefix_v.

When an address is being verified, local_part_prefix affects only the behaviour of the router. If the
callout feature of verification is in use, this means that the full address, including the prefix, will be
used during the callout.

The prefix facility is commonly used to handle local parts of the form owner-something. Another
common use is to support local parts of the form real-username to bypass a user’s .forward file –
helpful when trying to tell a user their forwarding is broken – by placing a router like this one
immediately before the router that handles .forward files:

real_localuser:
 driver = accept
 local_part_prefix = real-
 check_local_user
 transport = local_delivery

For security, it would probably be a good idea to restrict the use of this router to locally-generated
messages, using a condition such as this:

condition = ${if match {$sender_host_address}\
 {\N^(|127\.0\.0\.1)$\N}}

If both local_part_prefix and local_part_suffix are set for a router, both conditions must be met if
not optional. Care must be taken if wildcards are used in both a prefix and a suffix on the same router.
Different separator characters must be used to avoid ambiguity.

local_part_prefix_optional Use: routers Type: boolean Default: false

See local_part_prefix above.

local_part_suffix Use: routers‡ Type: string list Default: unset

This option operates in the same way as local_part_prefix, except that the local part must end (rather
than start) with the given string, the local_part_suffix_optional option determines whether the suffix
is mandatory, and the wildcard * character, if present, must be the last character of the suffix. This
option facility is commonly used to handle local parts of the form something-request and multiple
user mailboxes of the form username-foo.

232 Generic options for routers (15)

local_part_suffix_optional Use: routers Type: boolean Default: false

See local_part_suffix above.

local_parts Use: routers‡ Type: local part list† Default: unset

The router is run only if the local part of the address matches the list. See section 3.12 for a list of the
order in which preconditions are evaluated, and section 10.6 for a discussion of local part lists.
Because the string is expanded, it is possible to make it depend on the domain, for example:

local_parts = dbm;/usr/local/specials/$domain_data

the data returned by the list check for the local part is placed in the variable $local_part_data for use
in expansions of the router’s private options or in the transport. You might use this option, for
example, if you have a large number of local virtual domains, and you want to send all postmaster
mail to the same place without having to set up an alias in each virtual domain:

postmaster:
 driver = redirect
 local_parts = postmaster
 data = postmaster@real.domain.example

log_as_local Use: routers Type: boolean Default: see below

Exim has two logging styles for delivery, the idea being to make local deliveries stand out more
visibly from remote ones. In the “local” style, the recipient address is given just as the local part,
without a domain. The use of this style is controlled by this option. It defaults to true for the accept
router, and false for all the others. This option applies only when a router assigns an address to a
transport. It has no effect on routers that redirect addresses.

more Use: routers Type: boolean† Default: true

The result of string expansion for this option must be a valid boolean value, that is, one of the strings
“yes”, “no”, “true”, or “false”. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (true) is used. Other failures cause delivery
to be deferred.

If this option is set false, and the router declines to handle the address, no further routers are tried,
routing fails, and the address is bounced. However, if the router explicitly passes an address to the
following router by means of the setting

self = pass

or otherwise, the setting of more is ignored. Also, the setting of more does not affect the behaviour if
one of the precondition tests fails. In that case, the address is always passed to the next router.

Note that address_data is not considered to be a precondition. If its expansion is forced to fail, the
router declines, and the value of more controls what happens next.

pass_on_timeout Use: routers Type: boolean Default: false

If a router times out during a host lookup, it normally causes deferral of the address. If pass_on_
timeout is set, the address is passed on to the next router, overriding no_more. This may be helpful
for systems that are intermittently connected to the Internet, or those that want to pass to a smart host
any messages that cannot immediately be delivered.

There are occasional other temporary errors that can occur while doing DNS lookups. They are
treated in the same way as a timeout, and this option applies to all of them.

233 Generic options for routers (15)

pass_router Use: routers Type: string Default: unset

Routers that recognize the generic self option (dnslookup, ipliteral, and manualroute) are able to
return “pass”, forcing routing to continue, and overriding a false setting of more. When one of these
routers returns “pass”, the address is normally handed on to the next router in sequence. This can be
changed by setting pass_router to the name of another router. However (unlike redirect_router) the
named router must be below the current router, to avoid loops. Note that this option applies only to
the special case of “pass”. It does not apply when a router returns “decline” because it cannot handle
an address.

redirect_router Use: routers Type: string Default: unset

Sometimes an administrator knows that it is pointless to reprocess addresses generated from alias or
forward files with the same router again. For example, if an alias file translates real names into login
ids there is no point searching the alias file a second time, especially if it is a large file.

The redirect_router option can be set to the name of any router instance. It causes the routing of any
generated addresses to start at the named router instead of at the first router. This option has no effect
if the router in which it is set does not generate new addresses.

require_files Use: routers‡ Type: string list† Default: unset

This option provides a general mechanism for predicating the running of a router on the existence or
non-existence of certain files or directories. Before running a router, as one of its precondition tests,
Exim works its way through the require_files list, expanding each item separately.

Because the list is split before expansion, any colons in expansion items must be doubled, or the
facility for using a different list separator must be used (6.21). If any expansion is forced to fail, the
item is ignored. Other expansion failures cause routing of the address to be deferred.

If any expanded string is empty, it is ignored. Otherwise, except as described below, each string must
be a fully qualified file path, optionally preceded by “!”. The paths are passed to the stat() function to
test for the existence of the files or directories. The router is skipped if any paths not preceded by “!”
do not exist, or if any paths preceded by “!” do exist.

If stat() cannot determine whether a file exists or not, delivery of the message is deferred. This can
happen when NFS-mounted filesystems are unavailable.

This option is checked after the domains, local_parts, and senders options, so you cannot use it to
check for the existence of a file in which to look up a domain, local part, or sender. (See section 3.12
for a full list of the order in which preconditions are evaluated.) However, as these options are all
expanded, you can use the exists expansion condition to make such tests. The require_files option is
intended for checking files that the router may be going to use internally, or which are needed by a
transport (e.g., .procmailrc).

During delivery, the stat() function is run as root, but there is a facility for some checking of the
accessibility of a file by another user. This is not a proper permissions check, but just a “rough” check
that operates as follows:

If an item in a require_files list does not contain any forward slash characters, it is taken to be the
user (and optional group, separated by a comma) to be checked for subsequent files in the list. If no
group is specified but the user is specified symbolically, the gid associated with the uid is used. For
example:

require_files = mail:/some/file
require_files = $local_part_data:$home/.procmailrc

If a user or group name in a require_files list does not exist, the require_files condition fails.

234 Generic options for routers (15)

Exim performs the check by scanning along the components of the file path, and checking the access
for the given uid and gid. It checks for “x” access on directories, and “r” access on the final file. Note
that this means that file access control lists, if the operating system has them, are ignored.

Warning 1: When the router is being run to verify addresses for an incoming SMTP message, Exim
is not running as root, but under its own uid. This may affect the result of a require_files check. In
particular, stat() may yield the error EACCES (“Permission denied”). This means that the Exim user
is not permitted to read one of the directories on the file’s path.

Warning 2: Even when Exim is running as root while delivering a message, stat() can yield EACCES
for a file in an NFS directory that is mounted without root access. In this case, if a check for access by
a particular user is requested, Exim creates a subprocess that runs as that user, and tries the check
again in that process.

The default action for handling an unresolved EACCES is to consider it to be caused by a configur-
ation error, and routing is deferred because the existence or non-existence of the file cannot be
determined. However, in some circumstances it may be desirable to treat this condition as if the file
did not exist. If the filename (or the exclamation mark that precedes the filename for non-existence) is
preceded by a plus sign, the EACCES error is treated as if the file did not exist. For example:

require_files = +/some/file

If the router is not an essential part of verification (for example, it handles users’ .forward files),
another solution is to set the verify option false so that the router is skipped when verifying.

retry_use_local_part Use: routers Type: boolean Default: see below

When a delivery suffers a temporary routing failure, a retry record is created in Exim’s hints database.
For addresses whose routing depends only on the domain, the key for the retry record should not
involve the local part, but for other addresses, both the domain and the local part should be included.
Usually, remote routing is of the former kind, and local routing is of the latter kind.

This option controls whether the local part is used to form the key for retry hints for addresses that
suffer temporary errors while being handled by this router. The default value is true for any router that
has any of check_local_user, local_parts, condition, local_part_prefix, local_part_suffix, senders
or require_files set, and false otherwise. Note that this option does not apply to hints keys for
transport delays; they are controlled by a generic transport option of the same name.

Failing to set this option when it is needed (because a remote router handles only some of the
local-parts for a domain) can result in incorrect error messages being generated.

The setting of retry_use_local_part applies only to the router on which it appears. If the router
generates child addresses, they are routed independently; this setting does not become attached to
them.

router_home_directory Use: routers Type: string† Default: unset

This option sets a home directory for use while the router is running. (Compare transport_home_
directory, which sets a home directory for later transporting.) In particular, if used on a redirect
router, this option sets a value for $home while a filter is running. The value is expanded; forced
expansion failure causes the option to be ignored – other failures cause the router to defer.

Expansion of router_home_directory happens immediately after the check_local_user test (if con-
figured), before any further expansions take place. (See section 3.12 for a list of the order in which
preconditions are evaluated.) While the router is running, router_home_directory overrides the value
of $home that came from check_local_user.

When a router accepts an address and assigns it to a local transport (including the cases when a
redirect router generates a pipe, file, or autoreply delivery), the home directory setting for the trans-
port is taken from the first of these values that is set:

• The home_directory option on the transport;

235 Generic options for routers (15)

• The transport_home_directory option on the router;

• The password data if check_local_user is set on the router;

• The router_home_directory option on the router.

In other words, router_home_directory overrides the password data for the router, but not for the
transport.

self Use: routers Type: string Default: freeze

This option applies to those routers that use a recipient address to find a list of remote hosts.
Currently, these are the dnslookup, ipliteral, and manualroute routers. Certain configurations of the
queryprogram router can also specify a list of remote hosts. Usually such routers are configured to
send the message to a remote host via an smtp transport. The self option specifies what happens when
the first host on the list turns out to be the local host. The way in which Exim checks for the local host
is described in section 13.8.

Normally this situation indicates either an error in Exim’s configuration (for example, the router
should be configured not to process this domain), or an error in the DNS (for example, the MX should
not point to this host). For this reason, the default action is to log the incident, defer the address, and
freeze the message. The following alternatives are provided for use in special cases:

defer
Delivery of the message is tried again later, but the message is not frozen.

reroute: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed by
the routers. No rewriting of headers takes place. This behaviour is essentially a redirection.

reroute: rewrite: <domain>
The domain is changed to the given domain, and the address is passed back to be reprocessed by
the routers. Any headers that contain the original domain are rewritten.

pass
The router passes the address to the next router, or to the router named in the pass_router option if
it is set. This overrides no_more. During subsequent routing and delivery, the variable $self_
hostname contains the name of the local host that the router encountered. This can be used to
distinguish between different cases for hosts with multiple names. The combination

self = pass
no_more

ensures that only those addresses that routed to the local host are passed on. Without no_more,
addresses that were declined for other reasons would also be passed to the next router.

fail
Delivery fails and an error report is generated.

send
The anomaly is ignored and the address is queued for the transport. This setting should be used
with extreme caution. For an smtp transport, it makes sense only in cases where the program that is
listening on the SMTP port is not this version of Exim. That is, it must be some other MTA, or
Exim with a different configuration file that handles the domain in another way.

senders Use: routers‡ Type: address list† Default: unset

If this option is set, the router is skipped unless the message’s sender address matches something on
the list. See section 3.12 for a list of the order in which preconditions are evaluated.

There are issues concerning verification when the running of routers is dependent on the sender.
When Exim is verifying the address in an errors_to setting, it sets the sender to the null string. When
using the -bt option to check a configuration file, it is necessary also to use the -f option to set an

236 Generic options for routers (15)

appropriate sender. For incoming mail, the sender is unset when verifying the sender, but is available
when verifying any recipients. If the SMTP VRFY command is enabled, it must be used after MAIL
if the sender address matters.

set Use: routers Type: string list Default: unset

This option may be used multiple times on a router; because of this the list aspect is mostly irrelevant.
The list separator is a semicolon but can be changed in the usual way.

Each list-element given must be of the form “name = value” and the names used must start with the
string “r_”. Values containing a list-separator should have them doubled. When a router runs, the
strings are evaluated in order, to create variables which are added to the set associated with the
address. This is done immediately after all the preconditions, before the evaluation of the address_
data option. The variable is set with the expansion of the value. The variables can be used by the
router options (not including any preconditions) and by the transport. Later definitions of a given
named variable will override former ones. Variable use is via the usual $r_... syntax.

This is similar to the address_data option, except that many independent variables can be used, with
choice of naming.

translate_ip_address Use: routers Type: string† Default: unset

There exist some rare networking situations (for example, packet radio) where it is helpful to be able
to translate IP addresses generated by normal routing mechanisms into other IP addresses, thus
performing a kind of manual IP routing. This should be done only if the normal IP routing of the
TCP/IP stack is inadequate or broken. Because this is an extremely uncommon requirement, the code
to support this option is not included in the Exim binary unless SUPPORT_TRANSLATE_IP_
ADDRESS=yes is set in Local/Makefile.

The translate_ip_address string is expanded for every IP address generated by the router, with the
generated address set in $host_address. If the expansion is forced to fail, no action is taken. For any
other expansion error, delivery of the message is deferred. If the result of the expansion is an IP
address, that replaces the original address; otherwise the result is assumed to be a host name – this is
looked up using gethostbyname() (or getipnodebyname() when available) to produce one or more
replacement IP addresses. For example, to subvert all IP addresses in some specific networks, this
could be added to a router:

translate_ip_address = \
 ${lookup{${mask:$host_address/26}}lsearch{/some/file}\
 {$value}fail}}

The file would contain lines like

10.2.3.128/26 some.host
10.8.4.34/26 10.44.8.15

You should not make use of this facility unless you really understand what you are doing.

transport Use: routers Type: string† Default: unset

This option specifies the transport to be used when a router accepts an address and sets it up for
delivery. A transport is never needed if a router is used only for verification. The value of the option is
expanded at routing time, after the expansion of errors_to, headers_add, and headers_remove, and
result must be the name of one of the configured transports. If it is not, delivery is deferred.

The transport option is not used by the redirect router, but it does have some private options that set
up transports for pipe and file deliveries (see chapter 22).

237 Generic options for routers (15)

transport_current_directory Use: routers Type: string† Default: unset

This option associates a current directory with any address that is routed to a local transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to a file or a pipe. During the delivery process (that is, at transport time), this option string is
expanded and is set as the current directory, unless overridden by a setting on the transport. If the
expansion fails for any reason, including forced failure, an error is logged, and delivery is deferred.
See chapter 23 for details of the local delivery environment.

transport_home_directory Use: routers Type: string† Default: see below

This option associates a home directory with any address that is routed to a local transport. This can
happen either because a transport is explicitly configured for the router, or because it generates a
delivery to a file or a pipe. During the delivery process (that is, at transport time), the option string is
expanded and is set as the home directory, unless overridden by a setting of home_directory on the
transport. If the expansion fails for any reason, including forced failure, an error is logged, and
delivery is deferred.

If the transport does not specify a home directory, and transport_home_directory is not set for the
router, the home directory for the transport is taken from the password data if check_local_user is set
for the router. Otherwise it is taken from router_home_directory if that option is set; if not, no home
directory is set for the transport.

See chapter 23 for further details of the local delivery environment.

unseen Use: routers Type: boolean† Default: false

The result of string expansion for this option must be a valid boolean value, that is, one of the strings
“yes”, “no”, “true”, or “false”. Any other result causes an error, and delivery is deferred. If the
expansion is forced to fail, the default value for the option (false) is used. Other failures cause
delivery to be deferred.

When this option is set true, routing does not cease if the router accepts the address. Instead, a copy of
the incoming address is passed to the next router, overriding a false setting of more. There is little
point in setting more false if unseen is always true, but it may be useful in cases when the value of
unseen contains expansion items (and therefore, presumably, is sometimes true and sometimes false).

Setting the unseen option has a similar effect to the unseen command qualifier in filter files. It can be
used to cause copies of messages to be delivered to some other destination, while also carrying out a
normal delivery. In effect, the current address is made into a “parent” that has two children – one that
is delivered as specified by this router, and a clone that goes on to be routed further. For this reason,
unseen may not be combined with the one_time option in a redirect router.

Warning: Header lines added to the address (or specified for removal) by this router or by previous
routers affect the “unseen” copy of the message only. The clone that continues to be processed by
further routers starts with no added headers and none specified for removal. For a redirect router, if a
generated address is the same as the incoming address, this can lead to duplicate addresses with
different header modifications. Exim does not do duplicate deliveries (except, in certain circum-
stances, to pipes -- see section 22.7), but it is undefined which of the duplicates is discarded, so this
ambiguous situation should be avoided. The repeat_use option of the redirect router may be of help.

Unlike the handling of header modifications, any data that was set by the address_data option in the
current or previous routers is passed on to subsequent routers.

user Use: routers Type: string† Default: see below

When a router queues an address for a transport, and the transport does not specify a user, the user
given here is used when running the delivery process. The user may be specified numerically or by
name. If expansion fails, the error is logged and delivery is deferred. This user is also used by the

238 Generic options for routers (15)

redirect router when running a filter file. The default is unset, except when check_local_user is set. In
this case, the default is taken from the password information. If the user is specified as a name, and
group is not set, the group associated with the user is used. See also initgroups and group and the
discussion in chapter 23.

verify Use: routers‡ Type: boolean Default: true

Setting this option has the effect of setting verify_sender and verify_recipient to the same value.

verify_only Use: routers‡ Type: boolean Default: false

If this option is set, the router is used only when verifying an address, delivering in cutthrough mode
or testing with the -bv option, not when actually doing a delivery, testing with the -bt option, or
running the SMTP EXPN command. It can be further restricted to verifying only senders or recipients
by means of verify_sender and verify_recipient.

Warning: When the router is being run to verify addresses for an incoming SMTP message, Exim is
not running as root, but under its own uid. If the router accesses any files, you need to make sure that
they are accessible to the Exim user or group.

verify_recipient Use: routers‡ Type: boolean Default: true

If this option is false, the router is skipped when verifying recipient addresses, delivering in
cutthrough mode or testing recipient verification using -bv. See section 3.12 for a list of the order in
which preconditions are evaluated. See also the $verify_mode variable.

verify_sender Use: routers‡ Type: boolean Default: true

If this option is false, the router is skipped when verifying sender addresses or testing sender verifi-
cation using -bvs. See section 3.12 for a list of the order in which preconditions are evaluated. See
also the $verify_mode variable.

239 Generic options for routers (15)

16. The accept router

The accept router has no private options of its own. Unless it is being used purely for verification (see
verify_only) a transport is required to be defined by the generic transport option. If the precon-
ditions that are specified by generic options are met, the router accepts the address and queues it for
the given transport. The most common use of this router is for setting up deliveries to local mailboxes.
For example:

localusers:
 driver = accept
 domains = mydomain.example
 check_local_user
 transport = local_delivery

The domains condition in this example checks the domain of the address, and check_local_user
checks that the local part is the login of a local user. When both preconditions are met, the accept
router runs, and queues the address for the local_delivery transport.

240 The accept router (16)

17. The dnslookup router

The dnslookup router looks up the hosts that handle mail for the recipient’s domain in the DNS. A
transport must always be set for this router, unless verify_only is set.

If SRV support is configured (see check_srv below), Exim first searches for SRV records. If none are
found, or if SRV support is not configured, MX records are looked up. If no MX records exist,
address records are sought. However, mx_domains can be set to disable the direct use of address
records.

MX records of equal priority are sorted by Exim into a random order. Exim then looks for address
records for the host names obtained from MX or SRV records. When a host has more than one IP
address, they are sorted into a random order, except that IPv6 addresses are sorted before IPv4
addresses. If all the IP addresses found are discarded by a setting of the ignore_target_hosts generic
option, the router declines.

Unless they have the highest priority (lowest MX value), MX records that point to the local host, or to
any host name that matches hosts_treat_as_local, are discarded, together with any other MX records
of equal or lower priority.

If the host pointed to by the highest priority MX record, or looked up as an address record, is the local
host, or matches hosts_treat_as_local, what happens is controlled by the generic self option.

17.1 Problems with DNS lookups

There have been problems with DNS servers when SRV records are looked up. Some misbehaving
servers return a DNS error or timeout when a non-existent SRV record is sought. Similar problems
have in the past been reported for MX records. The global dns_again_means_nonexist option can
help with this problem, but it is heavy-handed because it is a global option.

For this reason, there are two options, srv_fail_domains and mx_fail_domains, that control what
happens when a DNS lookup in a dnslookup router results in a DNS failure or a “try again” response.
If an attempt to look up an SRV or MX record causes one of these results, and the domain matches
the relevant list, Exim behaves as if the DNS had responded “no such record”. In the case of an SRV
lookup, this means that the router proceeds to look for MX records; in the case of an MX lookup, it
proceeds to look for A or AAAA records, unless the domain matches mx_domains, in which case
routing fails.

17.2 Declining addresses by dnslookup

There are a few cases where a dnslookup router will decline to accept an address; if such a router is
expected to handle "all remaining non-local domains", then it is important to set no_more.

The router will defer rather than decline if the domain is found in the fail_defer_domains router
option.

Reasons for a dnslookup router to decline currently include:

• The domain does not exist in DNS

• The domain exists but the MX record’s host part is just "."; this is a common convention (borrowed
from SRV) used to indicate that there is no such service for this domain and to not fall back to
trying A/AAAA records.

• Ditto, but for SRV records, when check_srv is set on this router.

• MX record points to a non-existent host.

• MX record points to an IP address and the main section option allow_mx_to_ip is not set.

• MX records exist and point to valid hosts, but all hosts resolve only to addresses blocked by the
ignore_target_hosts generic option on this router.

241 The dnslookup router (17)

• The domain is not syntactically valid (see also allow_utf8_domains and dns_check_names_
pattern for handling one variant of this)

• check_secondary_mx is set on this router but the local host can not be found in the MX records
(see below)

17.3 Private options for dnslookup

The private options for the dnslookup router are as follows:

check_secondary_mx Use: dnslookup Type: boolean Default: false

If this option is set, the router declines unless the local host is found in (and removed from) the list of
hosts obtained by MX lookup. This can be used to process domains for which the local host is a
secondary mail exchanger differently to other domains. The way in which Exim decides whether a
host is the local host is described in section 13.8.

check_srv Use: dnslookup Type: string† Default: unset

The dnslookup router supports the use of SRV records (see RFC 2782) in addition to MX and address
records. The support is disabled by default. To enable SRV support, set the check_srv option to the
name of the service required. For example,

check_srv = smtp

looks for SRV records that refer to the normal smtp service. The option is expanded, so the service
name can vary from message to message or address to address. This might be helpful if SRV records
are being used for a submission service. If the expansion is forced to fail, the check_srv option is
ignored, and the router proceeds to look for MX records in the normal way.

When the expansion succeeds, the router searches first for SRV records for the given service (it
assumes TCP protocol). A single SRV record with a host name that consists of just a single dot
indicates “no such service for this domain”; if this is encountered, the router declines. If other kinds
of SRV record are found, they are used to construct a host list for delivery according to the rules of
RFC 2782. MX records are not sought in this case.

When no SRV records are found, MX records (and address records) are sought in the traditional way.
In other words, SRV records take precedence over MX records, just as MX records take precedence
over address records. Note that this behaviour is not sanctioned by RFC 2782, though a previous draft
RFC defined it. It is apparently believed that MX records are sufficient for email and that SRV records
should not be used for this purpose. However, SRV records have an additional “weight” feature which
some people might find useful when trying to split an SMTP load between hosts of different power.

See section 17.1 above for a discussion of Exim’s behaviour when there is a DNS lookup error.

fail_defer_domains Use: dnslookup Type: domain list† Default: unset

DNS lookups for domains matching fail_defer_domains which find no matching record will cause
the router to defer rather than the default behaviour of decline. This maybe be useful for queueing
messages for a newly created domain while the DNS configuration is not ready. However, it will
result in any message with mistyped domains also being queued.

ipv4_only Use: string† Type: unset Default:

The string is expanded, and if the result is anything but a forced failure, or an empty string, or one of
the strings “0” or “no” or “false” (checked without regard to the case of the letters), only A records
are used.

242 The dnslookup router (17)

ipv4_prefer Use: string† Type: unset Default:

The string is expanded, and if the result is anything but a forced failure, or an empty string, or one of
the strings “0” or “no” or “false” (checked without regard to the case of the letters), A records are
sorted before AAAA records (inverting the default).

mx_domains Use: dnslookup Type: domain list† Default: unset

A domain that matches mx_domains is required to have either an MX or an SRV record in order to
be recognized. (The name of this option could be improved.) For example, if all the mail hosts in
fict.example are known to have MX records, except for those in discworld.fict.example, you could use
this setting:

mx_domains = ! *.discworld.fict.example : *.fict.example

This specifies that messages addressed to a domain that matches the list but has no MX record should
be bounced immediately instead of being routed using the address record.

mx_fail_domains Use: dnslookup Type: domain list† Default: unset

If the DNS lookup for MX records for one of the domains in this list causes a DNS lookup error,
Exim behaves as if no MX records were found. See section 17.1 for more discussion.

qualify_single Use: dnslookup Type: boolean Default: true

When this option is true, the resolver option RES_DEFNAMES is set for DNS lookups. Typically, but
not standardly, this causes the resolver to qualify single-component names with the default domain.
For example, on a machine called dictionary.ref.example, the domain thesaurus would be changed to
thesaurus.ref.example inside the resolver. For details of what your resolver actually does, consult your
man pages for resolver and resolv.conf.

rewrite_headers Use: dnslookup Type: boolean Default: true

If the domain name in the address that is being processed is not fully qualified, it may be expanded to
its full form by a DNS lookup. For example, if an address is specified as dormouse@teaparty, the
domain might be expanded to teaparty.wonderland.fict.example. Domain expansion can also occur as
a result of setting the widen_domains option. If rewrite_headers is true, all occurrences of the
abbreviated domain name in any Bcc:, Cc:, From:, Reply-to:, Sender:, and To: header lines of the
message are rewritten with the full domain name.

This option should be turned off only when it is known that no message is ever going to be sent
outside an environment where the abbreviation makes sense.

When an MX record is looked up in the DNS and matches a wildcard record, name servers normally
return a record containing the name that has been looked up, making it impossible to detect whether a
wildcard was present or not. However, some name servers have recently been seen to return the
wildcard entry. If the name returned by a DNS lookup begins with an asterisk, it is not used for header
rewriting.

same_domain_copy_routing Use: dnslookup Type: boolean Default: false

Addresses with the same domain are normally routed by the dnslookup router to the same list of
hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message indepen-
dently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and in any
case, personal messages rarely have more than a few recipients.

243 The dnslookup router (17)

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a dnslookup router which is independent of the local part, you can set same_domain_copy_
routing to bypass repeated DNS lookups for identical domains in one message. In this case, when
dnslookup routes an address to a remote transport, any other unrouted addresses in the message that
have the same domain are automatically given the same routing without processing them indepen-
dently, provided the following conditions are met:

• No router that processed the address specified headers_add or headers_remove.

• The router did not change the address in any way, for example, by “widening” the domain.

search_parents Use: dnslookup Type: boolean Default: false

When this option is true, the resolver option RES_DNSRCH is set for DNS lookups. This is different
from the qualify_single option in that it applies to domains containing dots. Typically, but not
standardly, it causes the resolver to search for the name in the current domain and in parent domains.
For example, on a machine in the fict.example domain, if looking up teaparty.wonderland failed, the
resolver would try teaparty.wonderland.fict.example. For details of what your resolver actually does,
consult your man pages for resolver and resolv.conf.

Setting this option true can cause problems in domains that have a wildcard MX record, because any
domain that does not have its own MX record matches the local wildcard.

srv_fail_domains Use: dnslookup Type: domain list† Default: unset

If the DNS lookup for SRV records for one of the domains in this list causes a DNS lookup error,
Exim behaves as if no SRV records were found. See section 17.1 for more discussion.

widen_domains Use: dnslookup Type: string list Default: unset

If a DNS lookup fails and this option is set, each of its strings in turn is added onto the end of the
domain, and the lookup is tried again. For example, if

widen_domains = fict.example:ref.example

is set and a lookup of klingon.dictionary fails, klingon.dictionary.fict.example is looked up, and if this
fails, klingon.dictionary.ref.example is tried. Note that the qualify_single and search_parents options
can cause some widening to be undertaken inside the DNS resolver. widen_domains is not applied to
sender addresses when verifying, unless rewrite_headers is false (not the default).

17.4 Effect of qualify_single and search_parents

When a domain from an envelope recipient is changed by the resolver as a result of the qualify_
single or search_parents options, Exim rewrites the corresponding address in the message’s header
lines unless rewrite_headers is set false. Exim then re-routes the address, using the full domain.

These two options affect only the DNS lookup that takes place inside the router for the domain of the
address that is being routed. They do not affect lookups such as that implied by

domains = @mx_any

that may happen while processing a router precondition before the router is entered. No widening ever
takes place for these lookups.

244 The dnslookup router (17)

18. The ipliteral router

This router has no private options. Unless it is being used purely for verification (see verify_only) a
transport is required to be defined by the generic transport option. The router accepts the address if
its domain part takes the form of an RFC 2822 domain literal. For example, the ipliteral router
handles the address

root@[192.168.1.1]

by setting up delivery to the host with that IP address. IPv4 domain literals consist of an IPv4 address
enclosed in square brackets. IPv6 domain literals are similar, but the address is preceded by ipv6:.
For example:

postmaster@[ipv6:fe80::a00:20ff:fe86:a061.5678]

Exim allows ipv4: before IPv4 addresses, for consistency, and on the grounds that sooner or later
somebody will try it.

If the IP address matches something in ignore_target_hosts, the router declines. If an IP literal turns
out to refer to the local host, the generic self option determines what happens.

The RFCs require support for domain literals; however, their use is controversial in today’s Internet. If
you want to use this router, you must also set the main configuration option allow_domain_literals.
Otherwise, Exim will not recognize the domain literal syntax in addresses.

245 The ipliteral router (18)

19. The iplookup router

The iplookup router was written to fulfil a specific requirement in Cambridge University (which in
fact no longer exists). For this reason, it is not included in the binary of Exim by default. If you want
to include it, you must set

ROUTER_IPLOOKUP=yes

in your Local/Makefile configuration file.

The iplookup router routes an address by sending it over a TCP or UDP connection to one or more
specific hosts. The host can then return the same or a different address – in effect rewriting the
recipient address in the message’s envelope. The new address is then passed on to subsequent routers.
If this process fails, the address can be passed on to other routers, or delivery can be deferred. Since
iplookup is just a rewriting router, a transport must not be specified for it.

hosts Use: iplookup Type: string Default: unset

This option must be supplied. Its value is a colon-separated list of host names. The hosts are looked
up using gethostbyname() (or getipnodebyname() when available) and are tried in order until one
responds to the query. If none respond, what happens is controlled by optional.

optional Use: iplookup Type: boolean Default: false

If optional is true, if no response is obtained from any host, the address is passed to the next router,
overriding no_more. If optional is false, delivery to the address is deferred.

port Use: iplookup Type: integer Default: 0

This option must be supplied. It specifies the port number for the TCP or UDP call.

protocol Use: iplookup Type: string Default: udp

This option can be set to “udp” or “tcp” to specify which of the two protocols is to be used.

query Use: iplookup Type: string† Default: see below

This defines the content of the query that is sent to the remote hosts. The default value is:

$local_part@$domain $local_part@$domain

The repetition serves as a way of checking that a response is to the correct query in the default case
(see response_pattern below).

reroute Use: iplookup Type: string† Default: unset

If this option is not set, the rerouted address is precisely the byte string returned by the remote host,
up to the first white space, if any. If set, the string is expanded to form the rerouted address. It can
include parts matched in the response by response_pattern by means of numeric variables such as
$1, $2, etc. The variable $0 refers to the entire input string, whether or not a pattern is in use. In all
cases, the rerouted address must end up in the form local_part@domain.

246 The iplookup router (19)

response_pattern Use: iplookup Type: string Default: unset

This option can be set to a regular expression that is applied to the string returned from the remote
host. If the pattern does not match the response, the router declines. If response_pattern is not set, no
checking of the response is done, unless the query was defaulted, in which case there is a check that
the text returned after the first white space is the original address. This checks that the answer that has
been received is in response to the correct question. For example, if the response is just a new domain,
the following could be used:

response_pattern = ^([^@]+)$
reroute = $local_part@$1

timeout Use: iplookup Type: time Default: 5s

This specifies the amount of time to wait for a response from the remote machine. The same timeout
is used for the connect() function for a TCP call. It does not apply to UDP.

247 The iplookup router (19)

20. The manualroute router

The manualroute router is so-called because it provides a way of manually routing an address
according to its domain. It is mainly used when you want to route addresses to remote hosts according
to your own rules, bypassing the normal DNS routing that looks up MX records. However,
manualroute can also route to local transports, a facility that may be useful if you want to save
messages for dial-in hosts in local files.

The manualroute router compares a list of domain patterns with the domain it is trying to route. If
there is no match, the router declines. Each pattern has associated with it a list of hosts and some
other optional data, which may include a transport. The combination of a pattern and its data is called
a “routing rule”. For patterns that do not have an associated transport, the generic transport option
must specify a transport, unless the router is being used purely for verification (see verify_only).

In the case of verification, matching the domain pattern is sufficient for the router to accept the
address. When actually routing an address for delivery, an address that matches a domain pattern is
queued for the associated transport. If the transport is not a local one, a host list must be associated
with the pattern; IP addresses are looked up for the hosts, and these are passed to the transport along
with the mail address. For local transports, a host list is optional. If it is present, it is passed in $host
as a single text string.

The list of routing rules can be provided as an inline string in route_list, or the data can be obtained
by looking up the domain in a file or database by setting route_data. Only one of these settings may
appear in any one instance of manualroute. The format of routing rules is described below, following
the list of private options.

20.1 Private options for manualroute

The private options for the manualroute router are as follows:

host_all_ignored Use: manualroute Type: string Default: defer

See host_find_failed.

host_find_failed Use: manualroute Type: string Default: freeze

This option controls what happens when manualroute tries to find an IP address for a host, and the
host does not exist. The option can be set to one of the following values:

decline
defer
fail
freeze
ignore
pass

The default (“freeze”) assumes that this state is a serious configuration error. The difference between
“pass” and “decline” is that the former forces the address to be passed to the next router (or the router
defined by pass_router), overriding no_more, whereas the latter passes the address to the next router
only if more is true.

The value “ignore” causes Exim to completely ignore a host whose IP address cannot be found. If all
the hosts in the list are ignored, the behaviour is controlled by the host_all_ignored option. This takes
the same values as host_find_failed, except that it cannot be set to “ignore”.

The host_find_failed option applies only to a definite “does not exist” state; if a host lookup gets a
temporary error, delivery is deferred unless the generic pass_on_timeout option is set.

248 The manualroute router (20)

hosts_randomize Use: manualroute Type: boolean Default: false

If this option is set, the order of the items in a host list in a routing rule is randomized each time the
list is used, unless an option in the routing rule overrides (see below). Randomizing the order of a host
list can be used to do crude load sharing. However, if more than one mail address is routed by the
same router to the same host list, the host lists are considered to be the same (even though they may
be randomized into different orders) for the purpose of deciding whether to batch the deliveries into a
single SMTP transaction.

When hosts_randomize is true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups are
indicated by an item that is just + in the host list. For example:

route_list = * host1:host2:host3:+:host4:host5

The order of the first three hosts and the order of the last two hosts is randomized for each use, but the
first three always end up before the last two. If hosts_randomize is not set, a + item in the list is
ignored. If a randomized host list is passed to an smtp transport that also has hosts_randomize set,
the list is not re-randomized.

route_data Use: manualroute Type: string† Default: unset

If this option is set, it must expand to yield the data part of a routing rule. Typically, the expansion
string includes a lookup based on the domain. For example:

route_data = ${lookup{$domain}dbm{/etc/routes}}

If the expansion is forced to fail, or the result is an empty string, the router declines. Other kinds of
expansion failure cause delivery to be deferred.

route_list Use: manualroute Type: string list Default: unset

This string is a list of routing rules, in the form defined below. Note that, unlike most string lists, the
items are separated by semicolons. This is so that they may contain colon-separated host lists.

same_domain_copy_routing Use: manualroute Type: boolean Default: false

Addresses with the same domain are normally routed by the manualroute router to the same list of
hosts. However, this cannot be presumed, because the router options and preconditions may refer to
the local part of the address. By default, therefore, Exim routes each address in a message indepen-
dently. DNS servers run caches, so repeated DNS lookups are not normally expensive, and in any
case, personal messages rarely have more than a few recipients.

If you are running mailing lists with large numbers of subscribers at the same domain, and you are
using a manualroute router which is independent of the local part, you can set same_domain_copy_
routing to bypass repeated DNS lookups for identical domains in one message. In this case, when
manualroute routes an address to a remote transport, any other unrouted addresses in the message that
have the same domain are automatically given the same routing without processing them indepen-
dently. However, this is only done if headers_add and headers_remove are unset.

20.2 Routing rules in route_list

The value of route_list is a string consisting of a sequence of routing rules, separated by semicolons.
If a semicolon is needed in a rule, it can be entered as two semicolons. Alternatively, the list separator
can be changed as described (for colon-separated lists) in section 6.20. Empty rules are ignored. The
format of each rule is

<domain pattern> <list of hosts> <options>

The following example contains two rules, each with a simple domain pattern and no options:

249 The manualroute router (20)

route_list = \
 dict.ref.example mail-1.ref.example:mail-2.ref.example ; \
 thes.ref.example mail-3.ref.example:mail-4.ref.example

The three parts of a rule are separated by white space. The pattern and the list of hosts can be
enclosed in quotes if necessary, and if they are, the usual quoting rules apply. Each rule in a route_list
must start with a single domain pattern, which is the only mandatory item in the rule. The pattern is in
the same format as one item in a domain list (see section 10.3), except that it may not be the name of
an interpolated file. That is, it may be wildcarded, or a regular expression, or a file or database lookup
(with semicolons doubled, because of the use of semicolon as a separator in a route_list).

The rules in route_list are searched in order until one of the patterns matches the domain that is being
routed. The list of hosts and then options are then used as described below. If there is no match, the
router declines. When route_list is set, route_data must not be set.

20.3 Routing rules in route_data

The use of route_list is convenient when there are only a small number of routing rules. For larger
numbers, it is easier to use a file or database to hold the routing information, and use the route_data
option instead. The value of route_data is a list of hosts, followed by (optional) options. Most
commonly, route_data is set as a string that contains an expansion lookup. For example, suppose we
place two routing rules in a file like this:

dict.ref.example: mail-1.ref.example:mail-2.ref.example
thes.ref.example: mail-3.ref.example:mail-4.ref.example

This data can be accessed by setting

route_data = ${lookup{$domain}lsearch{/the/file/name}}

Failure of the lookup results in an empty string, causing the router to decline. However, you do not
have to use a lookup in route_data. The only requirement is that the result of expanding the string is
a list of hosts, possibly followed by options, separated by white space. The list of hosts must be
enclosed in quotes if it contains white space.

20.4 Format of the list of hosts

A list of hosts, whether obtained via route_data or route_list, is always separately expanded before
use. If the expansion fails, the router declines. The result of the expansion must be a colon-separated
list of names and/or IP addresses, optionally also including ports. If the list is written with spaces, it
must be protected with quotes. The format of each item in the list is described in the next section. The
list separator can be changed as described in section 6.21.

If the list of hosts was obtained from a route_list item, the following variables are set during its
expansion:

• If the domain was matched against a regular expression, the numeric variables $1, $2, etc. may be
set. For example:

route_list = ^domain(\d+) host-$1.text.example

• $0 is always set to the entire domain.

• $1 is also set when partial matching is done in a file lookup.

• If the pattern that matched the domain was a lookup item, the data that was looked up is available
in the expansion variable $value. For example:

route_list = lsearch;;/some/file.routes $value

Note the doubling of the semicolon in the pattern that is necessary because semicolon is the default
route list separator.

250 The manualroute router (20)

20.5 Format of one host item

Each item in the list of hosts can be either a host name or an IP address, optionally with an attached
port number, or it can be a single "+" (see hosts_randomize). When no port is given, an IP address is
not enclosed in brackets. When a port is specified, it overrides the port specification on the transport.
The port is separated from the name or address by a colon. This leads to some complications:

• Because colon is the default separator for the list of hosts, either the colon that specifies a port must
be doubled, or the list separator must be changed. The following two examples have the same
effect:

route_list = * "host1.tld::1225 : host2.tld::1226"
route_list = * "<+ host1.tld:1225 + host2.tld:1226"

• When IPv6 addresses are involved, it gets worse, because they contain colons of their own. To
make this case easier, it is permitted to enclose an IP address (either v4 or v6) in square brackets if
a port number follows. For example:

route_list = * "</ [10.1.1.1]:1225 / [::1]:1226"

20.6 How the list of hosts is used

When an address is routed to an smtp transport by manualroute, each of the hosts is tried, in the order
specified, when carrying out the SMTP delivery. However, the order can be changed by setting the
hosts_randomize option, either on the router (see section 20.1 above), or on the transport.

Hosts may be listed by name or by IP address. An unadorned name in the list of hosts is interpreted as
a host name. A name that is followed by /MX is interpreted as an indirection to a sublist of hosts
obtained by looking up MX records in the DNS. For example:

route_list = * x.y.z:p.q.r/MX:e.f.g

If this feature is used with a port specifier, the port must come last. For example:

route_list = * dom1.tld/mx::1225

If the hosts_randomize option is set, the order of the items in the list is randomized before any
lookups are done. Exim then scans the list; for any name that is not followed by /MX it looks up an IP
address. If this turns out to be an interface on the local host and the item is not the first in the list,
Exim discards it and any subsequent items. If it is the first item, what happens is controlled by the self
option of the router.

A name on the list that is followed by /MX is replaced with the list of hosts obtained by looking up
MX records for the name. This is always a DNS lookup; the bydns and byname options (see section
20.7 below) are not relevant here. The order of these hosts is determined by the preference values in
the MX records, according to the usual rules. Because randomizing happens before the MX lookup, it
does not affect the order that is defined by MX preferences.

If the local host is present in the sublist obtained from MX records, but is not the most preferred host
in that list, it and any equally or less preferred hosts are removed before the sublist is inserted into the
main list.

If the local host is the most preferred host in the MX list, what happens depends on where in the
original list of hosts the /MX item appears. If it is not the first item (that is, there are previous hosts in
the main list), Exim discards this name and any subsequent items in the main list.

If the MX item is first in the list of hosts, and the local host is the most preferred host, what happens
is controlled by the self option of the router.

DNS failures when lookup up the MX records are treated in the same way as DNS failures when
looking up IP addresses: pass_on_timeout and host_find_failed are used when relevant.

The generic ignore_target_hosts option applies to all hosts in the list, whether obtained from an MX
lookup or not.

251 The manualroute router (20)

20.7 How the options are used

The options are a sequence of words, space-separated. One of the words can be the name of a
transport; this overrides the transport option on the router for this particular routing rule only. The
other words (if present) control randomization of the list of hosts on a per-rule basis, and how the IP
addresses of the hosts are to be found when routing to a remote transport. These options are as
follows:

• randomize: randomize the order of the hosts in this list, overriding the setting of hosts_randomize
for this routing rule only.

• no_randomize: do not randomize the order of the hosts in this list, overriding the setting of hosts_
randomize for this routing rule only.

• byname: use getipnodebyname() (gethostbyname() on older systems) to find IP addresses. This
function may ultimately cause a DNS lookup, but it may also look in /etc/hosts or other sources of
information.

• bydns: look up address records for the hosts directly in the DNS; fail if no address records are
found. If there is a temporary DNS error (such as a timeout), delivery is deferred.

• ipv4_only: in direct DNS lookups, look up only A records.

• ipv4_prefer: in direct DNS lookups, sort A records before AAAA records.

For example:

route_list = domain1 host1:host2:host3 randomize bydns;\
 domain2 host4:host5

If neither byname nor bydns is given, Exim behaves as follows: First, a DNS lookup is done. If this
yields anything other than HOST_NOT_FOUND, that result is used. Otherwise, Exim goes on to try a
call to getipnodebyname() or gethostbyname(), and the result of the lookup is the result of that call.

Warning: It has been discovered that on some systems, if a DNS lookup called via
getipnodebyname() times out, HOST_NOT_FOUND is returned instead of TRY_AGAIN. That is
why the default action is to try a DNS lookup first. Only if that gives a definite “no such host” is the
local function called.

Compatibility: From Exim 4.85 until fixed for 4.90, there was an inadvertent constraint that a
transport name as an option had to be the last option specified.

If no IP address for a host can be found, what happens is controlled by the host_find_failed option.

When an address is routed to a local transport, IP addresses are not looked up. The host list is passed
to the transport in the $host variable.

20.8 Manualroute examples

In some of the examples that follow, the presence of the remote_smtp transport, as defined in the
default configuration file, is assumed:

• The manualroute router can be used to forward all external mail to a smart host. If you have set up,
in the main part of the configuration, a named domain list that contains your local domains, for
example:

domainlist local_domains = my.domain.example

You can arrange for all other domains to be routed to a smart host by making your first router
something like this:

smart_route:
 driver = manualroute
 domains = !+local_domains
 transport = remote_smtp
 route_list = * smarthost.ref.example

252 The manualroute router (20)

This causes all non-local addresses to be sent to the single host smarthost.ref.example. If a colon-
separated list of smart hosts is given, they are tried in order (but you can use hosts_randomize to
vary the order each time). Another way of configuring the same thing is this:

smart_route:
 driver = manualroute
 transport = remote_smtp
 route_list = !+local_domains smarthost.ref.example

There is no difference in behaviour between these two routers as they stand. However, they behave
differently if no_more is added to them. In the first example, the router is skipped if the domain
does not match the domains precondition; the following router is always tried. If the router runs, it
always matches the domain and so can never decline. Therefore, no_more would have no effect. In
the second case, the router is never skipped; it always runs. However, if it doesn’t match the
domain, it declines. In this case no_more would prevent subsequent routers from running.

• A mail hub is a host which receives mail for a number of domains via MX records in the DNS and
delivers it via its own private routing mechanism. Often the final destinations are behind a firewall,
with the mail hub being the one machine that can connect to machines both inside and outside the
firewall. The manualroute router is usually used on a mail hub to route incoming messages to the
correct hosts. For a small number of domains, the routing can be inline, using the route_list option,
but for a larger number a file or database lookup is easier to manage.

If the domain names are in fact the names of the machines to which the mail is to be sent by the
mail hub, the configuration can be quite simple. For example:

hub_route:
 driver = manualroute
 transport = remote_smtp
 route_list = *.rhodes.tvs.example $domain

This configuration routes domains that match *.rhodes.tvs.example to hosts whose names
are the same as the mail domains. A similar approach can be taken if the host name can be obtained
from the domain name by a string manipulation that the expansion facilities can handle. Otherwise,
a lookup based on the domain can be used to find the host:

through_firewall:
 driver = manualroute
 transport = remote_smtp
 route_data = ${lookup {$domain} cdb {/internal/host/routes}}

The result of the lookup must be the name or IP address of the host (or hosts) to which the address
is to be routed. If the lookup fails, the route data is empty, causing the router to decline. The
address then passes to the next router.

• You can use manualroute to deliver messages to pipes or files in batched SMTP format for onward
transportation by some other means. This is one way of storing mail for a dial-up host when it is
not connected. The route list entry can be as simple as a single domain name in a configuration like
this:

save_in_file:
 driver = manualroute
 transport = batchsmtp_appendfile
 route_list = saved.domain.example

though often a pattern is used to pick up more than one domain. If there are several domains or
groups of domains with different transport requirements, different transports can be listed in the
routing information:

save_in_file:
 driver = manualroute
 route_list = \
 *.saved.domain1.example $domain batch_appendfile; \
 *.saved.domain2.example \

253 The manualroute router (20)

 ${lookup{$domain}dbm{/domain2/hosts}{$value}fail} \
 batch_pipe

The first of these just passes the domain in the $host variable, which doesn’t achieve much (since it
is also in $domain), but the second does a file lookup to find a value to pass, causing the router to
decline to handle the address if the lookup fails.

• Routing mail directly to UUCP software is a specific case of the use of manualroute in a gateway
to another mail environment. This is an example of one way it can be done:

Transport
uucp:
 driver = pipe
 user = nobody
 command = /usr/local/bin/uux -r - \
 ${substr_-5:$host}!rmail ${local_part}
 return_fail_output = true

Router
uucphost:
 transport = uucp
 driver = manualroute
 route_data = \
 ${lookup{$domain}lsearch{/usr/local/exim/uucphosts}}

The file /usr/local/exim/uucphosts contains entries like

darksite.ethereal.example: darksite.UUCP

It can be set up more simply without adding and removing “.UUCP” but this way makes clear the
distinction between the domain name darksite.ethereal.example and the UUCP host name darksite.

254 The manualroute router (20)

21. The queryprogram router

The queryprogram router routes an address by running an external command and acting on its output.
This is an expensive way to route, and is intended mainly for use in lightly-loaded systems, or for
performing experiments. However, if it is possible to use the precondition options (domains, local_
parts, etc) to skip this router for most addresses, it could sensibly be used in special cases, even on a
busy host. There are the following private options:

command Use: queryprogram Type: string† Default: unset

This option must be set. It specifies the command that is to be run. The command is split up into a
command name and arguments, and then each is expanded separately (exactly as for a pipe transport,
described in chapter 29).

command_group Use: queryprogram Type: string Default: unset

This option specifies a gid to be set when running the command while routing an address for deliver.
It must be set if command_user specifies a numerical uid. If it begins with a digit, it is interpreted as
the numerical value of the gid. Otherwise it is looked up using getgrnam().

command_user Use: queryprogram Type: string Default: unset

This option must be set. It specifies the uid which is set when running the command while routing an
address for delivery. If the value begins with a digit, it is interpreted as the numerical value of the uid.
Otherwise, it is looked up using getpwnam() to obtain a value for the uid and, if command_group is
not set, a value for the gid also.

Warning: Changing uid and gid is possible only when Exim is running as root, which it does during a
normal delivery in a conventional configuration. However, when an address is being verified during
message reception, Exim is usually running as the Exim user, not as root. If the queryprogram router
is called from a non-root process, Exim cannot change uid or gid before running the command. In this
circumstance the command runs under the current uid and gid.

current_directory Use: queryprogram Type: string Default: /

This option specifies an absolute path which is made the current directory before running the
command.

timeout Use: queryprogram Type: time Default: 1h

If the command does not complete within the timeout period, its process group is killed and the
message is frozen. A value of zero time specifies no timeout.

The standard output of the command is connected to a pipe, which is read when the command
terminates. It should consist of a single line of output, containing up to five fields, separated by white
space. The maximum length of the line is 1023 characters. Longer lines are silently truncated. The
first field is one of the following words (case-insensitive):

• Accept: routing succeeded; the remaining fields specify what to do (see below).

• Decline: the router declines; pass the address to the next router, unless no_more is set.

• Fail: routing failed; do not pass the address to any more routers. Any subsequent text on the line is
an error message. If the router is run as part of address verification during an incoming SMTP
message, the message is included in the SMTP response.

255 The queryprogram router (21)

• Defer: routing could not be completed at this time; try again later. Any subsequent text on the line
is an error message which is logged. It is not included in any SMTP response.

• Freeze: the same as defer, except that the message is frozen.

• Pass: pass the address to the next router (or the router specified by pass_router), overriding no_
more.

• Redirect: the message is redirected. The remainder of the line is a list of new addresses, which are
routed independently, starting with the first router, or the router specified by redirect_router, if
set.

When the first word is accept, the remainder of the line consists of a number of keyed data values, as
follows (split into two lines here, to fit on the page):

ACCEPT TRANSPORT=<transport> HOSTS=<list of hosts>
LOOKUP=byname|bydns DATA=<text>

The data items can be given in any order, and all are optional. If no transport is included, the transport
specified by the generic transport option is used. The list of hosts and the lookup type are needed
only if the transport is an smtp transport that does not itself supply a list of hosts.

The format of the list of hosts is the same as for the manualroute router. As well as host names and IP
addresses with optional port numbers, as described in section 20.5, it may contain names followed by
/MX to specify sublists of hosts that are obtained by looking up MX records (see section 20.6).

If the lookup type is not specified, Exim behaves as follows when trying to find an IP address for each
host: First, a DNS lookup is done. If this yields anything other than HOST_NOT_FOUND, that result
is used. Otherwise, Exim goes on to try a call to getipnodebyname() or gethostbyname(), and the
result of the lookup is the result of that call.

If the DATA field is set, its value is placed in the $address_data variable. For example, this return line

accept hosts=x1.y.example:x2.y.example data="rule1"

routes the address to the default transport, passing a list of two hosts. When the transport runs, the
string “rule1” is in $address_data.

256 The queryprogram router (21)

22. The redirect router

The redirect router handles several kinds of address redirection. Its most common uses are for
resolving local part aliases from a central alias file (usually called /etc/aliases) and for handling users’
personal .forward files, but it has many other potential uses. The incoming address can be redirected
in several different ways:

• It can be replaced by one or more new addresses which are themselves routed independently.

• It can be routed to be delivered to a given file or directory.

• It can be routed to be delivered to a specified pipe command.

• It can cause an automatic reply to be generated.

• It can be forced to fail, optionally with a custom error message.

• It can be temporarily deferred, optionally with a custom message.

• It can be discarded.

The generic transport option must not be set for redirect routers. However, there are some private
options which define transports for delivery to files and pipes, and for generating autoreplies. See the
file_transport, pipe_transport and reply_transport descriptions below.

If success DSNs have been requested redirection triggers one and the DSN options are not passed any
further.

22.1 Redirection data

The router operates by interpreting a text string which it obtains either by expanding the contents of
the data option, or by reading the entire contents of a file whose name is given in the file option.
These two options are mutually exclusive. The first is commonly used for handling system aliases, in
a configuration like this:

system_aliases:
 driver = redirect
 data = ${lookup{$local_part}lsearch{/etc/aliases}}

If the lookup fails, the expanded string in this example is empty. When the expansion of data results
in an empty string, the router declines. A forced expansion failure also causes the router to decline;
other expansion failures cause delivery to be deferred.

A configuration using file is commonly used for handling users’ .forward files, like this:

userforward:
 driver = redirect
 check_local_user
 file = $home/.forward
 no_verify

If the file does not exist, or causes no action to be taken (for example, it is empty or consists only of
comments), the router declines. Warning: This is not the case when the file contains syntactically
valid items that happen to yield empty addresses, for example, items containing only RFC 2822
address comments.

Tainted data may not be used for a filename.

Warning: It is unwise to use $local_part or $domain directly for redirection, as they are provided by
a potential attacker. In the examples above, $local_part is used for looking up data held locally on the
system, and not used directly (the second example derives $home via the passsword file or database,
using $local_part).

257 The redirect router (22)

22.2 Forward files and address verification

It is usual to set no_verify on redirect routers which handle users’ .forward files, as in the example
above. There are two reasons for this:

• When Exim is receiving an incoming SMTP message from a remote host, it is running under the
Exim uid, not as root. Exim is unable to change uid to read the file as the user, and it may not be
able to read it as the Exim user. So in practice the router may not be able to operate.

• However, even when the router can operate, the existence of a .forward file is unimportant when
verifying an address. What should be checked is whether the local part is a valid user name or not.
Cutting out the redirection processing saves some resources.

22.3 Interpreting redirection data

The contents of the data string, whether obtained from data or file, can be interpreted in two different
ways:

• If the allow_filter option is set true, and the data begins with the text “#Exim filter” or “#Sieve
filter”, it is interpreted as a list of filtering instructions in the form of an Exim or Sieve filter file,
respectively. Details of the syntax and semantics of filter files are described in a separate document
entitled Exim’s interfaces to mail filtering; this document is intended for use by end users.

• Otherwise, the data must be a comma-separated list of redirection items, as described in the next
section.

When a message is redirected to a file (a “mail folder”), the filename given in a non-filter redirection
list must always be an absolute path. A filter may generate a relative path – how this is handled
depends on the transport’s configuration. See section 26.1 for a discussion of this issue for the
appendfile transport.

22.4 Items in a non-filter redirection list

When the redirection data is not an Exim or Sieve filter, for example, if it comes from a conventional
alias or forward file, it consists of a list of addresses, filenames, pipe commands, or certain special
items (see section 22.6 below). The special items can be individually enabled or disabled by means of
options whose names begin with allow_ or forbid_, depending on their default values. The items in
the list are separated by commas or newlines. If a comma is required in an item, the entire item must
be enclosed in double quotes.

Lines starting with a # character are comments, and are ignored, and # may also appear following a
comma, in which case everything between the # and the next newline character is ignored.

If an item is entirely enclosed in double quotes, these are removed. Otherwise double quotes are
retained because some forms of mail address require their use (but never to enclose the entire
address). In the following description, “item” refers to what remains after any surrounding double
quotes have been removed.

Warning: If you use an Exim expansion to construct a redirection address, and the expansion con-
tains a reference to $local_part, you should make use of the quote_local_part expansion operator, in
case the local part contains special characters. For example, to redirect all mail for the domain
obsolete.example, retaining the existing local part, you could use this setting:

data = ${quote_local_part:$local_part}@newdomain.example

22.5 Redirecting to a local mailbox

A redirection item may safely be the same as the address currently under consideration. This does not
cause a routing loop, because a router is automatically skipped if any ancestor of the address that is
being processed is the same as the current address and was processed by the current router. Such an
address is therefore passed to the following routers, so it is handled as if there were no redirection.
When making this loop-avoidance test, the complete local part, including any prefix or suffix, is used.

258 The redirect router (22)

Specifying the same local part without a domain is a common usage in personal filter files when the
user wants to have messages delivered to the local mailbox and also forwarded elsewhere. For
example, the user whose login is cleo might have a .forward file containing this:

cleo, cleopatra@egypt.example

For compatibility with other MTAs, such unqualified local parts may be preceded by “\”, but this is
not a requirement for loop prevention. However, it does make a difference if more than one domain is
being handled synonymously.

If an item begins with “\” and the rest of the item parses as a valid RFC 2822 address that does not
include a domain, the item is qualified using the domain of the incoming address. In the absence of a
leading “\”, unqualified addresses are qualified using the value in qualify_recipient, but you can
force the incoming domain to be used by setting qualify_preserve_domain.

Care must be taken if there are alias names for local users. Consider an MTA handling a single local
domain where the system alias file contains:

Sam.Reman: spqr

Now suppose that Sam (whose login id is spqr) wants to save copies of messages in the local mailbox,
and also forward copies elsewhere. He creates this forward file:

Sam.Reman, spqr@reme.elsewhere.example

With these settings, an incoming message addressed to Sam.Reman fails. The redirect router for
system aliases does not process Sam.Reman the second time round, because it has previously routed
it, and the following routers presumably cannot handle the alias. The forward file should really
contain

spqr, spqr@reme.elsewhere.example

but because this is such a common error, the check_ancestor option (see below) exists to provide a
way to get round it. This is normally set on a redirect router that is handling users’ .forward files.

22.6 Special items in redirection lists

In addition to addresses, the following types of item may appear in redirection lists (that is, in
non-filter redirection data):

• An item is treated as a pipe command if it begins with “|” and does not parse as a valid RFC 2822
address that includes a domain. A transport for running the command must be specified by the
pipe_transport option. Normally, either the router or the transport specifies a user and a group
under which to run the delivery. The default is to use the Exim user and group.

Single or double quotes can be used for enclosing the individual arguments of the pipe command;
no interpretation of escapes is done for single quotes. If the command contains a comma character,
it is necessary to put the whole item in double quotes, for example:

"|/some/command ready,steady,go"

since items in redirection lists are terminated by commas. Do not, however, quote just the com-
mand. An item such as

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no arguments.

Note that the above example assumes that the text comes from a lookup source of some sort, so
that the quotes are part of the data. If composing a redirect router with a data option directly
specifying this command, the quotes will be used by the configuration parser to define the extent
of one string, but will not be passed down into the redirect router itself. There are two main
approaches to get around this: escape quotes to be part of the data itself, or avoid using this
mechanism and instead create a custom transport with the command option set and reference that
transport from an accept router.

259 The redirect router (22)

• An item is interpreted as a path name if it begins with “/” and does not parse as a valid RFC 2822
address that includes a domain. For example,

/home/world/minbari

is treated as a filename, but

/s=molari/o=babylon/@x400gate.way

is treated as an address. For a filename, a transport must be specified using the file_transport
option. However, if the generated path name ends with a forward slash character, it is interpreted as
a directory name rather than a filename, and directory_transport is used instead.

Normally, either the router or the transport specifies a user and a group under which to run the
delivery. The default is to use the Exim user and group.

However, if a redirection item is the path /dev/null, delivery to it is bypassed at a high level, and the
log entry shows “**bypassed**” instead of a transport name. In this case the user and group are
not used.

• If an item is of the form

:include:<path name>

a list of further items is taken from the given file and included at that point. Note: Such a file can
not be a filter file; it is just an out-of-line addition to the list. The items in the included list are
separated by commas or newlines and are not subject to expansion. If this is the first item in an
alias list in an lsearch file, a colon must be used to terminate the alias name. This example is
incorrect:

list1 :include:/opt/lists/list1

It must be given as

list1: :include:/opt/lists/list1

Tainted data may not be used for a filename.

• Sometimes you want to throw away mail to a particular local part. Making the data option expand
to an empty string does not work, because that causes the router to decline. Instead, the alias item

:blackhole:

can be used. It does what its name implies. No delivery is done, and no error message is generated.
This has the same effect as specifying /dev/null as a destination, but it can be independently
disabled.

Warning: If :blackhole: appears anywhere in a redirection list, no delivery is done for the original
local part, even if other redirection items are present. If you are generating a multi-item list (for
example, by reading a database) and need the ability to provide a no-op item, you must use
/dev/null.

• An attempt to deliver a particular address can be deferred or forced to fail by redirection items of
the form

:defer:
:fail:

respectively. When a redirection list contains such an item, it applies to the entire redirection; any
other items in the list are ignored. Any text following :fail: or :defer: is placed in the error text
associated with the failure. For example, an alias file might contain:

X.Employee: :fail: Gone away, no forwarding address

In the case of an address that is being verified from an ACL or as the subject of a VRFY command,
the text is included in the SMTP error response by default. The text is not included in the response
to an EXPN command. In non-SMTP cases the text is included in the error message that Exim
generates.

260 The redirect router (22)

By default for verify, Exim sends a 451 SMTP code for a :defer:, and 550 for :fail:. However, if
the message starts with three digits followed by a space, optionally followed by an extended code
of the form n.n.n, also followed by a space, and the very first digit is the same as the default error
code, the code from the message is used instead. If the very first digit is incorrect, a panic error is
logged, and the default code is used. You can suppress the use of the supplied code in a redirect
router by setting the forbid_smtp_code option true. In this case, any SMTP code is quietly
ignored.

In an ACL, an explicitly provided message overrides the default, but the default message is avail-
able in the variable $acl_verify_message and can therefore be included in a custom message if this
is desired.

Normally the error text is the rest of the redirection list – a comma does not terminate it – but a
newline does act as a terminator. Newlines are not normally present in alias expansions. In lsearch
lookups they are removed as part of the continuation process, but they may exist in other kinds of
lookup and in :include: files.

During routing for message delivery (as opposed to verification), a redirection containing :fail:
causes an immediate failure of the incoming address, whereas :defer: causes the message to remain
in the queue so that a subsequent delivery attempt can happen at a later time. If an address is
deferred for too long, it will ultimately fail, because the normal retry rules still apply.

• Sometimes it is useful to use a single-key search type with a default (see chapter 9) to look up
aliases. However, there may be a need for exceptions to the default. These can be handled by
aliasing them to :unknown:. This differs from :fail: in that it causes the redirect router to decline,
whereas :fail: forces routing to fail. A lookup which results in an empty redirection list has the
same effect.

22.7 Duplicate addresses

Exim removes duplicate addresses from the list to which it is delivering, so as to deliver just one copy
to each address. This does not apply to deliveries routed to pipes by different immediate parent
addresses, but an indirect aliasing scheme of the type

pipe: |/some/command $local_part
localpart1: pipe
localpart2: pipe

does not work with a message that is addressed to both local parts, because when the second is aliased
to the intermediate local part “pipe” it gets discarded as being the same as a previously handled
address. However, a scheme such as

localpart1: |/some/command $local_part
localpart2: |/some/command $local_part

does result in two different pipe deliveries, because the immediate parents of the pipes are distinct.

22.8 Repeated redirection expansion

When a message cannot be delivered to all of its recipients immediately, leading to two or more
delivery attempts, redirection expansion is carried out afresh each time for those addresses whose
children were not all previously delivered. If redirection is being used as a mailing list, this can lead
to new members of the list receiving copies of old messages. The one_time option can be used to
avoid this.

22.9 Errors in redirection lists

If skip_syntax_errors is set, a malformed address that causes a parsing error is skipped, and an entry
is written to the main log. This may be useful for mailing lists that are automatically managed.
Otherwise, if an error is detected while generating the list of new addresses, the original address is
deferred. See also syntax_errors_to.

261 The redirect router (22)

22.10 Private options for the redirect router

The private options for the redirect router are as follows:

allow_defer Use: redirect Type: boolean Default: false

Setting this option allows the use of :defer: in non-filter redirection data, or the defer command in an
Exim filter file.

allow_fail Use: redirect Type: boolean Default: false

If this option is true, the :fail: item can be used in a redirection list, and the fail command may be
used in an Exim filter file.

allow_filter Use: redirect Type: boolean Default: false

Setting this option allows Exim to interpret redirection data that starts with “#Exim filter” or “#Sieve
filter” as a set of filtering instructions. There are some features of Exim filter files that some adminis-
trators may wish to lock out; see the forbid_filter_xxx options below.

It is also possible to lock out Exim filters or Sieve filters while allowing the other type; see forbid_
exim_filter and forbid_sieve_filter.

The filter is run using the uid and gid set by the generic user and group options. These take their
defaults from the password data if check_local_user is set, so in the normal case of users’ personal
filter files, the filter is run as the relevant user. When allow_filter is set true, Exim insists that either
check_local_user or user is set.

allow_freeze Use: redirect Type: boolean Default: false

Setting this option allows the use of the freeze command in an Exim filter. This command is more
normally encountered in system filters, and is disabled by default for redirection filters because it isn’t
something you usually want to let ordinary users do.

check_ancestor Use: redirect Type: boolean Default: false

This option is concerned with handling generated addresses that are the same as some address in the
list of redirection ancestors of the current address. Although it is turned off by default in the code, it is
set in the default configuration file for handling users’ .forward files. It is recommended for this use of
the redirect router.

When check_ancestor is set, if a generated address (including the domain) is the same as any
ancestor of the current address, it is replaced by a copy of the current address. This helps in the case
where local part A is aliased to B, and B has a .forward file pointing back to A. For example, within a
single domain, the local part “Joe.Bloggs” is aliased to “jb” and jb/.forward contains:

\Joe.Bloggs, <other item(s)>

Without the check_ancestor setting, either local part (“jb” or “joe.bloggs”) gets processed once by
each router and so ends up as it was originally. If “jb” is the real mailbox name, mail to “jb” gets
delivered (having been turned into “joe.bloggs” by the .forward file and back to “jb” by the alias), but
mail to “joe.bloggs” fails. Setting check_ancestor on the redirect router that handles the .forward file
prevents it from turning “jb” back into “joe.bloggs” when that was the original address. See also the
repeat_use option below.

262 The redirect router (22)

check_group Use: redirect Type: boolean Default: see below

When the file option is used, the group owner of the file is checked only when this option is set. The
permitted groups are those listed in the owngroups option, together with the user’s default group if
check_local_user is set. If the file has the wrong group, routing is deferred. The default setting for
this option is true if check_local_user is set and the modemask option permits the group write bit, or
if the owngroups option is set. Otherwise it is false, and no group check occurs.

check_owner Use: redirect Type: boolean Default: see below

When the file option is used, the owner of the file is checked only when this option is set. If check_
local_user is set, the local user is permitted; otherwise the owner must be one of those listed in the
owners option. The default value for this option is true if check_local_user or owners is set.
Otherwise the default is false, and no owner check occurs.

data Use: redirect Type: string† Default: unset

This option is mutually exclusive with file. One or other of them must be set, but not both. The
contents of data are expanded, and then used as the list of forwarding items, or as a set of filtering
instructions. If the expansion is forced to fail, or the result is an empty string or a string that has no
effect (consists entirely of comments), the router declines.

When filtering instructions are used, the string must begin with “#Exim filter”, and all comments in
the string, including this initial one, must be terminated with newline characters. For example:

data = #Exim filter\n\
 if $h_to: contains Exim then save $home/mail/exim endif

If you are reading the data from a database where newlines cannot be included, you can use the ${sg}
expansion item to turn the escape string of your choice into a newline.

directory_transport Use: redirect Type: string† Default: unset

A redirect router sets up a direct delivery to a directory when a path name ending with a slash is
specified as a new “address”. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport. This should normally be an appendfile transport.

file Use: redirect Type: string† Default: unset

This option specifies the name of a file that contains the redirection data. It is mutually exclusive with
the data option. The string is expanded before use; if the expansion is forced to fail, the router
declines. Other expansion failures cause delivery to be deferred. The result of a successful expansion
must be an absolute path. The entire file is read and used as the redirection data. If the data is an
empty string or a string that has no effect (consists entirely of comments), the router declines.

If the attempt to open the file fails with a “does not exist” error, Exim runs a check on the containing
directory, unless ignore_enotdir is true (see below). If the directory does not appear to exist, delivery
is deferred. This can happen when users’ .forward files are in NFS-mounted directories, and there is a
mount problem. If the containing directory does exist, but the file does not, the router declines.

file_transport Use: redirect Type: string† Default: unset

A redirect router sets up a direct delivery to a file when a path name not ending in a slash is specified
as a new “address”. The transport used is specified by this option, which, after expansion, must be the
name of a configured transport. This should normally be an appendfile transport. When it is running,
the filename is in $address_file.

263 The redirect router (22)

filter_prepend_home Use: redirect Type: boolean Default: true

When this option is true, if a save command in an Exim filter specifies a relative path, and $home is
defined, it is automatically prepended to the relative path. If this option is set false, this action does
not happen. The relative path is then passed to the transport unmodified.

forbid_blackhole Use: redirect Type: boolean Default: false

If this option is true, the :blackhole: item may not appear in a redirection list.

forbid_exim_filter Use: redirect Type: boolean Default: false

If this option is set true, only Sieve filters are permitted when allow_filter is true.

forbid_file Use: redirect Type: boolean Default: false

If this option is true, this router may not generate a new address that specifies delivery to a local file or
directory, either from a filter or from a conventional forward file. This option is forced to be true if
one_time is set. It applies to Sieve filters as well as to Exim filters, but if true, it locks out the Sieve’s
“keep” facility.

forbid_filter_dlfunc Use: redirect Type: boolean Default: false

If this option is true, string expansions in Exim filters are not allowed to make use of the dlfunc
expansion facility to run dynamically loaded functions.

forbid_filter_existstest Use: redirect Type: boolean Default: false

If this option is true, string expansions in Exim filters are not allowed to make use of the exists
condition or the stat expansion item.

forbid_filter_logwrite Use: redirect Type: boolean Default: false

If this option is true, use of the logging facility in Exim filters is not permitted. Logging is in any case
available only if the filter is being run under some unprivileged uid (which is normally the case for
ordinary users’ .forward files).

forbid_filter_lookup Use: redirect Type: boolean Default: false

If this option is true, string expansions in Exim filter files are not allowed to make use of lookup
items.

forbid_filter_perl Use: redirect Type: boolean Default: false

This option has an effect only if Exim is built with embedded Perl support. If it is true, string
expansions in Exim filter files are not allowed to make use of the embedded Perl support.

forbid_filter_readfile Use: redirect Type: boolean Default: false

If this option is true, string expansions in Exim filter files are not allowed to make use of readfile
items.

264 The redirect router (22)

forbid_filter_readsocket Use: redirect Type: boolean Default: false

If this option is true, string expansions in Exim filter files are not allowed to make use of readsocket
items.

forbid_filter_reply Use: redirect Type: boolean Default: false

If this option is true, this router may not generate an automatic reply message. Automatic replies can
be generated only from Exim or Sieve filter files, not from traditional forward files. This option is
forced to be true if one_time is set.

forbid_filter_run Use: redirect Type: boolean Default: false

If this option is true, string expansions in Exim filter files are not allowed to make use of run items.

forbid_include Use: redirect Type: boolean Default: false

If this option is true, items of the form

:include:<path name>

are not permitted in non-filter redirection lists.

forbid_pipe Use: redirect Type: boolean Default: false

If this option is true, this router may not generate a new address which specifies delivery to a pipe,
either from an Exim filter or from a conventional forward file. This option is forced to be true if one_
time is set.

forbid_sieve_filter Use: redirect Type: boolean Default: false

If this option is set true, only Exim filters are permitted when allow_filter is true.

forbid_smtp_code Use: redirect Type: boolean Default: false

If this option is set true, any SMTP error codes that are present at the start of messages specified for
:defer: or :fail: are quietly ignored, and the default codes (451 and 550, respectively) are
always used.

hide_child_in_errmsg Use: redirect Type: boolean Default: false

If this option is true, it prevents Exim from quoting a child address if it generates a bounce or delay
message for it. Instead it says “an address generated from <the top level address>”. Of course, this
applies only to bounces generated locally. If a message is forwarded to another host, its bounce may
well quote the generated address.

ignore_eacces Use: redirect Type: boolean Default: false

If this option is set and an attempt to open a redirection file yields the EACCES error (permission
denied), the redirect router behaves as if the file did not exist.

265 The redirect router (22)

ignore_enotdir Use: redirect Type: boolean Default: false

If this option is set and an attempt to open a redirection file yields the ENOTDIR error (something on
the path is not a directory), the redirect router behaves as if the file did not exist.

Setting ignore_enotdir has another effect as well: When a redirect router that has the file option set
discovers that the file does not exist (the ENOENT error), it tries to stat() the parent directory, as a
check against unmounted NFS directories. If the parent can not be statted, delivery is deferred.
However, it seems wrong to do this check when ignore_enotdir is set, because that option tells Exim
to ignore “something on the path is not a directory” (the ENOTDIR error). This is a confusing area,
because it seems that some operating systems give ENOENT where others give ENOTDIR.

include_directory Use: redirect Type: string Default: unset

If this option is set, the path names of any :include: items in a redirection list must start with this
directory.

modemask Use: redirect Type: octal integer Default: 022

This specifies mode bits which must not be set for a file specified by the file option. If any of the
forbidden bits are set, delivery is deferred.

one_time Use: redirect Type: boolean Default: false

Sometimes the fact that Exim re-evaluates aliases and reprocesses redirection files each time it tries to
deliver a message causes a problem when one or more of the generated addresses fails be delivered at
the first attempt. The problem is not one of duplicate delivery – Exim is clever enough to handle that
– but of what happens when the redirection list changes during the time that the message is on Exim’s
queue. This is particularly true in the case of mailing lists, where new subscribers might receive
copies of messages that were posted before they subscribed.

If one_time is set and any addresses generated by the router fail to deliver at the first attempt, the
failing addresses are added to the message as “top level” addresses, and the parent address that
generated them is marked “delivered”. Thus, redirection does not happen again at the next delivery
attempt.

Warning 1: Any header line addition or removal that is specified by this router would be lost if
delivery did not succeed at the first attempt. For this reason, the headers_add and headers_remove
generic options are not permitted when one_time is set.

Warning 2: To ensure that the router generates only addresses (as opposed to pipe or file deliveries or
auto-replies) forbid_file, forbid_pipe, and forbid_filter_reply are forced to be true when one_time
is set.

Warning 3: The unseen generic router option may not be set with one_time.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a differ-
ence to the log only if all_parents log selector is set. It is expected that one_time will typically be
used for mailing lists, where there is normally just one level of expansion.

owners Use: redirect Type: string list Default: unset

This specifies a list of permitted owners for the file specified by file. This list is in addition to the local
user when check_local_user is set. See check_owner above.

266 The redirect router (22)

owngroups Use: redirect Type: string list Default: unset

This specifies a list of permitted groups for the file specified by file. The list is in addition to the local
user’s primary group when check_local_user is set. See check_group above.

pipe_transport Use: redirect Type: string† Default: unset

A redirect router sets up a direct delivery to a pipe when a string starting with a vertical bar character
is specified as a new “address”. The transport used is specified by this option, which, after expansion,
must be the name of a configured transport. This should normally be a pipe transport. When the
transport is run, the pipe command is in $address_pipe.

qualify_domain Use: redirect Type: string† Default: unset

If this option is set, and an unqualified address (one without a domain) is generated, and that address
would normally be qualified by the global setting in qualify_recipient, it is instead qualified with the
domain specified by expanding this string. If the expansion fails, the router declines. If you want to
revert to the default, you can have the expansion generate $qualify_recipient.

This option applies to all unqualified addresses generated by Exim filters, but for traditional .forward
files, it applies only to addresses that are not preceded by a backslash. Sieve filters cannot generate
unqualified addresses.

qualify_preserve_domain Use: redirect Type: boolean Default: false

If this option is set, the router’s local qualify_domain option must not be set (a configuration error
occurs if it is). If an unqualified address (one without a domain) is generated, it is qualified with the
domain of the parent address (the immediately preceding ancestor) instead of the global qualify_
recipient value. In the case of a traditional .forward file, this applies whether or not the address is
preceded by a backslash.

repeat_use Use: redirect Type: boolean Default: true

If this option is set false, the router is skipped for a child address that has any ancestor that was routed
by this router. This test happens before any of the other preconditions are tested. Exim’s default
anti-looping rules skip only when the ancestor is the same as the current address. See also check_
ancestor above and the generic redirect_router option.

reply_transport Use: redirect Type: string† Default: unset

A redirect router sets up an automatic reply when a mail or vacation command is used in a filter file.
The transport used is specified by this option, which, after expansion, must be the name of a con-
figured transport. This should normally be an autoreply transport. Other transports are unlikely to do
anything sensible or useful.

rewrite Use: redirect Type: boolean Default: true

If this option is set false, addresses generated by the router are not subject to address rewriting.
Otherwise, they are treated like new addresses and are rewritten according to the global rewriting
rules.

sieve_subaddress Use: redirect Type: string† Default: unset

The value of this option is passed to a Sieve filter to specify the :subaddress part of an address.

267 The redirect router (22)

sieve_useraddress Use: redirect Type: string† Default: unset

The value of this option is passed to a Sieve filter to specify the :user part of an address. However, if it
is unset, the entire original local part (including any prefix or suffix) is used for :user.

sieve_vacation_directory Use: redirect Type: string† Default: unset

To enable the “vacation” extension for Sieve filters, you must set sieve_vacation_directory to the
directory where vacation databases are held (do not put anything else in that directory), and ensure
that the reply_transport option refers to an autoreply transport. Each user needs their own directory;
Exim will create it if necessary.

skip_syntax_errors Use: redirect Type: boolean Default: false

If skip_syntax_errors is set, syntactically malformed addresses in non-filter redirection data are
skipped, and each failing address is logged. If syntax_errors_to is set, a message is sent to the
address it defines, giving details of the failures. If syntax_errors_text is set, its contents are expanded
and placed at the head of the error message generated by syntax_errors_to. Usually it is appropriate
to set syntax_errors_to to be the same address as the generic errors_to option. The skip_syntax_
errors option is often used when handling mailing lists.

If all the addresses in a redirection list are skipped because of syntax errors, the router declines to
handle the original address, and it is passed to the following routers.

If skip_syntax_errors is set when an Exim filter is interpreted, any syntax error in the filter causes
filtering to be abandoned without any action being taken. The incident is logged, and the router
declines to handle the address, so it is passed to the following routers.

Syntax errors in a Sieve filter file cause the “keep” action to occur. This action is specified by RFC
3028. The values of skip_syntax_errors, syntax_errors_to, and syntax_errors_text are not used.

skip_syntax_errors can be used to specify that errors in users’ forward lists or filter files should not
prevent delivery. The syntax_errors_to option, used with an address that does not get redirected, can
be used to notify users of these errors, by means of a router like this:

userforward:
 driver = redirect
 allow_filter
 check_local_user
 file = $home/.forward
 file_transport = address_file
 pipe_transport = address_pipe
 reply_transport = address_reply
 no_verify
 skip_syntax_errors
 syntax_errors_to = real-$local_part@$domain
 syntax_errors_text = \
 This is an automatically generated message. An error has\n\
 been found in your .forward file. Details of the error are\n\
 reported below. While this error persists, you will receive\n\
 a copy of this message for every message that is addressed\n\
 to you. If your .forward file is a filter file, or if it is\n\
 a non-filter file containing no valid forwarding addresses,\n\
 a copy of each incoming message will be put in your normal\n\
 mailbox. If a non-filter file contains at least one valid\n\
 forwarding address, forwarding to the valid addresses will\n\
 happen, and those will be the only deliveries that occur.

268 The redirect router (22)

You also need a router to ensure that local addresses that are prefixed by real- are recognized, but
not forwarded or filtered. For example, you could put this immediately before the userforward router:

real_localuser:
 driver = accept
 check_local_user
 local_part_prefix = real-
 transport = local_delivery

For security, it would probably be a good idea to restrict the use of this router to locally-generated
messages, using a condition such as this:

condition = ${if match {$sender_host_address}\
 {\N^(|127\.0\.0\.1)$\N}}

syntax_errors_text Use: redirect Type: string† Default: unset

See skip_syntax_errors above.

syntax_errors_to Use: redirect Type: string Default: unset

See skip_syntax_errors above.

269 The redirect router (22)

23. Environment for running local transports

Local transports handle deliveries to files and pipes. (The autoreply transport can be thought of as
similar to a pipe.) Exim always runs transports in subprocesses, under specified uids and gids. Typical
deliveries to local mailboxes run under the uid and gid of the local user.

Exim also sets a specific current directory while running the transport; for some transports a home
directory setting is also relevant. The pipe transport is the only one that sets up environment variables;
see section 29.4 for details.

The values used for the uid, gid, and the directories may come from several different places. In many
cases, the router that handles the address associates settings with that address as a result of its check_
local_user, group, or user options. However, values may also be given in the transport’s own con-
figuration, and these override anything that comes from the router.

23.1 Concurrent deliveries

If two different messages for the same local recipient arrive more or less simultaneously, the two
delivery processes are likely to run concurrently. When the appendfile transport is used to write to a
file, Exim applies locking rules to stop concurrent processes from writing to the same file at the same
time.

However, when you use a pipe transport, it is up to you to arrange any locking that is needed. Here is
a silly example:

my_transport:
 driver = pipe
 command = /bin/sh -c 'cat >>/some/file'

This is supposed to write the message at the end of the file. However, if two messages arrive at the
same time, the file will be scrambled. You can use the exim_lock utility program (see section 54.15)
to lock a file using the same algorithm that Exim itself uses.

23.2 Uids and gids

All transports have the options group and user. If group is set, it overrides any group that the router
set in the address, even if user is not set for the transport. This makes it possible, for example, to run
local mail delivery under the uid of the recipient (set by the router), but in a special group (set by the
transport). For example:

Routers ...
User/group are set by check_local_user in this router
local_users:
 driver = accept
 check_local_user
 transport = group_delivery

Transports ...
This transport overrides the group
group_delivery:
 driver = appendfile
 file = /var/spool/mail/$local_part_data
 group = mail

If user is set for a transport, its value overrides what is set in the address by the router. If user is
non-numeric and group is not set, the gid associated with the user is used. If user is numeric, group
must be set.

When the uid is taken from the transport’s configuration, the initgroups() function is called for the
groups associated with that uid if the initgroups option is set for the transport. When the uid is not

270 Environment for local transports (23)

specified by the transport, but is associated with the address by a router, the option for calling
initgroups() is taken from the router configuration.

The pipe transport contains the special option pipe_as_creator. If this is set and user is not set, the
uid of the process that called Exim to receive the message is used, and if group is not set, the
corresponding original gid is also used.

This is the detailed preference order for obtaining a gid; the first of the following that is set is used:

• A group setting of the transport;

• A group setting of the router;

• A gid associated with a user setting of the router, either as a result of check_local_user or an
explicit non-numeric user setting;

• The group associated with a non-numeric user setting of the transport;

• In a pipe transport, the creator’s gid if deliver_as_creator is set and the uid is the creator’s uid;

• The Exim gid if the Exim uid is being used as a default.

If, for example, the user is specified numerically on the router and there are no group settings, no gid
is available. In this situation, an error occurs. This is different for the uid, for which there always is an
ultimate default. The first of the following that is set is used:

• A user setting of the transport;

• In a pipe transport, the creator’s uid if deliver_as_creator is set;

• A user setting of the router;

• A check_local_user setting of the router;

• The Exim uid.

Of course, an error will still occur if the uid that is chosen is on the never_users list.

23.3 Current and home directories

Routers may set current and home directories for local transports by means of the transport_
current_directory and transport_home_directory options. However, if the transport’s current_
directory or home_directory options are set, they override the router’s values. In detail, the home
directory for a local transport is taken from the first of these values that is set:

• The home_directory option on the transport;

• The transport_home_directory option on the router;

• The password data if check_local_user is set on the router;

• The router_home_directory option on the router.

The current directory is taken from the first of these values that is set:

• The current_directory option on the transport;

• The transport_current_directory option on the router.

If neither the router nor the transport sets a current directory, Exim uses the value of the home
directory, if it is set. Otherwise it sets the current directory to / before running a local transport.

23.4 Expansion variables derived from the address

Normally a local delivery is handling a single address, and in that case the variables such as $domain
and $local_part are set during local deliveries. However, in some circumstances more than one
address may be handled at once (for example, while writing batch SMTP for onward transmission by
some other means). In this case, the variables associated with the local part are never set, $domain is
set only if all the addresses have the same domain, and $original_domain is never set.

271 Environment for local transports (23)

24. Generic options for transports

The name of a transport is limited to be 64 ASCII characters long; prior to Exim 4.95 names would be
silently truncated at this length, but now it is enforced.

The following generic options apply to all transports:

body_only Use: transports Type: boolean Default: false

If this option is set, the message’s headers are not transported. It is mutually exclusive with headers_
only. If it is used with the appendfile or pipe transports, the settings of message_prefix and message_
suffix should be checked, because this option does not automatically suppress them.

current_directory Use: transports Type: string† Default: unset

This specifies the current directory that is to be set while running the transport, overriding any value
that may have been set by the router. If the expansion fails for any reason, including forced failure, an
error is logged, and delivery is deferred.

disable_logging Use: transports Type: boolean Default: false

If this option is set true, nothing is logged for any deliveries by the transport or for any transport
errors. You should not set this option unless you really, really know what you are doing.

debug_print Use: transports Type: string† Default: unset

If this option is set and debugging is enabled (see the -d command line option), the string is expanded
and included in the debugging output when the transport is run. If expansion of the string fails, the
error message is written to the debugging output, and Exim carries on processing. This facility is
provided to help with checking out the values of variables and so on when debugging driver configur-
ations. For example, if a headers_add option is not working properly, debug_print could be used to
output the variables it references. A newline is added to the text if it does not end with one. The
variables $transport_name and $router_name contain the name of the transport and the router that
called it.

delivery_date_add Use: transports Type: boolean Default: false

If this option is true, a Delivery-date: header is added to the message. This gives the actual time the
delivery was made. As this is not a standard header, Exim has a configuration option (delivery_date_
remove) which requests its removal from incoming messages, so that delivered messages can safely
be resent to other recipients.

driver Use: transports Type: string Default: unset

This specifies which of the available transport drivers is to be used. There is no default, and this
option must be set for every transport.

envelope_to_add Use: transports Type: boolean Default: false

If this option is true, an Envelope-to: header is added to the message. This gives the original
address(es) in the incoming envelope that caused this delivery to happen. More than one address may
be present if the transport is configured to handle several addresses at once, or if more than one
original address was redirected to the same final address. As this is not a standard header, Exim has a

272 Generic options for transports (24)

configuration option (envelope_to_remove) which requests its removal from incoming messages, so
that delivered messages can safely be resent to other recipients.

Note: If used on a transport handling multiple recipients (the smtp transport unless max_rcpt is 1, the
appendfile, pipe or lmtp transport if batch_max is greater than 1) then information about Bcc recipi-
ents will be leaked. Doing so is generally not advised.

event_action Use: transports Type: string† Default: unset

This option declares a string to be expanded for Exim’s events mechanism. For details see chapter 61.

group Use: transports Type: string† Default: Exim group

This option specifies a gid for running the transport process, overriding any value that the router
supplies, and also overriding any value associated with user (see below).

headers_add Use: transports Type: list† Default: unset

This option specifies a list of text headers, newline-separated (by default, changeable in the usual way
6.21), which are (separately) expanded and added to the header portion of a message as it is trans-
ported, as described in section 48.6. Additional header lines can also be specified by routers. If the
result of the expansion is an empty string, or if the expansion is forced to fail, no action is taken.
Other expansion failures are treated as errors and cause the delivery to be deferred.

Unlike most options, headers_add can be specified multiple times for a transport; all listed headers
are added.

headers_only Use: transports Type: boolean Default: false

If this option is set, the message’s body is not transported. It is mutually exclusive with body_only. If
it is used with the appendfile or pipe transports, the settings of message_prefix and message_suffix
should be checked, since this option does not automatically suppress them.

headers_remove Use: transports Type: list† Default: unset

This option specifies a list of text headers, colon-separated (by default, changeable in the usual way
6.21), to be removed from the message. However, the option has no effect when an address is just
being verified. Each list item is separately expanded. If the result of the expansion is an empty string,
or if the expansion is forced to fail, no action is taken. Other expansion failures are treated as errors
and cause the delivery to be deferred. If an item ends in *, it will match any header with the given
prefix.

Matching headers are omitted from the message as it is transported, as described in section 48.6.
Header removal can also be specified by routers.

Unlike most options, headers_remove can be specified multiple times for a transport; all listed
headers are removed.

Warning: Because of the separate expansion of the list items, items that contain a list separator must
have it doubled. To avoid this, change the list separator (6.21).

headers_rewrite Use: transports Type: string Default: unset

This option allows addresses in header lines to be rewritten at transport time, that is, as the message is
being copied to its destination. The contents of the option are a colon-separated list of rewriting rules.
Each rule is in exactly the same form as one of the general rewriting rules that are applied when a
message is received. These are described in chapter 31. For example,

273 Generic options for transports (24)

headers_rewrite = a@b c@d f : \
 x@y w@z

changes a@b into c@d in From: header lines, and x@y into w@z in all address-bearing header lines.
The rules are applied to the header lines just before they are written out at transport time, so they
affect only those copies of the message that pass through the transport. However, only the message’s
original header lines, and any that were added by a system filter, are rewritten. If a router or transport
adds header lines, they are not affected by this option. These rewriting rules are not applied to the
envelope. You can change the return path using return_path, but you cannot change envelope recipi-
ents at this time.

home_directory Use: transports Type: string† Default: unset

This option specifies a home directory setting for a local transport, overriding any value that may be
set by the router. The home directory is placed in $home while expanding the transport’s private
options. It is also used as the current directory if no current directory is set by the current_directory
option on the transport or the transport_current_directory option on the router. If the expansion
fails for any reason, including forced failure, an error is logged, and delivery is deferred.

initgroups Use: transports Type: boolean Default: false

If this option is true and the uid for the delivery process is provided by the transport, the initgroups()
function is called when running the transport to ensure that any additional groups associated with the
uid are set up.

max_parallel Use: transports Type: integer† Default: unset

If this option is set and expands to an integer greater than zero it limits the number of concurrent runs
of the transport. The control does not apply to shadow transports.

Exim implements this control by means of a hints database in which a record is incremented when-
ever a transport process is being created. The record is decremented and possibly removed when the
process terminates. Obviously there is scope for records to get left lying around if there is a system or
program crash. To guard against this, Exim ignores any records that are more than six hours old.

If you use this option, you should also arrange to delete the relevant hints database whenever your
system reboots. The names of the files start with misc and they are kept in the spool/db directory.
There may be one or two files, depending on the type of DBM in use. The same files are used for
ETRN and smtp transport serialization.

message_size_limit Use: transports Type: string† Default: 0

This option controls the size of messages passed through the transport. It is expanded before use; the
result of the expansion must be a sequence of decimal digits, optionally followed by K or M. If the
expansion fails for any reason, including forced failure, or if the result is not of the required form,
delivery is deferred. If the value is greater than zero and the size of a message exceeds this limit, the
address is failed. If there is any chance that the resulting bounce message could be routed to the same
transport, you should ensure that return_size_limit is less than the transport’s message_size_limit, as
otherwise the bounce message will fail to get delivered.

rcpt_include_affixes Use: transports Type: boolean Default: false

When this option is false (the default), and an address that has had any affixes (prefixes or suffixes)
removed from the local part is delivered by any form of SMTP or LMTP, the affixes are not included.
For example, if a router that contains

local_part_prefix = *-

274 Generic options for transports (24)

routes the address abc-xyz@some.domain to an SMTP transport, the envelope is delivered with

RCPT TO:<xyz@some.domain>

This is also the case when an ACL-time callout is being used to verify a recipient address. However, if
rcpt_include_affixes is set true, the whole local part is included in the RCPT command. This option
applies to BSMTP deliveries by the appendfile and pipe transports as well as to the lmtp and smtp
transports.

retry_use_local_part Use: transports Type: boolean Default: see below

When a delivery suffers a temporary failure, a retry record is created in Exim’s hints database. For
remote deliveries, the key for the retry record is based on the name and/or IP address of the failing
remote host. For local deliveries, the key is normally the entire address, including both the local part
and the domain. This is suitable for most common cases of local delivery temporary failure – for
example, exceeding a mailbox quota should delay only deliveries to that mailbox, not to the whole
domain.

However, in some special cases you may want to treat a temporary local delivery as a failure
associated with the domain, and not with a particular local part. (For example, if you are storing all
mail for some domain in files.) You can do this by setting retry_use_local_part false.

For all the local transports, its default value is true. For remote transports, the default value is false for
tidiness, but changing the value has no effect on a remote transport in the current implementation.

return_path Use: transports Type: string† Default: unset

If this option is set, the string is expanded at transport time and replaces the existing return path
(envelope sender) value in the copy of the message that is being delivered. An empty return path is
permitted. This feature is designed for remote deliveries, where the value of this option is used in the
SMTP MAIL command. If you set return_path for a local transport, the only effect is to change the
address that is placed in the Return-path: header line, if one is added to the message (see the next
option).

Note: A changed return path is not logged unless you add return_path_on_delivery to the log
selector.

The expansion can refer to the existing value via $return_path. This is either the message’s envelope
sender, or an address set by the errors_to option on a router. If the expansion is forced to fail, no
replacement occurs; if it fails for another reason, delivery is deferred. This option can be used to
support VERP (Variable Envelope Return Paths) – see section 51.6.

Note: If a delivery error is detected locally, including the case when a remote server rejects a message
at SMTP time, the bounce message is not sent to the value of this option. It is sent to the previously
set errors address. This defaults to the incoming sender address, but can be changed by setting
errors_to in a router.

return_path_add Use: transports Type: boolean Default: false

If this option is true, a Return-path: header is added to the message. Although the return path is
normally available in the prefix line of BSD mailboxes, this is commonly not displayed by MUAs,
and so the user does not have easy access to it.

RFC 2821 states that the Return-path: header is added to a message “when the delivery SMTP server
makes the final delivery”. This implies that this header should not be present in incoming messages.
Exim has a configuration option, return_path_remove, which requests removal of this header from
incoming messages, so that delivered messages can safely be resent to other recipients.

275 Generic options for transports (24)

shadow_condition Use: transports Type: string† Default: unset

See shadow_transport below.

shadow_transport Use: transports Type: string Default: unset

A local transport may set the shadow_transport option to the name of another local transport.
Shadow remote transports are not supported.

Whenever a delivery to the main transport succeeds, and either shadow_condition is unset, or its
expansion does not result in the empty string or one of the strings “0” or “no” or “false”, the message
is also passed to the shadow transport, with the same delivery address or addresses. If expansion fails,
no action is taken except that non-forced expansion failures cause a log line to be written.

The result of the shadow transport is discarded and does not affect the subsequent processing of the
message. Only a single level of shadowing is provided; the shadow_transport option is ignored on
any transport when it is running as a shadow. Options concerned with output from pipes are also
ignored. The log line for the successful delivery has an item added on the end, of the form

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards. Shadow
transports can be used for a number of different purposes, including keeping more detailed log
information than Exim normally provides, and implementing automatic acknowledgment policies
based on message headers that some sites insist on.

transport_filter Use: transports Type: string† Default: unset

This option sets up a filtering (in the Unix shell sense) process for messages at transport time. It
should not be confused with mail filtering as set up by individual users or via a system filter. If unset,
or expanding to an empty string, no filtering is done.

When the message is about to be written out, the command specified by transport_filter is started up
in a separate, parallel process, and the entire message, including the header lines, is passed to it on its
standard input (this in fact is done from a third process, to avoid deadlock). The command must be
specified as an absolute path.

The process run by the command must use its standard input as the message data to be transformed,
and write the results on its standard output.

The lines of the message that are written to the transport filter are terminated by newline (“\n”). The
message is passed to the filter before any SMTP-specific processing, such as turning “\n” into “\r\n”
and escaping lines beginning with a dot, and also before any processing implied by the settings of
check_string and escape_string in the appendfile or pipe transports.

The standard error for the filter process is set to the same destination as its standard output; this is
read and written to the message’s ultimate destination. The process that writes the message to the
filter, the filter itself, and the original process that reads the result and delivers it are all run in parallel,
like a shell pipeline.

The filter can perform any transformations it likes, but of course should take care not to break RFC
2822 syntax. Exim does not check the result, except to test for a final newline when SMTP is in use.
All messages transmitted over SMTP must end with a newline, so Exim supplies one if it is missing.

A transport filter can be used to provide content-scanning on a per-user basis at delivery time if the
only required effect of the scan is to modify the message. For example, a content scan could insert a
new header line containing a spam score. This could be interpreted by a filter in the user’s MUA. It is
not possible to discard a message at this stage.

A problem might arise if the filter increases the size of a message that is being sent down an SMTP
connection. If the receiving SMTP server has indicated support for the SIZE parameter, Exim will
have sent the size of the message at the start of the SMTP session. If what is actually sent is

276 Generic options for transports (24)

substantially more, the server might reject the message. This can be worked round by setting the size_
addition option on the smtp transport, either to allow for additions to the message, or to disable the
use of SIZE altogether.

The value of the transport_filter option is the command string for starting the filter, which is run
directly from Exim, not under a shell. The string is parsed by Exim in the same way as a command
string for the pipe transport: Exim breaks it up into arguments and then expands each argument
separately (see section 29.3). Any kind of expansion failure causes delivery to be deferred. The
special argument $pipe_addresses is replaced by a number of arguments, one for each address that
applies to this delivery. (This isn’t an ideal name for this feature here, but as it was already
implemented for the pipe transport, it seemed sensible not to change it.)

The expansion variables $host and $host_address are available when the transport is a remote one.
They contain the name and IP address of the host to which the message is being sent. For example:

transport_filter = /some/directory/transport-filter.pl \
 $host $host_address $pipe_addresses

Two problems arise if you want to use more complicated expansion items to generate transport filter
commands, both of which due to the fact that the command is split up before expansion.

• If an expansion item contains white space, you must quote it, so that it is all part of the same
command item. If the entire option setting is one such expansion item, you have to take care what
kind of quoting you use. For example:

transport_filter = '/bin/cmd${if eq{$host}{a.b.c}{1}{2}}'

This runs the command /bin/cmd1 if the host name is a.b.c, and /bin/cmd2 otherwise.

Option strings in general have any fully-surrounding double quote wrapping removed early in
parsing (see 6.17). Then, for this option, quotes protect against whitespace being regarded as a
separator while splitting into the command argument vector. Either double or single quotes can be
used here; the former interprets backlash-quoted charachters and the latter does not.

If double quotes had been used in this example, they would have been stripped by Exim when it
read the option’s value. When the value is used, if the single quotes were missing, the line would
be split into two items, /bin/cmd${if and eq{$host}{a.b.c}{1}{2}, and an error would
occur when Exim tried to expand the first one.

• Except for the special case of $pipe_addresses that is mentioned above, an expansion cannot
generate multiple arguments, or a command name followed by arguments. Consider this example:

transport_filter = ${lookup{$host}lsearch{/a/file}\
 {$value}{/bin/cat}}

The result of the lookup is interpreted as the name of the command, even if it contains white space.
The simplest way round this is to use a shell:

transport_filter = /bin/sh -c ${lookup{$host}lsearch{/a/file}\
 {$value}{/bin/cat}}

The filter process is run under the same uid and gid as the normal delivery. For remote deliveries this
is the Exim uid/gid by default. The command should normally yield a zero return code. Transport
filters are not supposed to fail. A non-zero code is taken to mean that the transport filter encountered
some serious problem. Delivery of the message is deferred; the message remains on the queue and is
tried again later. It is not possible to cause a message to be bounced from a transport filter.

If a transport filter is set on an autoreply transport, the original message is passed through the filter as
it is being copied into the newly generated message, which happens if the return_message option is
set.

277 Generic options for transports (24)

transport_filter_timeout Use: transports Type: time Default: 5m

When Exim is reading the output of a transport filter, it applies a timeout that can be set by this
option. Exceeding the timeout is normally treated as a temporary delivery failure. However, if a
transport filter is used with a pipe transport, a timeout in the transport filter is treated in the same way
as a timeout in the pipe command itself. By default, a timeout is a hard error, but if the pipe
transport’s timeout_defer option is set true, it becomes a temporary error.

user Use: transports Type: string† Default: Exim user

This option specifies the user under whose uid the delivery process is to be run, overriding any uid
that may have been set by the router. If the user is given as a name, the uid is looked up from the
password data, and the associated group is taken as the value of the gid to be used if the group option
is not set.

For deliveries that use local transports, a user and group are normally specified explicitly or implicitly
(for example, as a result of check_local_user) by the router or transport.

For remote transports, you should leave this option unset unless you really are sure you know what
you are doing. When a remote transport is running, it needs to be able to access Exim’s hints
databases, because each host may have its own retry data.

278 Generic options for transports (24)

25. Address batching in local transports

The only remote transport (smtp) is normally configured to handle more than one address at a time, so
that when several addresses are routed to the same remote host, just one copy of the message is sent.
Local transports, however, normally handle one address at a time. That is, a separate instance of the
transport is run for each address that is routed to the transport. A separate copy of the message is
delivered each time.

In special cases, it may be desirable to handle several addresses at once in a local transport, for
example:

• In an appendfile transport, when storing messages in files for later delivery by some other means, a
single copy of the message with multiple recipients saves space.

• In an lmtp transport, when delivering over “local SMTP” to some process, a single copy saves time,
and is the normal way LMTP is expected to work.

• In a pipe transport, when passing the message to a scanner program or to some other delivery
mechanism such as UUCP, multiple recipients may be acceptable.

These three local transports all have the same options for controlling multiple (“batched”) deliveries,
namely batch_max and batch_id. To save repeating the information for each transport, these options
are described here.

The batch_max option specifies the maximum number of addresses that can be delivered together in
a single run of the transport. Its default value is one (no batching). When more than one address is
routed to a transport that has a batch_max value greater than one, the addresses are delivered in a
batch (that is, in a single run of the transport with multiple recipients), subject to certain conditions:

• If any of the transport’s options contain a reference to $local_part, no batching is possible.

• If any of the transport’s options contain a reference to $domain, only addresses with the same
domain are batched.

• If batch_id is set, it is expanded for each address, and only those addresses with the same
expanded value are batched. This allows you to specify customized batching conditions. Failure of
the expansion for any reason, including forced failure, disables batching, but it does not stop the
delivery from taking place.

• Batched addresses must also have the same errors address (where to send delivery errors), the same
header additions and removals, the same user and group for the transport, and if a host list is
present, the first host must be the same.

In the case of the appendfile and pipe transports, batching applies both when the file or pipe command
is specified in the transport, and when it is specified by a redirect router, but all the batched addresses
must of course be routed to the same file or pipe command. These two transports have an option
called use_bsmtp, which causes them to deliver the message in “batched SMTP” format, with the
envelope represented as SMTP commands. The check_string and escape_string options are forced
to the values

check_string = "."
escape_string = ".."

when batched SMTP is in use. A full description of the batch SMTP mechanism is given in section
49.4. The lmtp transport does not have a use_bsmtp option, because it always delivers using the
SMTP protocol.

If the generic envelope_to_add option is set for a batching transport, the Envelope-to: header that is
added to the message contains all the addresses that are being processed together. If you are using a
batching appendfile transport without use_bsmtp, the only way to preserve the recipient addresses is
to set the envelope_to_add option.

If you are using a pipe transport without BSMTP, and setting the transport’s command option, you
can include $pipe_addresses as part of the command. This is not a true variable; it is a bit of magic

279 Address batching (25)

that causes each of the recipient addresses to be inserted into the command as a separate argument.
This provides a way of accessing all the addresses that are being delivered in the batch. Note: This is
not possible for pipe commands that are specified by a redirect router.

280 Address batching (25)

26. The appendfile transport

The appendfile transport delivers a message by appending it to an existing file, or by creating an
entirely new file in a specified directory. Single files to which messages are appended can be in the
traditional Unix mailbox format, or optionally in the MBX format supported by the Pine MUA and
University of Washington IMAP daemon, inter alia. When each message is being delivered as a
separate file, “maildir” format can optionally be used to give added protection against failures that
happen part-way through the delivery. A third form of separate-file delivery known as “mailstore” is
also supported. For all file formats, Exim attempts to create as many levels of directory as necessary,
provided that create_directory is set.

The code for the optional formats is not included in the Exim binary by default. It is necessary to set
SUPPORT_MBX, SUPPORT_MAILDIR and/or SUPPORT_MAILSTORE in Local/Makefile to have
the appropriate code included.

Exim recognizes system quota errors, and generates an appropriate message. Exim also supports its
own quota control within the transport, for use when the system facility is unavailable or cannot be
used for some reason.

If there is an error while appending to a file (for example, quota exceeded or partition filled), Exim
attempts to reset the file’s length and last modification time back to what they were before. If there is
an error while creating an entirely new file, the new file is removed.

Before appending to a file, a number of security checks are made, and the file is locked. A detailed
description is given below, after the list of private options.

The appendfile transport is most commonly used for local deliveries to users’ mailboxes. However, it
can also be used as a pseudo-remote transport for putting messages into files for remote delivery by
some means other than Exim. “Batch SMTP” format is often used in this case (see the use_bsmtp
option).

26.1 The file and directory options

The file option specifies a single file, to which the message is appended; the directory option
specifies a directory, in which a new file containing the message is created. Only one of these two
options can be set, and for normal deliveries to mailboxes, one of them must be set.

However, appendfile is also used for delivering messages to files or directories whose names (or parts
of names) are obtained from alias, forwarding, or filtering operations (for example, a save command
in a user’s Exim filter). When such a transport is running, $local_part contains the local part that was
aliased or forwarded, and $address_file contains the name (or partial name) of the file or directory
generated by the redirection operation. There are two cases:

• If neither file nor directory is set, the redirection operation must specify an absolute path (one that
begins with /). This is the most common case when users with local accounts use filtering to sort
mail into different folders. See for example, the address_file transport in the default configuration.
If the path ends with a slash, it is assumed to be the name of a directory. A delivery to a directory
can also be forced by setting maildir_format or mailstore_format.

• If file or directory is set for a delivery from a redirection, it is used to determine the file or
directory name for the delivery. Normally, the contents of $address_file are used in some way in
the string expansion.

If the create_file option is set to a path which matches (see the option definition below for details) a
file or directory name for the delivery, that name becomes de-tainted.

Tainted data may not be used for a file or directory name. This means that, for instance, $local_part
cannot be used directly as a component of a path. It can however be used as the key for a lookup
which returns a path (or component).

As an example of the second case, consider an environment where users do not have home directories.
They may be permitted to use Exim filter commands of the form:

281 The appendfile transport (26)

save folder23

or Sieve filter commands of the form:

require "fileinto";
fileinto "folder23";

In this situation, the expansion of file or directory in the transport must transform the relative path
into an appropriate absolute filename. In the case of Sieve filters, the name inbox must be handled. It
is the name that is used as a result of a “keep” action in the filter. This example shows one way of
handling this requirement:

file = ${if eq{$address_file}{inbox} \
 {/var/mail/$local_part_data} \
 {${if eq{${substr_0_1:$address_file}}{/} \
 {$address_file} \
 {$home/mail/$address_file} \
 }} \
 }

With this setting of file, inbox refers to the standard mailbox location, absolute paths are used without
change, and other folders are in the mail directory within the home directory.

Note 1: While processing an Exim filter, a relative path such as folder23 is turned into an absolute
path if a home directory is known to the router. In particular, this is the case if check_local_user is
set. If you want to prevent this happening at routing time, you can set router_home_directory empty.
This forces the router to pass the relative path to the transport.

Note 2: An absolute path in $address_file is not treated specially; the file or directory option is still
used if it is set.

26.2 Private options for appendfile

allow_fifo Use: appendfile Type: boolean Default: false

Setting this option permits delivery to named pipes (FIFOs) as well as to regular files. If no process is
reading the named pipe at delivery time, the delivery is deferred.

allow_symlink Use: appendfile Type: boolean Default: false

By default, appendfile will not deliver if the path name for the file is that of a symbolic link. Setting
this option relaxes that constraint, but there are security issues involved in the use of symbolic links.
Be sure you know what you are doing if you set this. Details of exactly what this option affects are
included in the discussion which follows this list of options.

batch_id Use: appendfile Type: string† Default: unset

See the description of local delivery batching in chapter 25. However, batching is automatically
disabled for appendfile deliveries that happen as a result of forwarding or aliasing or other redirection
directly to a file.

batch_max Use: appendfile Type: integer Default: 1

See the description of local delivery batching in chapter 25.

282 The appendfile transport (26)

check_group Use: appendfile Type: boolean Default: false

When this option is set, the group owner of the file defined by the file option is checked to see that it
is the same as the group under which the delivery process is running. The default setting is false
because the default file mode is 0600, which means that the group is irrelevant.

check_owner Use: appendfile Type: boolean Default: true

When this option is set, the owner of the file defined by the file option is checked to ensure that it is
the same as the user under which the delivery process is running.

check_string Use: appendfile Type: string Default: see below

As appendfile writes the message, the start of each line is tested for matching check_string, and if it
does, the initial matching characters are replaced by the contents of escape_string. The value of
check_string is a literal string, not a regular expression, and the case of any letters it contains is
significant.

If use_bsmtp is set the values of check_string and escape_string are forced to “.” and “..” respect-
ively, and any settings in the configuration are ignored. Otherwise, they default to “From ” and
“>From ” when the file option is set, and unset when any of the directory, maildir, or mailstore
options are set.

The default settings, along with message_prefix and message_suffix, are suitable for traditional
“BSD” mailboxes, where a line beginning with “From ” indicates the start of a new message. All four
options need changing if another format is used. For example, to deliver to mailboxes in MMDF
format:

check_string = "\1\1\1\1\n"
escape_string = "\1\1\1\1 \n"
message_prefix = "\1\1\1\1\n"
message_suffix = "\1\1\1\1\n"

create_directory Use: appendfile Type: boolean Default: true

When this option is true, Exim attempts to create any missing superior directories for the file that it is
about to write. A created directory’s mode is given by the directory_mode option.

The group ownership of a newly created directory is highly dependent on the operating system (and
possibly the file system) that is being used. For example, in Solaris, if the parent directory has the
setgid bit set, its group is propagated to the child; if not, the currently set group is used. However, in
FreeBSD, the parent’s group is always used.

create_file Use: appendfile Type: string Default: anywhere

This option constrains the location of files and directories that are created by this transport. It applies
to files defined by the file option and directories defined by the directory option. In the case of
maildir delivery, it applies to the top level directory, not the maildir directories beneath.

The option must be set to one of the words “anywhere”, “inhome”, or “belowhome”, or to an absolute
path.

In the second and third cases, a home directory must have been set for the transport, and the file or
directory being created must reside within it. The "belowhome" checking additionally checks for
attempts to use "../" to evade the testing. This option is not useful when an explicit filename is given
for normal mailbox deliveries. It is intended for the case when filenames are generated from users’
.forward files. These are usually handled by an appendfile transport called address_file. See also file_
must_exist.

283 The appendfile transport (26)

In the fourth case, the value given for this option must be an absolute path for an existing directory.
The value is used for checking instead of a home directory; checking is done in "belowhome" mode.

If "belowhome" checking is used, the file or directory path becomes de-tainted.

directory Use: appendfile Type: string† Default: unset

This option is mutually exclusive with the file option, but one of file or directory must be set, unless
the delivery is the direct result of a redirection (see section 26.1).

When directory is set, the string is expanded, and the message is delivered into a new file or files in
or below the given directory, instead of being appended to a single mailbox file. A number of different
formats are provided (see maildir_format and mailstore_format), and see section 26.4 for further
details of this form of delivery.

The result of expansion must not be tainted, unless the create_file option specifies a path.

directory_file Use: appendfile Type: string† Default: see below

When directory is set, but neither maildir_format nor mailstore_format is set, appendfile delivers
each message into a file whose name is obtained by expanding this string. The default value is:

q${base62:$tod_epoch}-$inode

This generates a unique name from the current time, in base 62 form, and the inode of the file. The
variable $inode is available only when expanding this option.

directory_mode Use: appendfile Type: octal integer Default: 0700

If appendfile creates any directories as a result of the create_directory option, their mode is specified
by this option.

escape_string Use: appendfile Type: string Default: see
description

See check_string above.

file Use: appendfile Type: string† Default: unset

This option is mutually exclusive with the directory option, but one of file or directory must be set,
unless the delivery is the direct result of a redirection (see section 26.1). The file option specifies a
single file, to which the message is appended. One or more of use_fcntl_lock, use_flock_lock, or
use_lockfile must be set with file.

The result of expansion must not be tainted, unless the create_file option specifies a path.

If you are using more than one host to deliver over NFS into the same mailboxes, you should always
use lock files.

The string value is expanded for each delivery, and must yield an absolute path. The most common
settings of this option are variations on one of these examples:

file = /var/spool/mail/$local_part_data
file = /home/$local_part_data/inbox
file = $home/inbox

In the first example, all deliveries are done into the same directory. If Exim is configured to use lock
files (see use_lockfile below) it must be able to create a file in the directory, so the “sticky” bit must
be turned on for deliveries to be possible, or alternatively the group option can be used to run the
delivery under a group id which has write access to the directory.

284 The appendfile transport (26)

file_format Use: appendfile Type: string Default: unset

This option requests the transport to check the format of an existing file before adding to it. The check
consists of matching a specific string at the start of the file. The value of the option consists of an even
number of colon-separated strings. The first of each pair is the test string, and the second is the name
of a transport. If the transport associated with a matched string is not the current transport, control is
passed over to the other transport. For example, suppose the standard local_delivery transport has this
added to it:

file_format = "From : local_delivery :\
 \1\1\1\1\n : local_mmdf_delivery"

Mailboxes that begin with “From” are still handled by this transport, but if a mailbox begins with four
binary ones followed by a newline, control is passed to a transport called local_mmdf_delivery,
which presumably is configured to do the delivery in MMDF format. If a mailbox does not exist or is
empty, it is assumed to match the current transport. If the start of a mailbox doesn’t match any string,
or if the transport named for a given string is not defined, delivery is deferred.

file_must_exist Use: appendfile Type: boolean Default: false

If this option is true, the file specified by the file option must exist. A temporary error occurs if it does
not, causing delivery to be deferred. If this option is false, the file is created if it does not exist.

lock_fcntl_timeout Use: appendfile Type: time Default: 0s

By default, the appendfile transport uses non-blocking calls to fcntl() when locking an open mailbox
file. If the call fails, the delivery process sleeps for lock_interval and tries again, up to lock_retries
times. Non-blocking calls are used so that the file is not kept open during the wait for the lock; the
reason for this is to make it as safe as possible for deliveries over NFS in the case when processes
might be accessing an NFS mailbox without using a lock file. This should not be done, but misunder-
standings and hence misconfigurations are not unknown.

On a busy system, however, the performance of a non-blocking lock approach is not as good as using
a blocking lock with a timeout. In this case, the waiting is done inside the system call, and Exim’s
delivery process acquires the lock and can proceed as soon as the previous lock holder releases it.

If lock_fcntl_timeout is set to a non-zero time, blocking locks, with that timeout, are used. There
may still be some retrying: the maximum number of retries is

(lock_retries * lock_interval) / lock_fcntl_timeout

rounded up to the next whole number. In other words, the total time during which appendfile is trying
to get a lock is roughly the same, unless lock_fcntl_timeout is set very large.

You should consider setting this option if you are getting a lot of delayed local deliveries because of
errors of the form

failed to lock mailbox /some/file (fcntl)

lock_flock_timeout Use: appendfile Type: time Default: 0s

This timeout applies to file locking when using flock() (see use_flock); the timeout operates in a
similar manner to lock_fcntl_timeout.

lock_interval Use: appendfile Type: time Default: 3s

This specifies the time to wait between attempts to lock the file. See below for details of locking.

285 The appendfile transport (26)

lock_retries Use: appendfile Type: integer Default: 10

This specifies the maximum number of attempts to lock the file. A value of zero is treated as 1. See
below for details of locking.

lockfile_mode Use: appendfile Type: octal integer Default: 0600

This specifies the mode of the created lock file, when a lock file is being used (see use_lockfile and
use_mbx_lock).

lockfile_timeout Use: appendfile Type: time Default: 30m

When a lock file is being used (see use_lockfile), if a lock file already exists and is older than this
value, it is assumed to have been left behind by accident, and Exim attempts to remove it.

mailbox_filecount Use: appendfile Type: string† Default: unset

If this option is set, it is expanded, and the result is taken as the current number of files in the
mailbox. It must be a decimal number, optionally followed by K or M. This provides a way of
obtaining this information from an external source that maintains the data.

mailbox_size Use: appendfile Type: string† Default: unset

If this option is set, it is expanded, and the result is taken as the current size the mailbox. It must be a
decimal number, optionally followed by K or M. This provides a way of obtaining this information
from an external source that maintains the data. This is likely to be helpful for maildir deliveries
where it is computationally expensive to compute the size of a mailbox.

maildir_format Use: appendfile Type: boolean Default: false

If this option is set with the directory option, the delivery is into a new file, in the “maildir” format
that is used by other mail software. When the transport is activated directly from a redirect router (for
example, the address_file transport in the default configuration), setting maildir_format causes the
path received from the router to be treated as a directory, whether or not it ends with /. This option is
available only if SUPPORT_MAILDIR is present in Local/Makefile. See section 26.5 below for
further details.

maildir_quota_directory_regex Use: appendfile Type: string Default: See below

This option is relevant only when maildir_use_size_file is set. It defines a regular expression for
specifying directories, relative to the quota directory (see quota_directory), that should be included
in the quota calculation. The default value is:

maildir_quota_directory_regex = ^(?:cur|new|\..*)$

This includes the cur and new directories, and any maildir++ folders (directories whose names begin
with a dot). If you want to exclude the Trash folder from the count (as some sites do), you need to
change this setting to

maildir_quota_directory_regex = ^(?:cur|new|\.(?!Trash).*)$

This uses a negative lookahead in the regular expression to exclude the directory whose name is
.Trash. When a directory is excluded from quota calculations, quota processing is bypassed for any
messages that are delivered directly into that directory.

286 The appendfile transport (26)

maildir_retries Use: appendfile Type: integer Default: 10

This option specifies the number of times to retry when writing a file in “maildir” format. See section
26.5 below.

maildir_tag Use: appendfile Type: string† Default: unset

This option applies only to deliveries in maildir format, and is described in section 26.5 below.

maildir_use_size_file Use: appendfile† Type: boolean Default: false

The result of string expansion for this option must be a valid boolean value. If it is true, it enables
support for maildirsize files. Exim creates a maildirsize file in a maildir if one does not exist, taking
the quota from the quota option of the transport. If quota is unset, the value is zero. See maildir_
quota_directory_regex above and section 26.5 below for further details.

maildirfolder_create_regex Use: appendfile Type: string Default: unset

The value of this option is a regular expression. If it is unset, it has no effect. Otherwise, before a
maildir delivery takes place, the pattern is matched against the name of the maildir directory, that is,
the directory containing the new and tmp subdirectories that will be used for the delivery. If there is a
match, Exim checks for the existence of a file called maildirfolder in the directory, and creates it if it
does not exist. See section 26.5 for more details.

mailstore_format Use: appendfile Type: boolean Default: false

If this option is set with the directory option, the delivery is into two new files in “mailstore” format.
The option is available only if SUPPORT_MAILSTORE is present in Local/Makefile. See section
26.4 below for further details.

mailstore_prefix Use: appendfile Type: string† Default: unset

This option applies only to deliveries in mailstore format, and is described in section 26.4 below.

mailstore_suffix Use: appendfile Type: string† Default: unset

This option applies only to deliveries in mailstore format, and is described in section 26.4 below.

mbx_format Use: appendfile Type: boolean Default: false

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
If mbx_format is set with the file option, the message is appended to the mailbox file in MBX format
instead of traditional Unix format. This format is supported by Pine4 and its associated IMAP and
POP daemons, by means of the c-client library that they all use.

Note: The message_prefix and message_suffix options are not automatically changed by the use of
mbx_format. They should normally be set empty when using MBX format, so this option almost
always appears in this combination:

mbx_format = true
message_prefix =
message_suffix =

If none of the locking options are mentioned in the configuration, use_mbx_lock is assumed and the
other locking options default to false. It is possible to specify the other kinds of locking with mbx_

287 The appendfile transport (26)

format, but use_fcntl_lock and use_mbx_lock are mutually exclusive. MBX locking interworks with
c-client, providing for shared access to the mailbox. It should not be used if any program that does not
use this form of locking is going to access the mailbox, nor should it be used if the mailbox file is
NFS mounted, because it works only when the mailbox is accessed from a single host.

If you set use_fcntl_lock with an MBX-format mailbox, you cannot use the standard version of
c-client, because as long as it has a mailbox open (this means for the whole of a Pine or IMAP
session), Exim will not be able to append messages to it.

message_prefix Use: appendfile Type: string† Default: see below

The string specified here is expanded and output at the start of every message. The default is unset
unless file is specified and use_bsmtp is not set, in which case it is:

message_prefix = "From ${if def:return_path{$return_path}\
 {MAILER-DAEMON}} $tod_bsdinbox\n"

Note: If you set use_crlf true, you must change any occurrences of \n to \r\n in message_prefix.

message_suffix Use: appendfile Type: string† Default: see below

The string specified here is expanded and output at the end of every message. The default is unset
unless file is specified and use_bsmtp is not set, in which case it is a single newline character. The
suffix can be suppressed by setting

message_suffix =

Note: If you set use_crlf true, you must change any occurrences of \n to \r\n in message_suffix.

mode Use: appendfile Type: octal integer Default: 0600

If the output file is created, it is given this mode. If it already exists and has wider permissions, they
are reduced to this mode. If it has narrower permissions, an error occurs unless mode_fail_narrower
is false. However, if the delivery is the result of a save command in a filter file specifying a particular
mode, the mode of the output file is always forced to take that value, and this option is ignored.

mode_fail_narrower Use: appendfile Type: boolean Default: true

This option applies in the case when an existing mailbox file has a narrower mode than that specified
by the mode option. If mode_fail_narrower is true, the delivery is deferred (“mailbox has the wrong
mode”); otherwise Exim continues with the delivery attempt, using the existing mode of the file.

notify_comsat Use: appendfile Type: boolean Default: false

If this option is true, the comsat daemon is notified after every successful delivery to a user mailbox.
This is the daemon that notifies logged on users about incoming mail.

quota Use: appendfile Type: string† Default: unset

This option imposes a limit on the size of the file to which Exim is appending, or to the total space
used in the directory tree when the directory option is set. In the latter case, computation of the space
used is expensive, because all the files in the directory (and any sub-directories) have to be individu-
ally inspected and their sizes summed. (See quota_size_regex and maildir_use_size_file for ways to
avoid this in environments where users have no shell access to their mailboxes).

As there is no interlock against two simultaneous deliveries into a multi-file mailbox, it is possible for
the quota to be overrun in this case. For single-file mailboxes, of course, an interlock is a necessity.

288 The appendfile transport (26)

A file’s size is taken as its used value. Because of blocking effects, this may be a lot less than the
actual amount of disk space allocated to the file. If the sizes of a number of files are being added up,
the rounding effect can become quite noticeable, especially on systems that have large block sizes.
Nevertheless, it seems best to stick to the used figure, because this is the obvious value which users
understand most easily.

The value of the option is expanded, and must then be a numerical value (decimal point allowed),
optionally followed by one of the letters K, M, or G, for kilobytes, megabytes, or gigabytes, option-
ally followed by a slash and further option modifiers. If Exim is running on a system with large file
support (Linux and FreeBSD have this), mailboxes larger than 2G can be handled.

The option modifier no_check can be used to force delivery even if the over quota condition is met.
The quota gets updated as usual.

Note: A value of zero is interpreted as “no quota”.

The expansion happens while Exim is running as root, before it changes uid for the delivery. This
means that files that are inaccessible to the end user can be used to hold quota values that are looked
up in the expansion. When delivery fails because this quota is exceeded, the handling of the error is as
for system quota failures.

By default, Exim’s quota checking mimics system quotas, and restricts the mailbox to the specified
maximum size, though the value is not accurate to the last byte, owing to separator lines and
additional headers that may get added during message delivery. When a mailbox is nearly full, large
messages may get refused even though small ones are accepted, because the size of the current
message is added to the quota when the check is made. This behaviour can be changed by setting
quota_is_inclusive false. When this is done, the check for exceeding the quota does not include the
current message. Thus, deliveries continue until the quota has been exceeded; thereafter, no further
messages are delivered. See also quota_warn_threshold.

quota_directory Use: appendfile Type: string† Default: unset

This option defines the directory to check for quota purposes when delivering into individual files.
The default is the delivery directory, or, if a file called maildirfolder exists in a maildir directory, the
parent of the delivery directory.

quota_filecount Use: appendfile Type: string† Default: 0

This option applies when the directory option is set. It limits the total number of files in the directory
(compare the inode limit in system quotas). It can only be used if quota is also set. The value is
expanded; an expansion failure causes delivery to be deferred. A value of zero is interpreted as “no
quota”.

The option modifier no_check can be used to force delivery even if the over quota condition is met.
The quota gets updated as usual.

quota_is_inclusive Use: appendfile Type: boolean Default: true

See quota above.

quota_size_regex Use: appendfile Type: string Default: unset

This option applies when one of the delivery modes that writes a separate file for each message is
being used. When Exim wants to find the size of one of these files in order to test the quota, it first
checks quota_size_regex. If this is set to a regular expression that matches the filename, and it
captures one string, that string is interpreted as a representation of the file’s size. The value of quota_
size_regex is not expanded.

289 The appendfile transport (26)

This feature is useful only when users have no shell access to their mailboxes – otherwise they could
defeat the quota simply by renaming the files. This facility can be used with maildir deliveries, by
setting maildir_tag to add the file length to the filename. For example:

maildir_tag = ,S=$message_size
quota_size_regex = ,S=(\d+)

An alternative to $message_size is $message_linecount, which contains the number of lines in the
message.

The regular expression should not assume that the length is at the end of the filename (even though
maildir_tag puts it there) because maildir MUAs sometimes add other information onto the ends of
message filenames.

Section 26.7 contains further information.

This option should not be used when other message-handling software may duplicate messages by
making hardlinks to the files. When that is done Exim will count the message size once for each
filename, in contrast with the actual disk usage. When the option is not set, calculating total usage
requires a system-call per file to get the size; the number of links is then available also as is used to
adjust the effective size.

quota_warn_message Use: appendfile Type: string† Default: see below

See below for the use of this option. If it is not set when quota_warn_threshold is set, it defaults to

quota_warn_message = "\
 To: $local_part@$domain\n\
 Subject: Your mailbox\n\n\
 This message is automatically created \
 by mail delivery software.\n\n\
 The size of your mailbox has exceeded \
 a warning threshold that is\n\
 set by the system administrator.\n"

quota_warn_threshold Use: appendfile Type: string† Default: 0

This option is expanded in the same way as quota (see above). If the resulting value is greater than
zero, and delivery of the message causes the size of the file or total space in the directory tree to cross
the given threshold, a warning message is sent. If quota is also set, the threshold may be specified as
a percentage of it by following the value with a percent sign. For example:

quota = 10M
quota_warn_threshold = 75%

If quota is not set, a setting of quota_warn_threshold that ends with a percent sign is ignored.

The warning message itself is specified by the quota_warn_message option, and it must start with a
To: header line containing the recipient(s) of the warning message. These do not necessarily have to
include the recipient(s) of the original message. A Subject: line should also normally be supplied. You
can include any other header lines that you want. If you do not include a From: line, the default is:

From: Mail Delivery System <mailer-daemon@$qualify_domain_sender>

If you supply a Reply-To: line, it overrides the global errors_reply_to option.

The quota option does not have to be set in order to use this option; they are independent of one
another except when the threshold is specified as a percentage.

290 The appendfile transport (26)

use_bsmtp Use: appendfile Type: boolean Default: false

If this option is set true, appendfile writes messages in “batch SMTP” format, with the envelope
sender and recipient(s) included as SMTP commands. If you want to include a leading HELO com-
mand with such messages, you can do so by setting the message_prefix option. See section 49.4 for
details of batch SMTP.

use_crlf Use: appendfile Type: boolean Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence written
to the file is then an exact image of what would be sent down a real SMTP connection.

Note: The contents of the message_prefix and message_suffix options (which are used to supply the
traditional “From ” and blank line separators in Berkeley-style mailboxes) are written verbatim, so
must contain their own carriage return characters if these are needed. In cases where these options
have non-empty defaults, the values end with a single linefeed, so they must be changed to end with
\r\n if use_crlf is set.

use_fcntl_lock Use: appendfile Type: boolean Default: see below

This option controls the use of the fcntl() function to lock a file for exclusive use when a message is
being appended. It is set by default unless use_flock_lock is set. Otherwise, it should be turned off
only if you know that all your MUAs use lock file locking. When both use_fcntl_lock and use_flock_
lock are unset, use_lockfile must be set.

use_flock_lock Use: appendfile Type: boolean Default: false

This option is provided to support the use of flock() for file locking, for the few situations where it is
needed. Most modern operating systems support fcntl() and lockf() locking, and these two functions
interwork with each other. Exim uses fcntl() locking by default.

This option is required only if you are using an operating system where flock() is used by programs
that access mailboxes (typically MUAs), and where flock() does not correctly interwork with fcntl().
You can use both fcntl() and flock() locking simultaneously if you want.

Not all operating systems provide flock(). Some versions of Solaris do not have it (and some, I think,
provide a not quite right version built on top of lockf()). If the OS does not have flock(), Exim will be
built without the ability to use it, and any attempt to do so will cause a configuration error.

Warning: flock() locks do not work on NFS files (unless flock() is just being mapped onto fcntl() by
the OS).

use_lockfile Use: appendfile Type: boolean Default: see below

If this option is turned off, Exim does not attempt to create a lock file when appending to a mailbox
file. In this situation, the only locking is by fcntl(). You should only turn use_lockfile off if you are
absolutely sure that every MUA that is ever going to look at your users’ mailboxes uses fcntl() rather
than a lock file, and even then only when you are not delivering over NFS from more than one host.

In order to append to an NFS file safely from more than one host, it is necessary to take out a lock
before opening the file, and the lock file achieves this. Otherwise, even with fcntl() locking, there is a
risk of file corruption.

The use_lockfile option is set by default unless use_mbx_lock is set. It is not possible to turn both
use_lockfile and use_fcntl_lock off, except when mbx_format is set.

291 The appendfile transport (26)

use_mbx_lock Use: appendfile Type: boolean Default: see below

This option is available only if Exim has been compiled with SUPPORT_MBX set in Local/Makefile.
Setting the option specifies that special MBX locking rules be used. It is set by default if mbx_format
is set and none of the locking options are mentioned in the configuration. The locking rules are the
same as are used by the c-client library that underlies Pine and the IMAP4 and POP daemons that
come with it (see the discussion below). The rules allow for shared access to the mailbox. However,
this kind of locking does not work when the mailbox is NFS mounted.

You can set use_mbx_lock with either (or both) of use_fcntl_lock and use_flock_lock to control
what kind of locking is used in implementing the MBX locking rules. The default is to use fcntl() if
use_mbx_lock is set without use_fcntl_lock or use_flock_lock.

26.3 Operational details for appending

Before appending to a file, the following preparations are made:

• If the name of the file is /dev/null, no action is taken, and a success return is given.

• If any directories on the file’s path are missing, Exim creates them if the create_directory option is
set. A created directory’s mode is given by the directory_mode option.

• If file_format is set, the format of an existing file is checked. If this indicates that a different
transport should be used, control is passed to that transport.

• If use_lockfile is set, a lock file is built in a way that will work reliably over NFS, as follows:

(1) Create a “hitching post” file whose name is that of the lock file with the current time, primary
host name, and process id added, by opening for writing as a new file. If this fails with an
access error, delivery is deferred.

(2) Close the hitching post file, and hard link it to the lock filename.

(3) If the call to link() succeeds, creation of the lock file has succeeded. Unlink the hitching post
name.

(4) Otherwise, use stat() to get information about the hitching post file, and then unlink hitching
post name. If the number of links is exactly two, creation of the lock file succeeded but
something (for example, an NFS server crash and restart) caused this fact not to be communi-
cated to the link() call.

(5) If creation of the lock file failed, wait for lock_interval and try again, up to lock_retries
times. However, since any program that writes to a mailbox should complete its task very
quickly, it is reasonable to time out old lock files that are normally the result of user agent and
system crashes. If an existing lock file is older than lockfile_timeout Exim attempts to unlink
it before trying again.

• A call is made to lstat() to discover whether the main file exists, and if so, what its characteristics
are. If lstat() fails for any reason other than non-existence, delivery is deferred.

• If the file does exist and is a symbolic link, delivery is deferred, unless the allow_symlink option is
set, in which case the ownership of the link is checked, and then stat() is called to find out about
the real file, which is then subjected to the checks below. The check on the top-level link ownership
prevents one user creating a link for another’s mailbox in a sticky directory, though allowing
symbolic links in this case is definitely not a good idea. If there is a chain of symbolic links, the
intermediate ones are not checked.

• If the file already exists but is not a regular file, or if the file’s owner and group (if the group is
being checked – see check_group above) are different from the user and group under which the
delivery is running, delivery is deferred.

• If the file’s permissions are more generous than specified, they are reduced. If they are insufficient,
delivery is deferred, unless mode_fail_narrower is set false, in which case the delivery is tried
using the existing permissions.

292 The appendfile transport (26)

• The file’s inode number is saved, and the file is then opened for appending. If this fails because the
file has vanished, appendfile behaves as if it hadn’t existed (see below). For any other failures,
delivery is deferred.

• If the file is opened successfully, check that the inode number hasn’t changed, that it is still a
regular file, and that the owner and permissions have not changed. If anything is wrong, defer
delivery and freeze the message.

• If the file did not exist originally, defer delivery if the file_must_exist option is set. Otherwise,
check that the file is being created in a permitted directory if the create_file option is set (deferring
on failure), and then open for writing as a new file, with the O_EXCL and O_CREAT options,
except when dealing with a symbolic link (the allow_symlink option must be set). In this case,
which can happen if the link points to a non-existent file, the file is opened for writing using O_
CREAT but not O_EXCL, because that prevents link following.

• If opening fails because the file exists, obey the tests given above for existing files. However, to
avoid looping in a situation where the file is being continuously created and destroyed, the
exists/not-exists loop is broken after 10 repetitions, and the message is then frozen.

• If opening fails with any other error, defer delivery.

• Once the file is open, unless both use_fcntl_lock and use_flock_lock are false, it is locked using
fcntl() or flock() or both. If use_mbx_lock is false, an exclusive lock is requested in each case.
However, if use_mbx_lock is true, Exim takes out a shared lock on the open file, and an exclusive
lock on the file whose name is

/tmp/.<device-number>.<inode-number>

using the device and inode numbers of the open mailbox file, in accordance with the MBX locking
rules. This file is created with a mode that is specified by the lockfile_mode option.

If Exim fails to lock the file, there are two possible courses of action, depending on the value of the
locking timeout. This is obtained from lock_fcntl_timeout or lock_flock_timeout, as appropriate.

If the timeout value is zero, the file is closed, Exim waits for lock_interval, and then goes back and
re-opens the file as above and tries to lock it again. This happens up to lock_retries times, after
which the delivery is deferred.

If the timeout has a value greater than zero, blocking calls to fcntl() or flock() are used (with the
given timeout), so there has already been some waiting involved by the time locking fails.
Nevertheless, Exim does not give up immediately. It retries up to

(lock_retries * lock_interval) / <timeout>

times (rounded up).

At the end of delivery, Exim closes the file (which releases the fcntl() and/or flock() locks) and then
deletes the lock file if one was created.

26.4 Operational details for delivery to a new file

When the directory option is set instead of file, each message is delivered into a newly-created file or
set of files. When appendfile is activated directly from a redirect router, neither file nor directory
is normally set, because the path for delivery is supplied by the router. (See for example, the
address_file transport in the default configuration.) In this case, delivery is to a new file if either the
path name ends in /, or the maildir_format or mailstore_format option is set.

No locking is required while writing the message to a new file, so the various locking options of the
transport are ignored. The “From” line that by default separates messages in a single file is not
normally needed, nor is the escaping of message lines that start with “From”, and there is no need to
ensure a newline at the end of each message. Consequently, the default values for check_string,
message_prefix, and message_suffix are all unset when any of directory, maildir_format, or
mailstore_format is set.

293 The appendfile transport (26)

If Exim is required to check a quota setting, it adds up the sizes of all the files in the delivery
directory by default. However, you can specify a different directory by setting quota_directory. Also,
for maildir deliveries (see below) the maildirfolder convention is honoured.

There are three different ways in which delivery to individual files can be done, controlled by the
settings of the maildir_format and mailstore_format options. Note that code to support maildir or
mailstore formats is not included in the binary unless SUPPORT_MAILDIR or SUPPORT_
MAILSTORE, respectively, is set in Local/Makefile.

In all three cases an attempt is made to create the directory and any necessary sub-directories if they
do not exist, provided that the create_directory option is set (the default). The location of a created
directory can be constrained by setting create_file. A created directory’s mode is given by the
directory_mode option. If creation fails, or if the create_directory option is not set when creation is
required, delivery is deferred.

26.5 Maildir delivery

If the maildir_format option is true, Exim delivers each message by writing it to a file whose name is
tmp/<stime>.H<mtime>P<pid>.<host> in the directory that is defined by the directory option (the
“delivery directory”). If the delivery is successful, the file is renamed into the new subdirectory.

In the filename, <stime> is the current time of day in seconds, and <mtime> is the microsecond
fraction of the time. After a maildir delivery, Exim checks that the time-of-day clock has moved on by
at least one microsecond before terminating the delivery process. This guarantees uniqueness for the
filename. However, as a precaution, Exim calls stat() for the file before opening it. If any response
other than ENOENT (does not exist) is given, Exim waits 2 seconds and tries again, up to maildir_
retries times.

Before Exim carries out a maildir delivery, it ensures that subdirectories called new, cur, and tmp exist
in the delivery directory. If they do not exist, Exim tries to create them and any superior directories in
their path, subject to the create_directory and create_file options. If the maildirfolder_create_regex
option is set, and the regular expression it contains matches the delivery directory, Exim also ensures
that a file called maildirfolder exists in the delivery directory. If a missing directory or maildirfolder
file cannot be created, delivery is deferred.

These features make it possible to use Exim to create all the necessary files and directories in a
maildir mailbox, including subdirectories for maildir++ folders. Consider this example:

maildir_format = true
directory = /var/mail/$local_part_data\
 ${if eq{$local_part_suffix}{}{}\
 {/.${substr_1:$local_part_suffix}}}
maildirfolder_create_regex = /\.[^/]+$

If $local_part_suffix is empty (there was no suffix for the local part), delivery is into a toplevel
maildir with a name like /var/mail/pimbo (for the user called pimbo). The pattern in maildirfolder_
create_regex does not match this name, so Exim will not look for or create the file
/var/mail/pimbo/maildirfolder, though it will create /var/mail/pimbo/{cur,new,tmp} if necessary.

However, if $local_part_suffix contains -eximusers (for example), delivery is into the maildir++
folder /var/mail/pimbo/.eximusers, which does match maildirfolder_create_regex. In this case, Exim
will create /var/mail/pimbo/.eximusers/maildirfolder as well as the three maildir directories
/var/mail/pimbo/.eximusers/{cur,new,tmp}.

Warning: Take care when setting maildirfolder_create_regex that it does not inadvertently match
the toplevel maildir directory, because a maildirfolder file at top level would completely break quota
calculations.

If Exim is required to check a quota setting before a maildir delivery, and quota_directory is not set,
it looks for a file called maildirfolder in the maildir directory (alongside new, cur, tmp). If this exists,
Exim assumes the directory is a maildir++ folder directory, which is one level down from the user’s
top level mailbox directory. This causes it to start at the parent directory instead of the current
directory when calculating the amount of space used.

294 The appendfile transport (26)

One problem with delivering into a multi-file mailbox is that it is computationally expensive to
compute the size of the mailbox for quota checking. Various approaches have been taken to reduce
the amount of work needed. The next two sections describe two of them. A third alternative is to use
some external process for maintaining the size data, and use the expansion of the mailbox_size option
as a way of importing it into Exim.

26.6 Using tags to record message sizes

If maildir_tag is set, the string is expanded for each delivery. When the maildir file is renamed into
the new sub-directory, the tag is added to its name. However, if adding the tag takes the length of the
name to the point where the test stat() call fails with ENAMETOOLONG, the tag is dropped and the
maildir file is created with no tag.

Tags can be used to encode the size of files in their names; see quota_size_regex above for an
example. The expansion of maildir_tag happens after the message has been written. The value of the
$message_size variable is set to the number of bytes actually written. If the expansion is forced to fail,
the tag is ignored, but a non-forced failure causes delivery to be deferred. The expanded tag may
contain any printing characters except “/”. Non-printing characters in the string are ignored; if the
resulting string is empty, it is ignored. If it starts with an alphanumeric character, a leading colon is
inserted; this default has not proven to be the path that popular maildir implementations have chosen
(but changing it in Exim would break backwards compatibility).

For one common implementation, you might set:

maildir_tag = ,S=${message_size}

but you should check the documentation of the other software to be sure.

It is advisable to also set quota_size_regex when setting maildir_tag as this allows Exim to extract
the size from your tag, instead of having to stat() each message file.

26.7 Using a maildirsize file

If maildir_use_size_file is true, Exim implements the maildir++ rules for storing quota and message
size information in a file called maildirsize within the toplevel maildir directory. If this file does not
exist, Exim creates it, setting the quota from the quota option of the transport. If the maildir directory
itself does not exist, it is created before any attempt to write a maildirsize file.

The maildirsize file is used to hold information about the sizes of messages in the maildir, thus
speeding up quota calculations. The quota value in the file is just a cache; if the quota is changed in
the transport, the new value overrides the cached value when the next message is delivered. The cache
is maintained for the benefit of other programs that access the maildir and need to know the quota.

If the quota option in the transport is unset or zero, the maildirsize file is maintained (with a zero
quota setting), but no quota is imposed.

A regular expression is available for controlling which directories in the maildir participate in quota
calculations when a maildirsizefile is in use. See the description of the maildir_quota_directory_
regex option above for details.

26.8 Mailstore delivery

If the mailstore_format option is true, each message is written as two files in the given directory. A
unique base name is constructed from the message id and the current delivery process, and the files
that are written use this base name plus the suffixes .env and .msg. The .env file contains the
message’s envelope, and the .msg file contains the message itself. The base name is placed in the
variable $mailstore_basename.

During delivery, the envelope is first written to a file with the suffix .tmp. The .msg file is then written,
and when it is complete, the .tmp file is renamed as the .env file. Programs that access messages in
mailstore format should wait for the presence of both a .msg and a .env file before accessing either of
them. An alternative approach is to wait for the absence of a .tmp file.

295 The appendfile transport (26)

The envelope file starts with any text defined by the mailstore_prefix option, expanded and termin-
ated by a newline if there isn’t one. Then follows the sender address on one line, then all the recipient
addresses, one per line. There can be more than one recipient only if the batch_max option is set
greater than one. Finally, mailstore_suffix is expanded and the result appended to the file, followed
by a newline if it does not end with one.

If expansion of mailstore_prefix or mailstore_suffix ends with a forced failure, it is ignored. Other
expansion errors are treated as serious configuration errors, and delivery is deferred. The variable
$mailstore_basename is available for use during these expansions.

26.9 Non-special new file delivery

If neither maildir_format nor mailstore_format is set, a single new file is created directly in the
named directory. For example, when delivering messages into files in batched SMTP format for later
delivery to some host (see section 49.4), a setting such as

directory = /var/bsmtp/$host

might be used. A message is written to a file with a temporary name, which is then renamed when the
delivery is complete. The final name is obtained by expanding the contents of the directory_file
option.

296 The appendfile transport (26)

27. The autoreply transport

The autoreply transport is not a true transport in that it does not cause the message to be transmitted.
Instead, it generates a new mail message as an automatic reply to the incoming message. References:
and Auto-Submitted: header lines are included. These are constructed according to the rules in RFCs
2822 and 3834, respectively.

If the router that passes the message to this transport does not have the unseen option set, the original
message (for the current recipient) is not delivered anywhere. However, when the unseen option is set
on the router that passes the message to this transport, routing of the address continues, so another
router can set up a normal message delivery.

The autoreply transport is usually run as the result of mail filtering, a “vacation” message being the
standard example. However, it can also be run directly from a router like any other transport. To
reduce the possibility of message cascades, messages created by the autoreply transport always have
empty envelope sender addresses, like bounce messages.

The parameters of the message to be sent can be specified in the configuration by options described
below. However, these are used only when the address passed to the transport does not contain its own
reply information. When the transport is run as a consequence of a mail or vacation command in a
filter file, the parameters of the message are supplied by the filter, and passed with the address. The
transport’s options that define the message are then ignored (so they are not usually set in this case).
The message is specified entirely by the filter or by the transport; it is never built from a mixture of
options. However, the file_optional, mode, and return_message options apply in all cases.

Autoreply is implemented as a local transport. When used as a result of a command in a user’s filter
file, autoreply normally runs under the uid and gid of the user, and with appropriate current and home
directories (see chapter 23).

There is a subtle difference between routing a message to a pipe transport that generates some text to
be returned to the sender, and routing it to an autoreply transport. This difference is noticeable only if
more than one address from the same message is so handled. In the case of a pipe, the separate
outputs from the different addresses are gathered up and returned to the sender in a single message,
whereas if autoreply is used, a separate message is generated for each address that is passed to it.

Non-printing characters are not permitted in the header lines generated for the message that autoreply
creates, with the exception of newlines that are immediately followed by white space. If any non-
printing characters are found, the transport defers. Whether characters with the top bit set count as
printing characters or not is controlled by the print_topbitchars global option.

If any of the generic options for manipulating headers (for example, headers_add) are set on an
autoreply transport, they apply to the copy of the original message that is included in the generated
message when return_message is set. They do not apply to the generated message itself.

If the autoreply transport receives return code 2 from Exim when it submits the message, indicating
that there were no recipients, it does not treat this as an error. This means that autoreplies sent to
$sender_address when this is empty (because the incoming message is a bounce message) do not
cause problems. They are just discarded.

27.1 Private options for autoreply

bcc Use: autoreply Type: string† Default: unset

This specifies the addresses that are to receive “blind carbon copies” of the message when the
message is specified by the transport.

297 The autoreply transport (27)

cc Use: autoreply Type: string† Default: unset

This specifies recipients of the message and the contents of the Cc: header when the message is
specified by the transport.

file Use: autoreply Type: string† Default: unset

The contents of the file are sent as the body of the message when the message is specified by the
transport. If both file and text are set, the text string comes first.

file_expand Use: autoreply Type: boolean Default: false

If this is set, the contents of the file named by the file option are subjected to string expansion as they
are added to the message.

file_optional Use: autoreply Type: boolean Default: false

If this option is true, no error is generated if the file named by the file option or passed with the
address does not exist or cannot be read.

from Use: autoreply Type: string† Default: unset

This specifies the contents of the From: header when the message is specified by the transport.

headers Use: autoreply Type: string† Default: unset

This specifies additional RFC 2822 headers that are to be added to the message when the message is
specified by the transport. Several can be given by using “\n” to separate them. There is no check on
the format.

log Use: autoreply Type: string† Default: unset

This option names a file in which a record of every message sent is logged when the message is
specified by the transport.

mode Use: autoreply Type: octal integer Default: 0600

If either the log file or the “once” file has to be created, this mode is used.

never_mail Use: autoreply Type: address list† Default: unset

If any run of the transport creates a message with a recipient that matches any item in the list, that
recipient is quietly discarded. If all recipients are discarded, no message is created. This applies both
when the recipients are generated by a filter and when they are specified in the transport.

once Use: autoreply Type: string† Default: unset

This option names a file or DBM database in which a record of each To: recipient is kept when the
message is specified by the transport. Note: This does not apply to Cc: or Bcc: recipients.

If once is unset, or is set to an empty string, the message is always sent. By default, if once is set to a
non-empty filename, the message is not sent if a potential recipient is already listed in the database.
However, if the once_repeat option specifies a time greater than zero, the message is sent if that

298 The autoreply transport (27)

much time has elapsed since a message was last sent to this recipient. A setting of zero time for once_
repeat (the default) prevents a message from being sent a second time – in this case, zero means
infinity.

If once_file_size is zero, a DBM database is used to remember recipients, and it is allowed to grow as
large as necessary. If once_file_size is set greater than zero, it changes the way Exim implements the
once option. Instead of using a DBM file to record every recipient it sends to, it uses a regular file,
whose size will never get larger than the given value.

In the file, Exim keeps a linear list of recipient addresses and the times at which they were sent
messages. If the file is full when a new address needs to be added, the oldest address is dropped. If
once_repeat is not set, this means that a given recipient may receive multiple messages, but at
unpredictable intervals that depend on the rate of turnover of addresses in the file. If once_repeat is
set, it specifies a maximum time between repeats.

once_file_size Use: autoreply Type: integer Default: 0

See once above.

once_repeat Use: autoreply Type: time† Default: 0s

See once above. After expansion, the value of this option must be a valid time value.

reply_to Use: autoreply Type: string† Default: unset

This specifies the contents of the Reply-To: header when the message is specified by the transport.

return_message Use: autoreply Type: boolean Default: false

If this is set, a copy of the original message is returned with the new message, subject to the
maximum size set in the return_size_limit global configuration option.

subject Use: autoreply Type: string† Default: unset

This specifies the contents of the Subject: header when the message is specified by the transport. It is
tempting to quote the original subject in automatic responses. For example:

subject = Re: $h_subject:

There is a danger in doing this, however. It may allow a third party to subscribe your users to an
opt-in mailing list, provided that the list accepts bounce messages as subscription confirmations.
Well-managed lists require a non-bounce message to confirm a subscription, so the danger is rela-
tively small.

text Use: autoreply Type: string† Default: unset

This specifies a single string to be used as the body of the message when the message is specified by
the transport. If both text and file are set, the text comes first.

to Use: autoreply Type: string† Default: unset

This specifies recipients of the message and the contents of the To: header when the message is
specified by the transport.

299 The autoreply transport (27)

28. The lmtp transport

The lmtp transport runs the LMTP protocol (RFC 2033) over a pipe to a specified command or by
interacting with a Unix domain socket. This transport is something of a cross between the pipe and
smtp transports. Exim also has support for using LMTP over TCP/IP; this is implemented as an option
for the smtp transport. Because LMTP is expected to be of minority interest, the default build-time
configure in src/EDITME has it commented out. You need to ensure that

TRANSPORT_LMTP=yes

is present in your Local/Makefile in order to have the lmtp transport included in the Exim binary. The
private options of the lmtp transport are as follows:

batch_id Use: lmtp Type: string† Default: unset

See the description of local delivery batching in chapter 25.

batch_max Use: lmtp Type: integer Default: 1

This limits the number of addresses that can be handled in a single delivery. Most LMTP servers can
handle several addresses at once, so it is normally a good idea to increase this value. See the descrip-
tion of local delivery batching in chapter 25.

command Use: lmtp Type: string† Default: unset

This option must be set if socket is not set. The string is a command which is run in a separate
process. It is split up into a command name and list of arguments, each of which is separately
expanded (so expansion cannot change the number of arguments). The command is run directly, not
via a shell. The message is passed to the new process using the standard input and output to operate
the LMTP protocol.

ignore_quota Use: lmtp Type: boolean Default: false

If this option is set true, the string IGNOREQUOTA is added to RCPT commands, provided that the
LMTP server has advertised support for IGNOREQUOTA in its response to the LHLO command.

socket Use: lmtp Type: string† Default: unset

This option must be set if command is not set. The result of expansion must be the name of a Unix
domain socket. The transport connects to the socket and delivers the message to it using the LMTP
protocol.

timeout Use: lmtp Type: time Default: 5m

The transport is aborted if the created process or Unix domain socket does not respond to LMTP
commands or message input within this timeout. Delivery is deferred, and will be tried again later.
Here is an example of a typical LMTP transport:

lmtp:
 driver = lmtp
 command = /some/local/lmtp/delivery/program
 batch_max = 20
 user = exim

300 The lmtp transport (28)

This delivers up to 20 addresses at a time, in a mixture of domains if necessary, running as the user
exim.

301 The lmtp transport (28)

29. The pipe transport

The pipe transport is used to deliver messages via a pipe to a command running in another process.
One example is the use of pipe as a pseudo-remote transport for passing messages to some other
delivery mechanism (such as UUCP). Another is the use by individual users to automatically process
their incoming messages. The pipe transport can be used in one of the following ways:

• A router routes one address to a transport in the normal way, and the transport is configured as a
pipe transport. In this case, $local_part contains the local part of the address (as usual), and the
command that is run is specified by the command option on the transport.

• If the batch_max option is set greater than 1 (the default is 1), the transport can handle more than
one address in a single run. In this case, when more than one address is routed to the transport,
$local_part is not set (because it is not unique). However, the pseudo-variable $pipe_addresses
(described in section 29.3 below) contains all the addresses that are routed to the transport.

• A router redirects an address directly to a pipe command (for example, from an alias or forward
file). In this case, $address_pipe contains the text of the pipe command, and the command option
on the transport is ignored unless force_command is set. If only one address is being transported
(batch_max is not greater than one, or only one address was redirected to this pipe command),
$local_part contains the local part that was redirected.

The pipe transport is a non-interactive delivery method. Exim can also deliver messages over pipes
using the LMTP interactive protocol. This is implemented by the lmtp transport.

In the case when pipe is run as a consequence of an entry in a local user’s .forward file, the command
runs under the uid and gid of that user. In other cases, the uid and gid have to be specified explicitly,
either on the transport or on the router that handles the address. Current and “home” directories are
also controllable. See chapter 23 for details of the local delivery environment and chapter 25 for a
discussion of local delivery batching.

Tainted data may not be used for the command name.

29.1 Concurrent delivery

If two messages arrive at almost the same time, and both are routed to a pipe delivery, the two pipe
transports may be run concurrently. You must ensure that any pipe commands you set up are robust
against this happening. If the commands write to a file, the exim_lock utility might be of use.
Alternatively the max_parallel option could be used with a value of "1" to enforce serialization.

29.2 Returned status and data

If the command exits with a non-zero return code, the delivery is deemed to have failed, unless either
the ignore_status option is set (in which case the return code is treated as zero), or the return code is
one of those listed in the temp_errors option, which are interpreted as meaning “try again later”. In
this case, delivery is deferred. Details of a permanent failure are logged, but are not included in the
bounce message, which merely contains “local delivery failed”.

If the command exits on a signal and the freeze_signal option is set then the message will be frozen
in the queue. If that option is not set, a bounce will be sent as normal.

If the return code is greater than 128 and the command being run is a shell script, it normally means
that the script was terminated by a signal whose value is the return code minus 128. The freeze_
signal option does not apply in this case.

If Exim is unable to run the command (that is, if execve() fails), the return code is set to 127. This is
the value that a shell returns if it is asked to run a non-existent command. The wording for the log line
suggests that a non-existent command may be the problem.

The return_output option can affect the result of a pipe delivery. If it is set and the command
produces any output on its standard output or standard error streams, the command is considered to
have failed, even if it gave a zero return code or if ignore_status is set. The output from the command

302 The pipe transport (29)

is included as part of the bounce message. The return_fail_output option is similar, except that
output is returned only when the command exits with a failure return code, that is, a value other than
zero or a code that matches temp_errors.

29.3 How the command is run

The command line is (by default) broken down into a command name and arguments by the pipe
transport itself. The allow_commands and restrict_to_path options can be used to restrict the com-
mands that may be run.

Unquoted arguments are delimited by white space. If an argument appears in double quotes,
backslash is interpreted as an escape character in the usual way. If an argument appears in single
quotes, no escaping is done.

String expansion is applied to the command line except when it comes from a traditional .forward file
(commands from a filter file are expanded). The expansion is applied to each argument in turn rather
than to the whole line. For this reason, any string expansion item that contains white space must be
quoted so as to be contained within a single argument. A setting such as

command = /some/path ${if eq{$local_part}{postmaster}{xx}{yy}}

will not work, because the expansion item gets split between several arguments. You have to write

command = /some/path "${if eq{$local_part}{postmaster}{xx}{yy}}"

to ensure that it is all in one argument. The expansion is done in this way, argument by argument, so
that the number of arguments cannot be changed as a result of expansion, and quotes or backslashes
in inserted variables do not interact with external quoting. However, this leads to problems if you
want to generate multiple arguments (or the command name plus arguments) from a single expansion.
In this situation, the simplest solution is to use a shell. For example:

command = /bin/sh -c ${lookup{$local_part}lsearch{/some/file}}

Special handling takes place when an argument consists of precisely the text $pipe_addresses
(no quotes). This is not a general expansion variable; the only place this string is recognized is when
it appears as an argument for a pipe or transport filter command. It causes each address that is being
handled to be inserted in the argument list at that point as a separate argument. This avoids any
problems with spaces or shell metacharacters, and is of use when a pipe transport is handling groups
of addresses in a batch.

If force_command is enabled on the transport, special handling takes place for an argument that
consists of precisely the text $address_pipe. It is handled similarly to $pipe_addresses above. It
is expanded and each argument is inserted in the argument list at that point as a separate argument.
The $address_pipe item does not need to be the only item in the argument; in fact, if it were then
force_command should behave as a no-op. Rather, it should be used to adjust the command run
while preserving the argument vector separation.

After splitting up into arguments and expansion, the resulting command is run in a subprocess directly
from the transport, not under a shell. The message that is being delivered is supplied on the standard
input, and the standard output and standard error are both connected to a single pipe that is read by
Exim. The max_output option controls how much output the command may produce, and the
return_output and return_fail_output options control what is done with it.

Not running the command under a shell (by default) lessens the security risks in cases when a
command from a user’s filter file is built out of data that was taken from an incoming message. If a
shell is required, it can of course be explicitly specified as the command to be run. However, there are
circumstances where existing commands (for example, in .forward files) expect to be run under a
shell and cannot easily be modified. To allow for these cases, there is an option called use_shell,
which changes the way the pipe transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the result to /bin/sh. The restrict_to_path option
and the $pipe_addresses facility cannot be used with use_shell, and the whole mechanism is
inherently less secure.

303 The pipe transport (29)

29.4 Environment variables

The environment variables listed below are set up when the command is invoked. This list is a
compromise for maximum compatibility with other MTAs. Note that the environment option can be
used to add additional variables to this environment. The environment for the pipe transport is not
subject to the add_environment and keep_environment main config options. Note: Using
enviroment variables loses track of tainted data. Writers of pipe transport commands should be wary
of data supplied by potential attackers.

DOMAIN the domain of the address
HOME the home directory, if set
HOST the host name when called from a router (see below)
LOCAL_PART see below
LOCAL_PART_PREFIX see below
LOCAL_PART_SUFFIX see below
LOGNAME see below
MESSAGE_ID Exim’s local ID for the message
PATH as specified by the path option below
QUALIFY_DOMAIN the sender qualification domain
RECIPIENT the complete recipient address
SENDER the sender of the message (empty if a bounce)
SHELL /bin/sh
TZ the value of the timezone option, if set
USER see below

When a pipe transport is called directly from (for example) an accept router, LOCAL_PART is set to
the local part of the address. When it is called as a result of a forward or alias expansion, LOCAL_
PART is set to the local part of the address that was expanded. In both cases, any affixes are removed
from the local part, and made available in LOCAL_PART_PREFIX and LOCAL_PART_SUFFIX,
respectively. LOGNAME and USER are set to the same value as LOCAL_PART for compatibility
with other MTAs.

HOST is set only when a pipe transport is called from a router that associates hosts with an address,
typically when using pipe as a pseudo-remote transport. HOST is set to the first host name specified
by the router.

If the transport’s generic home_directory option is set, its value is used for the HOME environment
variable. Otherwise, a home directory may be set by the router’s transport_home_directory option,
which defaults to the user’s home directory if check_local_user is set.

29.5 Private options for pipe

allow_commands Use: pipe Type: string list† Default: unset

The string is expanded, and is then interpreted as a colon-separated list of permitted commands. If
restrict_to_path is not set, the only commands permitted are those in the allow_commands list.
They need not be absolute paths; the path option is still used for relative paths. If restrict_to_path is
set with allow_commands, the command must either be in the allow_commands list, or a name
without any slashes that is found on the path. In other words, if neither allow_commands nor
restrict_to_path is set, there is no restriction on the command, but otherwise only commands that are
permitted by one or the other are allowed. For example, if

allow_commands = /usr/bin/vacation

and restrict_to_path is not set, the only permitted command is /usr/bin/vacation. The allow_com-
mands option may not be set if use_shell is set.

304 The pipe transport (29)

batch_id Use: pipe Type: string† Default: unset

See the description of local delivery batching in chapter 25.

batch_max Use: pipe Type: integer Default: 1

This limits the number of addresses that can be handled in a single delivery. See the description of
local delivery batching in chapter 25.

check_string Use: pipe Type: string Default: unset

As pipe writes the message, the start of each line is tested for matching check_string, and if it does,
the initial matching characters are replaced by the contents of escape_string, provided both are set.
The value of check_string is a literal string, not a regular expression, and the case of any letters it
contains is significant. When use_bsmtp is set, the contents of check_string and escape_string are
forced to values that implement the SMTP escaping protocol. Any settings made in the configuration
file are ignored.

command Use: pipe Type: string† Default: unset

This option need not be set when pipe is being used to deliver to pipes obtained directly from address
redirections. In other cases, the option must be set, to provide a command to be run. It need not yield
an absolute path (see the path option below). The command is split up into separate arguments by
Exim, and each argument is separately expanded, as described in section 29.3 above.

No part of the resulting command may be tainted.

environment Use: pipe Type: string list† Default: unset

This option is used to add additional variables to the environment in which the command runs (see
section 29.4 for the default list). Its value is a string which is expanded, and then interpreted as a
colon-separated list of environment settings of the form <name>=<value>.

escape_string Use: pipe Type: string Default: unset

See check_string above.

freeze_exec_fail Use: pipe Type: boolean Default: false

Failure to exec the command in a pipe transport is by default treated like any other failure while
running the command. However, if freeze_exec_fail is set, failure to exec is treated specially, and
causes the message to be frozen, whatever the setting of ignore_status.

freeze_signal Use: pipe Type: boolean Default: false

Normally if the process run by a command in a pipe transport exits on a signal, a bounce message is
sent. If freeze_signal is set, the message will be frozen in Exim’s queue instead.

force_command Use: pipe Type: boolean Default: false

Normally when a router redirects an address directly to a pipe command the command option on the
transport is ignored. If force_command is set, the command option will used. This is especially
useful for forcing a wrapper or additional argument to be added to the command. For example:

305 The pipe transport (29)

command = /usr/bin/remote_exec myhost -- $address_pipe
force_command

Note that $address_pipe is handled specially in command when force_command is set, expanding
out to the original argument vector as separate items, similarly to a Unix shell "$@" construct.

ignore_status Use: pipe Type: boolean Default: false

If this option is true, the status returned by the subprocess that is set up to run the command is
ignored, and Exim behaves as if zero had been returned. Otherwise, a non-zero status or termination
by signal causes an error return from the transport unless the status value is one of those listed in
temp_errors; these cause the delivery to be deferred and tried again later.

Note: This option does not apply to timeouts, which do not return a status. See the timeout_defer
option for how timeouts are handled.

log_defer_output Use: pipe Type: boolean Default: false

If this option is set, and the status returned by the command is one of the codes listed in temp_errors
(that is, delivery was deferred), and any output was produced on stdout or stderr, the first line of it is
written to the main log.

log_fail_output Use: pipe Type: boolean Default: false

If this option is set, and the command returns any output on stdout or stderr, and also ends with a
return code that is neither zero nor one of the return codes listed in temp_errors (that is, the delivery
failed), the first line of output is written to the main log. This option and log_output are mutually
exclusive. Only one of them may be set.

log_output Use: pipe Type: boolean Default: false

If this option is set and the command returns any output on stdout or stderr, the first line of output is
written to the main log, whatever the return code. This option and log_fail_output are mutually
exclusive. Only one of them may be set.

max_output Use: pipe Type: integer Default: 20K

This specifies the maximum amount of output that the command may produce on its standard output
and standard error file combined. If the limit is exceeded, the process running the command is killed.
This is intended as a safety measure to catch runaway processes. The limit is applied independently of
the settings of the options that control what is done with such output (for example, return_output).
Because of buffering effects, the amount of output may exceed the limit by a small amount before
Exim notices.

message_prefix Use: pipe Type: string† Default: see below

The string specified here is expanded and output at the start of every message. The default is unset if
use_bsmtp is set. Otherwise it is

message_prefix = \
 From ${if def:return_path{$return_path}{MAILER-DAEMON}}\
 ${tod_bsdinbox}\n

This is required by the commonly used /usr/bin/vacation program. However, it must not be present if
delivery is to the Cyrus IMAP server, or to the tmail local delivery agent. The prefix can be sup-
pressed by setting

306 The pipe transport (29)

message_prefix =

Note: If you set use_crlf true, you must change any occurrences of \n to \r\n in message_prefix.

message_suffix Use: pipe Type: string† Default: see below

The string specified here is expanded and output at the end of every message. The default is unset if
use_bsmtp is set. Otherwise it is a single newline. The suffix can be suppressed by setting

message_suffix =

Note: If you set use_crlf true, you must change any occurrences of \n to \r\n in message_suffix.

path Use: pipe Type: string† Default: /bin:/usr/bin

This option is expanded and specifies the string that is set up in the PATH environment variable of the
subprocess. If the command option does not yield an absolute path name, the command is sought in
the PATH directories, in the usual way. Warning: This does not apply to a command specified as a
transport filter.

permit_coredump Use: pipe Type: boolean Default: false

Normally Exim inhibits core-dumps during delivery. If you have a need to get a core-dump of a pipe
command, enable this command. This enables core-dumps during delivery and affects both the Exim
binary and the pipe command run. It is recommended that this option remain off unless and until you
have a need for it and that this only be enabled when needed, as the risk of excessive resource
consumption can be quite high. Note also that Exim is typically installed as a setuid binary and most
operating systems will inhibit coredumps of these by default, so further OS-specific action may be
required.

pipe_as_creator Use: pipe Type: boolean Default: false

If the generic user option is not set and this option is true, the delivery process is run under the uid
that was in force when Exim was originally called to accept the message. If the group id is not
otherwise set (via the generic group option), the gid that was in force when Exim was originally
called to accept the message is used.

restrict_to_path Use: pipe Type: boolean Default: false

When this option is set, any command name not listed in allow_commands must contain no slashes.
The command is searched for only in the directories listed in the path option. This option is intended
for use in the case when a pipe command has been generated from a user’s .forward file. This is
usually handled by a pipe transport called address_pipe.

return_fail_output Use: pipe Type: boolean Default: false

If this option is true, and the command produced any output and ended with a return code other than
zero or one of the codes listed in temp_errors (that is, the delivery failed), the output is returned in
the bounce message. However, if the message has a null sender (that is, it is itself a bounce message),
output from the command is discarded. This option and return_output are mutually exclusive. Only
one of them may be set.

307 The pipe transport (29)

return_output Use: pipe Type: boolean Default: false

If this option is true, and the command produced any output, the delivery is deemed to have failed
whatever the return code from the command, and the output is returned in the bounce message.
Otherwise, the output is just discarded. However, if the message has a null sender (that is, it is a
bounce message), output from the command is always discarded, whatever the setting of this option.
This option and return_fail_output are mutually exclusive. Only one of them may be set.

temp_errors Use: pipe Type: string list Default: see below

This option contains either a colon-separated list of numbers, or a single asterisk. If ignore_status is
false and return_output is not set, and the command exits with a non-zero return code, the failure is
treated as temporary and the delivery is deferred if the return code matches one of the numbers, or if
the setting is a single asterisk. Otherwise, non-zero return codes are treated as permanent errors. The
default setting contains the codes defined by EX_TEMPFAIL and EX_CANTCREAT in sysexits.h. If
Exim is compiled on a system that does not define these macros, it assumes values of 75 and 73,
respectively.

timeout Use: pipe Type: time Default: 1h

If the command fails to complete within this time, it is killed. This normally causes the delivery to fail
(but see timeout_defer). A zero time interval specifies no timeout. In order to ensure that any
subprocesses created by the command are also killed, Exim makes the initial process a process group
leader, and kills the whole process group on a timeout. However, this can be defeated if one of the
processes starts a new process group.

timeout_defer Use: pipe Type: boolean Default: false

A timeout in a pipe transport, either in the command that the transport runs, or in a transport filter that
is associated with it, is by default treated as a hard error, and the delivery fails. However, if timeout_
defer is set true, both kinds of timeout become temporary errors, causing the delivery to be deferred.

umask Use: pipe Type: octal integer Default: 022

This specifies the umask setting for the subprocess that runs the command.

use_bsmtp Use: pipe Type: boolean Default: false

If this option is set true, the pipe transport writes messages in “batch SMTP” format, with the
envelope sender and recipient(s) included as SMTP commands. If you want to include a leading
HELO command with such messages, you can do so by setting the message_prefix option. See
section 49.4 for details of batch SMTP.

use_classresources Use: pipe Type: boolean Default: false

This option is available only when Exim is running on FreeBSD, NetBSD, or BSD/OS. If it is set
true, the setclassresources() function is used to set resource limits when a pipe transport is run to
perform a delivery. The limits for the uid under which the pipe is to run are obtained from the login
class database.

308 The pipe transport (29)

use_crlf Use: pipe Type: boolean Default: false

This option causes lines to be terminated with the two-character CRLF sequence (carriage return,
linefeed) instead of just a linefeed character. In the case of batched SMTP, the byte sequence written
to the pipe is then an exact image of what would be sent down a real SMTP connection.

The contents of the message_prefix and message_suffix options are written verbatim, so must con-
tain their own carriage return characters if these are needed. When use_bsmtp is not set, the default
values for both message_prefix and message_suffix end with a single linefeed, so their values must
be changed to end with \r\n if use_crlf is set.

use_shell Use: pipe Type: boolean Default: false

If this option is set, it causes the command to be passed to /bin/sh instead of being run directly from
the transport, as described in section 29.3. This is less secure, but is needed in some situations where
the command is expected to be run under a shell and cannot easily be modified. The allow_com-
mands and restrict_to_path options, and the $pipe_addresses facility are incompatible with
use_shell. The command is expanded as a single string, and handed to /bin/sh as data for its -c option.

29.6 Using an external local delivery agent

The pipe transport can be used to pass all messages that require local delivery to a separate local
delivery agent such as procmail. When doing this, care must be taken to ensure that the pipe is run
under an appropriate uid and gid. In some configurations one wants this to be a uid that is trusted by
the delivery agent to supply the correct sender of the message. It may be necessary to recompile or
reconfigure the delivery agent so that it trusts an appropriate user. The following is an example
transport and router configuration for procmail:

transport
procmail_pipe:
 driver = pipe
 command = /usr/local/bin/procmail -d $local_part_data
 return_path_add
 delivery_date_add
 envelope_to_add
 check_string = "From "
 escape_string = ">From "
 umask = 077
 user = $local_part_data
 group = mail

router
procmail:
 driver = accept
 check_local_user
 transport = procmail_pipe

In this example, the pipe is run as the local user, but with the group set to mail. An alternative is to run
the pipe as a specific user such as mail or exim, but in this case you must arrange for procmail to trust
that user to supply a correct sender address. If you do not specify either a group or a user option, the
pipe command is run as the local user. The home directory is the user’s home directory by default.

Note: The command that the pipe transport runs does not begin with

IFS=" "

as shown in some procmail documentation, because Exim does not by default use a shell to run pipe
commands.

309 The pipe transport (29)

The next example shows a transport and a router for a system where local deliveries are handled by
the Cyrus IMAP server.

transport
local_delivery_cyrus:
 driver = pipe
 command = /usr/cyrus/bin/deliver \
 -- $local_part_data
 user = cyrus
 group = mail
 return_output
 log_output
 message_prefix =
 message_suffix =

router
local_user_cyrus:
 driver = accept
 check_local_user
 transport = local_delivery_cyrus

Note the unsetting of message_prefix and message_suffix, and the use of return_output to cause
any text written by Cyrus to be returned to the sender.

310 The pipe transport (29)

30. The smtp transport

The smtp transport delivers messages over TCP/IP connections using the SMTP or LMTP protocol.
The list of hosts to try can either be taken from the address that is being processed (having been set up
by the router), or specified explicitly for the transport. Timeout and retry processing (see chapter 32)
is applied to each IP address independently.

30.1 Multiple messages on a single connection

The sending of multiple messages over a single TCP/IP connection can arise in two ways:

• If a message contains more than max_rcpt (see below) addresses that are routed to the same host,
more than one copy of the message has to be sent to that host. In this situation, multiple copies may
be sent in a single run of the smtp transport over a single TCP/IP connection. (What Exim actually
does when it has too many addresses to send in one message also depends on the value of the
global remote_max_parallel option. Details are given in section 49.1.)

• When a message has been successfully delivered over a TCP/IP connection, Exim looks in its hints
database to see if there are any other messages awaiting a connection to the same host. If there are,
a new delivery process is started for one of them, and the current TCP/IP connection is passed on
to it. The new process may in turn send multiple copies and possibly create yet another process.

For each copy sent over the same TCP/IP connection, a sequence counter is incremented, and if it
ever gets to the value of connection_max_messages, no further messages are sent over that
connection.

30.2 Use of the $host and $host_address variables

At the start of a run of the smtp transport, the values of $host and $host_address are the name and IP
address of the first host on the host list passed by the router. However, when the transport is about to
connect to a specific host, and while it is connected to that host, $host and $host_address are set to the
values for that host. These are the values that are in force when the helo_data, hosts_try_auth,
interface, serialize_hosts, and the various TLS options are expanded.

30.3 Use of $tls_cipher and $tls_peerdn

At the start of a run of the smtp transport, the values of $tls_bits, $tls_cipher, $tls_peerdn and $tls_sni
are the values that were set when the message was received. These are the values that are used for
options that are expanded before any SMTP connections are made. Just before each connection is
made, these four variables are emptied. If TLS is subsequently started, they are set to the appropriate
values for the outgoing connection, and these are the values that are in force when any authenticators
are run and when the authenticated_sender option is expanded.

These variables are deprecated in favour of $tls_in_cipher et. al. and will be removed in a future
release.

30.4 Private options for smtp

The private options of the smtp transport are as follows:

address_retry_include_sender Use: smtp Type: boolean Default: true

When an address is delayed because of a 4xx response to a RCPT command, it is the combination of
sender and recipient that is delayed in subsequent queue runs until the retry time is reached. You can
delay the recipient without reference to the sender (which is what earlier versions of Exim did), by
setting address_retry_include_sender false. However, this can lead to problems with servers that
regularly issue 4xx responses to RCPT commands.

311 The smtp transport (30)

allow_localhost Use: smtp Type: boolean Default: false

When a host specified in hosts or fallback_hosts (see below) turns out to be the local host, or is listed
in hosts_treat_as_local, delivery is deferred by default. However, if allow_localhost is set, Exim
goes on to do the delivery anyway. This should be used only in special cases when the configuration
ensures that no looping will result (for example, a differently configured Exim is listening on the port
to which the message is sent).

authenticated_sender Use: smtp Type: string† Default: unset

When Exim has authenticated as a client, or if authenticated_sender_force is true, this option sets a
value for the AUTH= item on outgoing MAIL commands, overriding any existing authenticated
sender value. If the string expansion is forced to fail, the option is ignored. Other expansion failures
cause delivery to be deferred. If the result of expansion is an empty string, that is also ignored.

The expansion happens after the outgoing connection has been made and TLS started, if required.
This means that the $host, $host_address, $tls_out_cipher, and $tls_out_peerdn variables are set
according to the particular connection.

If the SMTP session is not authenticated, the expansion of authenticated_sender still happens (and
can cause the delivery to be deferred if it fails), but no AUTH= item is added to MAIL commands
unless authenticated_sender_force is true.

This option allows you to use the smtp transport in LMTP mode to deliver mail to Cyrus IMAP and
provide the proper local part as the “authenticated sender”, via a setting such as:

authenticated_sender = $local_part

This removes the need for IMAP subfolders to be assigned special ACLs to allow direct delivery to
those subfolders.

Because of expected uses such as that just described for Cyrus (when no domain is involved), there is
no checking on the syntax of the provided value.

authenticated_sender_force Use: smtp Type: boolean Default: false

If this option is set true, the authenticated_sender option’s value is used for the AUTH= item on
outgoing MAIL commands, even if Exim has not authenticated as a client.

command_timeout Use: smtp Type: time Default: 5m

This sets a timeout for receiving a response to an SMTP command that has been sent out. It is also
used when waiting for the initial banner line from the remote host. Its value must not be zero.

connect_timeout Use: smtp Type: time Default: 5m

This sets a timeout for the connect() function, which sets up a TCP/IP call to a remote host. A setting
of zero allows the system timeout (typically several minutes) to act. To have any effect, the value of
this option must be less than the system timeout. However, it has been observed that on some systems
there is no system timeout, which is why the default value for this option is 5 minutes, a value
recommended by RFC 1123.

connection_max_messages Use: smtp Type: integer Default: 500

This controls the maximum number of separate message deliveries that are sent over a single TCP/IP
connection. If the value is zero, there is no limit. For testing purposes, this value can be overridden by
the -oB command line option.

312 The smtp transport (30)

If the peer advertises a LIMITS extension with a MAILMAX value, and either TLSS is in use or was
not advertised, that value also constrains the result of this option.

dane_require_tls_ciphers Use: smtp Type: string† Default: unset

This option may be used to override tls_require_ciphers for connections where DANE has been
determined to be in effect. If not set, then tls_require_ciphers will be used. Normal SMTP delivery
is not able to make strong demands of TLS cipher configuration, because delivery will fall back to
plaintext. Once DANE has been determined to be in effect, there is no plaintext fallback and making
the TLS cipherlist configuration stronger will increase security, rather than counter-intuitively
decreasing it. If the option expands to be empty or is forced to fail, then it will be treated as unset and
tls_require_ciphers will be used instead.

data_timeout Use: smtp Type: time Default: 5m

This sets a timeout for the transmission of each block in the data portion of the message. As a result,
the overall timeout for a message depends on the size of the message. Its value must not be zero. See
also final_timeout.

dkim_canon Use: smtp Type: string† Default: unset

DKIM signing option. For details see section 58.1.1.

dkim_domain Use: smtp Type: string list† Default: unset

DKIM signing option. For details see section 58.1.1.

dkim_hash Use: smtp Type: string† Default: sha256

DKIM signing option. For details see section 58.1.1.

dkim_identity Use: smtp Type: string† Default: unset

DKIM signing option. For details see section 58.1.1.

dkim_private_key Use: smtp Type: string† Default: unset

DKIM signing option. For details see section 58.1.1.

dkim_selector Use: smtp Type: string† Default: unset

DKIM signing option. For details see section 58.1.1.

dkim_strict Use: smtp Type: string† Default: unset

DKIM signing option. For details see section 58.1.1.

dkim_sign_headers Use: smtp Type: string† Default: per RFC

DKIM signing option. For details see section 58.1.1.

313 The smtp transport (30)

dkim_timestamps Use: smtp Type: string† Default: unset

DKIM signing option. For details see section 58.1.1.

delay_after_cutoff Use: smtp Type: boolean Default: true

This option controls what happens when all remote IP addresses for a given domain have been
inaccessible for so long that they have passed their retry cutoff times.

In the default state, if the next retry time has not been reached for any of them, the address is bounced
without trying any deliveries. In other words, Exim delays retrying an IP address after the final cutoff
time until a new retry time is reached, and can therefore bounce an address without ever trying a
delivery, when machines have been down for a long time. Some people are unhappy at this prospect,
so...

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are none, of if they all fail, the address is bounced. In other words, it does not delay
when a new message arrives, but immediately tries those expired IP addresses that haven’t been tried
since the message arrived. If there is a continuous stream of messages for the dead hosts, unsetting
delay_after_cutoff means that there will be many more attempts to deliver to them.

dns_qualify_single Use: smtp Type: boolean Default: true

If the hosts or fallback_hosts option is being used, and the gethostbyname option is false, the RES_
DEFNAMES resolver option is set. See the qualify_single option in chapter 17 for more details.

dns_search_parents Use: smtp Type: boolean Default: false

If the hosts or fallback_hosts option is being used, and the gethostbyname option is false, the RES_
DNSRCH resolver option is set. See the search_parents option in chapter 17 for more details.

dnssec_request_domains Use: smtp Type: domain list† Default: *

DNS lookups for domains matching dnssec_request_domains will be done with the DNSSEC
request bit set. Setting this transport option is only useful if the transport overrides or sets the host
names. See the dnssec_request_domains router option.

dnssec_require_domains Use: smtp Type: domain list† Default: unset

DNS lookups for domains matching dnssec_require_domains will be done with the DNSSEC
request bit set. Setting this transport option is only useful if the transport overrides or sets the host
names. See the dnssec_require_domains router option.

dscp Use: smtp Type: string† Default: unset

This option causes the DSCP value associated with a socket to be set to one of a number of fixed
strings or to numeric value. The -bI:dscp option may be used to ask Exim which names it knows of.
Common values include throughput, mincost, and on newer systems ef, af41, etc. Numeric
values may be in the range 0 to 0x3F.

The outbound packets from Exim will be marked with this value in the header (for IPv4, the TOS
field; for IPv6, the TCLASS field); there is no guarantee that these values will have any effect, not be
stripped by networking equipment, or do much of anything without cooperation with your Network
Engineer and those of all network operators between the source and destination.

314 The smtp transport (30)

fallback_hosts Use: smtp Type: string list Default: unset

String expansion is not applied to this option. The argument must be a colon-separated list of host
names or IP addresses, optionally also including port numbers, though the separator can be changed,
as described in section 6.20. Each individual item in the list is the same as an item in a route_list
setting for the manualroute router, as described in section 20.5.

Fallback hosts can also be specified on routers, which associate them with the addresses they process.
As for the hosts option without hosts_override, fallback_hosts specified on the transport is used
only if the address does not have its own associated fallback host list. Unlike hosts, a setting of
fallback_hosts on an address is not overridden by hosts_override. However, hosts_randomize does
apply to fallback host lists.

If Exim is unable to deliver to any of the hosts for a particular address, and the errors are not
permanent rejections, the address is put on a separate transport queue with its host list replaced by the
fallback hosts, unless the address was routed via MX records and the current host was in the original
MX list. In that situation, the fallback host list is not used.

Once normal deliveries are complete, the fallback queue is delivered by re-running the same trans-
ports with the new host lists. If several failing addresses have the same fallback hosts (and max_rcpt
permits it), a single copy of the message is sent.

The resolution of the host names on the fallback list is controlled by the gethostbyname option, as
for the hosts option. Fallback hosts apply both to cases when the host list comes with the address and
when it is taken from hosts. This option provides a “use a smart host only if delivery fails” facility.

final_timeout Use: smtp Type: time Default: 10m

This is the timeout that applies while waiting for the response to the final line containing just “.” that
terminates a message. Its value must not be zero.

gethostbyname Use: smtp Type: boolean Default: false

If this option is true when the hosts and/or fallback_hosts options are being used, names are looked
up using gethostbyname() (or getipnodebyname() when available) instead of using the DNS. Of
course, that function may in fact use the DNS, but it may also consult other sources of information
such as /etc/hosts.

gnutls_compat_mode Use: smtp Type: boolean Default: unset

This option controls whether GnuTLS is used in compatibility mode in an Exim server. This reduces
security slightly, but improves interworking with older implementations of TLS.

helo_data Use: smtp Type: string† Default: see below

The value of this option is expanded after a connection to a another host has been set up. The result is
used as the argument for the EHLO, HELO, or LHLO command that starts the outgoing SMTP or
LMTP session. The default value of the option is:

$primary_hostname

During the expansion, the variables $host and $host_address are set to the identity of the remote host,
and the variables $sending_ip_address and $sending_port are set to the local IP address and port
number that are being used. These variables can be used to generate different values for different
servers or different local IP addresses. For example, if you want the string that is used for helo_data
to be obtained by a DNS lookup of the outgoing interface address, you could use this:

315 The smtp transport (30)

helo_data = ${lookup dnsdb{ptr=$sending_ip_address} \
 {${listextract{1}{<\n $value}}} \
 {$primary_hostname}}

The use of helo_data applies both to sending messages and when doing callouts.

host_name_extract Use: smtp Type: string list† Default: see below

Some mail-accepting sites (notably Microsoft) operate many servers behind a network load-balancer.
When this is done, with separated TLS session caches, TLS session resuption becomes problematic. It
will only succeed when the same server happens to be selected by the load-balancer, matching the
session stored in the client’s cache.

Exim can pull out a server name, if there is one, from the response to the client’s SMTP EHLO
command. For normal STARTTLS use, the default value of this option:

 ${if and { {match {$host} {.outlook.com\$}} \
 {match {$item} {\N^250-([\w.]+)\s\N}} \
¤ } {$1}}

suffices for one known case.

During the expansion of this option the $item variable will have the server’s EHLO response.

For TLS-on-connect connections we do not have an EHLO response to use. Because of this the
default value of this option is set to a static string for those cases, meaning that resumption will
always be attempted if permitted by the tls_resumption_hosts option.

The result of the option expansion is included in the key used to store and retrieve the TLS session,
for session resumption.

Operators of high-load sites may wish to evaluate their logs for indications of other destination sites
operating load-balancers, and develop a suitable expression for this option. The smtp:ehlo event and
the $tls_out_resumption variable will be useful for such work.

hosts Use: smtp Type: string list† Default: unset

Hosts are associated with an address by a router such as dnslookup, which finds the hosts by looking
up the address domain in the DNS, or by manualroute, which has lists of hosts in its configuration.
However, email addresses can be passed to the smtp transport by any router, and not all of them can
provide an associated list of hosts.

The hosts option specifies a list of hosts to be used if the address being processed does not have any
hosts associated with it. The hosts specified by hosts are also used, whether or not the address has its
own hosts, if hosts_override is set.

The string is first expanded, before being interpreted as a colon-separated list of host names or IP
addresses, possibly including port numbers. The separator may be changed to something other than
colon, as described in section 6.20. Each individual item in the list is the same as an item in a route_
list setting for the manualroute router, as described in section 20.5. However, note that the /MX
facility of the manualroute router is not available here.

If the expansion fails, delivery is deferred. Unless the failure was caused by the inability to complete a
lookup, the error is logged to the panic log as well as the main log. Host names are looked up either
by searching directly for address records in the DNS or by calling gethostbyname() (or
getipnodebyname() when available), depending on the setting of the gethostbyname option. When
Exim is compiled with IPv6 support, if a host that is looked up in the DNS has both IPv4 and IPv6
addresses, both types of address are used.

During delivery, the hosts are tried in order, subject to their retry status, unless hosts_randomize is
set.

316 The smtp transport (30)

hosts_avoid_esmtp Use: smtp Type: host list† Default: unset

This option is for use with broken hosts that announce ESMTP facilities (for example, PIPELINING)
and then fail to implement them properly. When a host matches hosts_avoid_esmtp, Exim sends
HELO rather than EHLO at the start of the SMTP session. This means that it cannot use any of the
ESMTP facilities such as AUTH, PIPELINING, SIZE, and STARTTLS.

hosts_avoid_pipelining Use: smtp Type: host list† Default: unset

Exim will not use the ESMTP PIPELINING extension when delivering to any host that matches this
list, even if the server host advertises PIPELINING support.

hosts_pipe_connect Use: smtp Type: host list† Default: unset

If Exim is built with the SUPPORT_PIPE_CONNECT build option this option controls which to
hosts the facility watched for and recorded, and used for subsequent connections.

The retry hints database is used for the record, and records are subject to the retry_data_expire
option. When used, the pipelining saves on roundtrip times. It also turns SMTP into a client-first
protocol so combines well with TCP Fast Open.

See also the pipelining_connect_advertise_hosts main option.

Note: When the facility is used, if the transport interface option is unset the helo_data option will be
expanded before the $sending_ip_address variable is filled in. A check is made for the use of that
variable, without the presence of a “def:” test on it, but suitably complex coding can avoid the check
and produce unexpected results. You have been warned.

hosts_avoid_tls Use: smtp Type: host list† Default: unset

Exim will not try to start a TLS session when delivering to any host that matches this list. See chapter
43 for details of TLS.

hosts_verify_avoid_tls Use: smtp Type: host list† Default: unset

Exim will not try to start a TLS session for a verify callout, or when delivering in cutthrough mode, to
any host that matches this list.

hosts_max_try Use: smtp Type: integer Default: 5

This option limits the number of IP addresses that are tried for any one delivery in cases where there
are temporary delivery errors. Section 30.5 describes in detail how the value of this option is used.

hosts_max_try_hardlimit Use: smtp Type: integer Default: 50

This is an additional check on the maximum number of IP addresses that Exim tries for any one
delivery. Section 30.5 describes its use and why it exists.

hosts_nopass_tls Use: smtp Type: host list† Default: unset

For any host that matches this list, a connection on which a TLS session has been started will not be
passed to a new delivery process for sending another message on the same connection. See section
43.9 for an explanation of when this might be needed.

317 The smtp transport (30)

hosts_noproxy_tls Use: smtp Type: host list† Default: unset

For any host that matches this list, a TLS session which has been started will not be passed to a new
delivery process for sending another message on the same session.

The traditional implementation closes down TLS and re-starts it in the new process, on the same open
TCP connection, for each successive message sent. If permitted by this option a pipe to to the new
process is set up instead, and the original process maintains the TLS connection and proxies the
SMTP connection from and to the new process and any subsequents. The new process has no access
to TLS information, so cannot include it in logging.

hosts_override Use: smtp Type: boolean Default: false

If this option is set and the hosts option is also set, any hosts that are attached to the address are
ignored, and instead the hosts specified by the hosts option are always used. This option does not
apply to fallback_hosts.

hosts_randomize Use: smtp Type: boolean Default: false

If this option is set, and either the list of hosts is taken from the hosts or the fallback_hosts option, or
the hosts supplied by the router were not obtained from MX records (this includes fallback hosts from
the router), and were not randomized by the router, the order of trying the hosts is randomized each
time the transport runs. Randomizing the order of a host list can be used to do crude load sharing.

When hosts_randomize is true, a host list may be split into groups whose order is separately
randomized. This makes it possible to set up MX-like behaviour. The boundaries between groups are
indicated by an item that is just + in the host list. For example:

hosts = host1:host2:host3:+:host4:host5

The order of the first three hosts and the order of the last two hosts is randomized for each use, but the
first three always end up before the last two. If hosts_randomize is not set, a + item in the list is
ignored.

hosts_require_auth Use: smtp Type: host list† Default: unset

This option provides a list of servers for which authentication must succeed before Exim will try to
transfer a message. If authentication fails for servers which are not in this list, Exim tries to send
unauthenticated. If authentication fails for one of these servers, delivery is deferred. This temporary
error is detectable in the retry rules, so it can be turned into a hard failure if required. See also hosts_
try_auth, and chapter 33 for details of authentication.

hosts_request_ocsp Use: smtp Type: host list† Default: see below

Exim will request a Certificate Status on a TLS session for any host that matches this list. tls_verify_
certificates should also be set for the transport.

The default is “**” if DANE is not in use for the connection, or if DANE-TA us used. It is empty if
DANE-EE is used.

hosts_require_alpn Use: smtp Type: host list† Default: unset

If the TLS library supports ALPN then a successful negotiation of ALPN will be required for any host
matching the list, for TLS to be used. See also the tls_alpn option.

Note: prevention of fallback to in-clear connection is not managed by this option; see hosts_require_
tls.

318 The smtp transport (30)

hosts_require_dane Use: smtp Type: host list† Default: unset

If built with DANE support, Exim will require that a DNSSEC-validated TLSA record is present for
any host matching the list, and that a DANE-verified TLS connection is made. There will be no
fallback to in-clear communication. See the dnssec_request_domains router and transport options.
See section 43.12.

hosts_require_ocsp Use: smtp Type: host list† Default: unset

Exim will request, and check for a valid Certificate Status being given, on a TLS session for any host
that matches this list. tls_verify_certificates should also be set for the transport.

hosts_require_tls Use: smtp Type: host list† Default: unset

Exim will insist on using a TLS session when delivering to any host that matches this list. See chapter
43 for details of TLS. Note: This option affects outgoing mail only. To insist on TLS for incoming
messages, use an appropriate ACL.

hosts_try_auth Use: smtp Type: host list† Default: unset

This option provides a list of servers to which, provided they announce authentication support, Exim
will attempt to authenticate as a client when it connects. If authentication fails and hosts_require_
auth permits, Exim will try to transfer the message unauthenticated. See also chapter 33 for details of
authentication.

hosts_try_chunking Use: smtp Type: host list† Default: *

This option provides a list of servers to which, provided they announce CHUNKING support, Exim
will attempt to use BDAT commands rather than DATA. Unless DKIM signing is being done, BDAT
will not be used in conjunction with a transport filter.

hosts_try_dane Use: smtp Type: host list† Default: *

If built with DANE support, Exim will look up a TLSA record for any host matching the list, If one is
found and that lookup was DNSSEC-validated, then Exim requires that a DANE-verified TLS con-
nection is made for that host; there will be no fallback to in-clear communication. See the dnssec_
request_domains router and transport options. See section 43.12.

hosts_try_fastopen Use: smtp Type: host list† Default: *

This option provides a list of servers to which, provided the facility is supported by this system, Exim
will attempt to perform a TCP Fast Open. No data is sent on the SYN segment but, if the remote
server also supports the facility, it can send its SMTP banner immediately after the SYN,ACK
segment. This can save up to one round-trip time.

The facility is only active for previously-contacted servers, as the initiator must present a cookie in
the SYN segment.

On (at least some) current Linux distributions the facility must be enabled in the kernel by the
sysadmin before the support is usable. There is no option for control of the server side; if the system
supports it it is always enabled. Note that lengthy operations in the connect ACL, such as DNSBL
lookups, will still delay the emission of the SMTP banner.

319 The smtp transport (30)

hosts_try_prdr Use: smtp Type: host list† Default: *

This option provides a list of servers to which, provided they announce PRDR support, Exim will
attempt to negotiate PRDR for multi-recipient messages. The option can usually be left as default.

interface Use: smtp Type: string list† Default: unset

This option specifies which interface to bind to when making an outgoing SMTP call. The value is an
IP address, not an interface name such as eth0. Do not confuse this with the interface address that
was used when a message was received, which is in $received_ip_address, formerly known as
$interface_address. The name was changed to minimize confusion with the outgoing interface
address. There is no variable that contains an outgoing interface address because, unless it is set by
this option, its value is unknown.

During the expansion of the interface option the variables $host and $host_address refer to the host
to which a connection is about to be made during the expansion of the string. Forced expansion
failure, or an empty string result causes the option to be ignored. Otherwise, after expansion, the
string must be a list of IP addresses, colon-separated by default, but the separator can be changed in
the usual way (6.21). For example:

interface = <; 192.168.123.123 ; 3ffe:ffff:836f::fe86:a061

The first interface of the correct type (IPv4 or IPv6) is used for the outgoing connection. If none of
them are the correct type, the option is ignored. If interface is not set, or is ignored, the system’s IP
functions choose which interface to use if the host has more than one.

keepalive Use: smtp Type: boolean Default: true

This option controls the setting of SO_KEEPALIVE on outgoing TCP/IP socket connections. When
set, it causes the kernel to probe idle connections periodically, by sending packets with “old”
sequence numbers. The other end of the connection should send a acknowledgment if the connection
is still okay or a reset if the connection has been aborted. The reason for doing this is that it has the
beneficial effect of freeing up certain types of connection that can get stuck when the remote host is
disconnected without tidying up the TCP/IP call properly. The keepalive mechanism takes several
hours to detect unreachable hosts.

lmtp_ignore_quota Use: smtp Type: boolean Default: false

If this option is set true when the protocol option is set to “lmtp”, the string IGNOREQUOTA is added
to RCPT commands, provided that the LMTP server has advertised support for IGNOREQUOTA in
its response to the LHLO command.

max_rcpt Use: smtp Type: integer† Default: 100

This option, after expansion, limits the number of RCPT commands that are sent in a single SMTP
message transaction. A value setting of zero disables the limit.

If a constant is given, each set of addresses is treated independently, and so can cause parallel
connections to the same host if remote_max_parallel permits this.

If the peer advertises a LIMITS extension with a RCPTMAX value, and either TLSS is in use or was
not advertised, that value also constrains the result of this option and no parallel connections will be
caused on meeting the RCPTMAX limit.

320 The smtp transport (30)

message_linelength_limit Use: smtp Type: integer Default: 998

This option sets the maximum line length, in bytes, that the transport will send. Any messages with
lines exceeding the given value (before a transport filter, if any) will fail and a failure-DSN ("bounce")
message will if possible be returned to the sender. The default value is that defined by the SMTP
standards.

It is generally wise to also check in the data ACL so that messages received via SMTP can be refused
without producing a bounce.

multi_domain Use: smtp Type: boolean† Default: true

When this option is set, the smtp transport can handle a number of addresses containing a mixture of
different domains provided they all resolve to the same list of hosts. Turning the option off restricts
the transport to handling only one domain at a time. This is useful if you want to use $domain in an
expansion for the transport, because it is set only when there is a single domain involved in a remote
delivery.

It is expanded per-address and can depend on any of $address_data, $domain_data, $local_part_
data, $host, $host_address and $host_port.

If the connection is DANE-enabled then this option is ignored; only messages having the domain used
for the DANE TLSA lookup are sent on the connection.

If the peer advertises a LIMITS extension with a RCPTDOMAINMAX value, and either TLSS is in
use or was not advertised, this option is regarded as being false.

port Use: smtp Type: string† Default: see below

This option specifies the TCP/IP port on the server to which Exim connects. Note: Do not confuse
this with the port that was used when a message was received, which is in $received_port, formerly
known as $interface_port. The name was changed to minimize confusion with the outgoing port.
There is no variable that contains an outgoing port.

If the value of this option begins with a digit it is taken as a port number; otherwise it is looked up
using getservbyname(). The default value is normally “smtp”, but if protocol is set to “lmtp” the
default is “lmtp” and if protocol is set to “smtps” the default is “smtps”. If the expansion fails, or if a
port number cannot be found, delivery is deferred.

Note that at least one Linux distribution has been seen failing to put “smtps” in its “/etc/services” file,
resulting is such deferrals.

protocol Use: smtp Type: string Default: smtp

If this option is set to “lmtp” instead of “smtp”, the default value for the port option changes to
“lmtp”, and the transport operates the LMTP protocol (RFC 2033) instead of SMTP. This protocol is
sometimes used for local deliveries into closed message stores. Exim also has support for running
LMTP over a pipe to a local process – see chapter 28.

Note: When using LMTP it should be considered whether the default values for some other features,
such as DANE, are appropriate.

If this option is set to “smtps”, the default value for the port option changes to “smtps”, and the
transport initiates TLS immediately after connecting, as an outbound SSL-on-connect, instead of
using STARTTLS to upgrade. The Internet standards bodies used to strongly discourage use of this
mode, but as of RFC 8314 it is preferred over STARTTLS for message submission (as distinct from
MTA-MTA communication).

321 The smtp transport (30)

retry_include_ip_address Use: smtp Type: boolean† Default: true

Exim normally includes both the host name and the IP address in the key it constructs for indexing
retry data after a temporary delivery failure. This means that when one of several IP addresses for a
host is failing, it gets tried periodically (controlled by the retry rules), but use of the other IP addresses
is not affected.

However, in some dialup environments hosts are assigned a different IP address each time they
connect. In this situation the use of the IP address as part of the retry key leads to undesirable
behaviour. Setting this option false causes Exim to use only the host name. Since it is expanded it can
be made to depend on the host or domain.

serialize_hosts Use: smtp Type: host list† Default: unset

Because Exim operates in a distributed manner, if several messages for the same host arrive at around
the same time, more than one simultaneous connection to the remote host can occur. This is not
usually a problem except when there is a slow link between the hosts. In that situation it may be
helpful to restrict Exim to one connection at a time. This can be done by setting serialize_hosts to
match the relevant hosts.

Exim implements serialization by means of a hints database in which a record is written whenever a
process connects to one of the restricted hosts. The record is deleted when the connection is com-
pleted. Obviously there is scope for records to get left lying around if there is a system or program
crash. To guard against this, Exim ignores any records that are more than six hours old.

If you set up this kind of serialization, you should also arrange to delete the relevant hints database
whenever your system reboots. The names of the files start with misc and they are kept in the spool/db
directory. There may be one or two files, depending on the type of DBM in use. The same files are
used for ETRN serialization.

See also the max_parallel generic transport option.

size_addition Use: smtp Type: integer Default: 1024

If a remote SMTP server indicates that it supports the SIZE option of the MAIL command, Exim uses
this to pass over the message size at the start of an SMTP transaction. It adds the value of size_
addition to the value it sends, to allow for headers and other text that may be added during delivery
by configuration options or in a transport filter. It may be necessary to increase this if a lot of text is
added to messages.

Alternatively, if the value of size_addition is set negative, it disables the use of the SIZE option
altogether.

socks_proxy Use: smtp Type: string† Default: unset

This option enables use of SOCKS proxies for connections made by the transport. For details see
section 59.2.

tls_alpn Use: smtp Type: string† Default: unset

If this option is set and the TLS library supports ALPN, the value given is used.

As of writing no value has been standardised for email use. The authors suggest using “smtp”.

322 The smtp transport (30)

tls_certificate Use: smtp Type: string† Default: unset

The value of this option must be the absolute path to a file which contains the client’s certificate, for
possible use when sending a message over an encrypted connection. The values of $host and $host_
address are set to the name and address of the server during the expansion. See chapter 43 for details
of TLS.

Note: This option must be set if you want Exim to be able to use a TLS certificate when sending
messages as a client. The global option of the same name specifies the certificate for Exim as a server;
it is not automatically assumed that the same certificate should be used when Exim is operating as a
client.

tls_crl Use: smtp Type: string† Default: unset

This option specifies a certificate revocation list. The expanded value must be the name of a file that
contains a CRL in PEM format.

tls_dh_min_bits Use: smtp Type: integer Default: 1024

When establishing a TLS session, if a ciphersuite which uses Diffie-Hellman key agreement is nego-
tiated, the server will provide a large prime number for use. This option establishes the minimum
acceptable size of that number. If the parameter offered by the server is too small, then the TLS
handshake will fail.

Only supported when using GnuTLS.

tls_privatekey Use: smtp Type: string† Default: unset

The value of this option must be the absolute path to a file which contains the client’s private key.
This is used when sending a message over an encrypted connection using a client certificate. The
values of $host and $host_address are set to the name and address of the server during the expansion.
If this option is unset, or the expansion is forced to fail, or the result is an empty string, the private key
is assumed to be in the same file as the certificate. See chapter 43 for details of TLS.

tls_require_ciphers Use: smtp Type: string† Default: unset

The value of this option must be a list of permitted cipher suites, for use when setting up an outgoing
encrypted connection. (There is a global option of the same name for controlling incoming connec-
tions.) The values of $host and $host_address are set to the name and address of the server during the
expansion. See chapter 43 for details of TLS; note that this option is used in different ways by
OpenSSL and GnuTLS (see sections 43.4 and 43.5). For GnuTLS, the order of the ciphers is a
preference order.

tls_resumption_hosts Use: smtp Type: host list† Default: unset

This option controls which connections to use the TLS resumption feature. See 43.11 for details.

tls_sni Use: smtp Type: string† Default: unset

If this option is set and the connection is not DANE-validated then it sets the $tls_out_sni variable
and causes any TLS session to pass this value as the Server Name Indication extension to the remote
side, which can be used by the remote side to select an appropriate certificate and private key for the
session.

See 43.8 for more information.

323 The smtp transport (30)

Note that for OpenSSL, this feature requires a build of OpenSSL that supports TLS extensions.

tls_tempfail_tryclear Use: smtp Type: boolean Default: true

When the server host is not in hosts_require_tls, and there is a problem in setting up a TLS session,
this option determines whether or not Exim should try to deliver the message unencrypted. If it is set
false, delivery to the current host is deferred; if there are other hosts, they are tried. If this option is set
true, Exim attempts to deliver unencrypted after a 4xx response to STARTTLS. Also, if STARTTLS is
accepted, but the subsequent TLS negotiation fails, Exim closes the current connection (because it is
in an unknown state), opens a new one to the same host, and then tries the delivery in clear.

tls_try_verify_hosts Use: smtp Type: host list† Default: *

This option gives a list of hosts for which, on encrypted connections, certificate verification will be
tried but need not succeed. The tls_verify_certificates option must also be set. Note that unless the
host is in this list TLS connections will be denied to hosts using self-signed certificates when tls_
verify_certificates is matched. The $tls_out_certificate_verified variable is set when certificate verifi-
cation succeeds.

tls_verify_cert_hostnames Use: smtp Type: host list† Default: *

This option give a list of hosts for which, while verifying the server certificate, checks will be
included on the host name (note that this will generally be the result of a DNS MX lookup) versus the
Subject-Alternate-Name (or, if none, Subject-Name) fields. Wildcard names are permitted, limited to
being the initial component of a 3-or-more component FQDN.

There is no equivalent checking on client certificates.

tls_verify_certificates Use: smtp Type: string† Default: system

The value of this option must be either the word "system" or the absolute path to a file or directory
containing permitted certificates for servers, for use when setting up an encrypted connection.

The "system" value for the option will use a location compiled into the SSL library. This is not
available for GnuTLS versions preceding 3.0.20; a value of "system" is taken as empty and an explicit
location must be specified.

The use of a directory for the option value is not available for GnuTLS versions preceding 3.3.6 and a
single file must be used.

With OpenSSL the certificates specified explicitly either by file or directory are added to those given
by the system default location.

The values of $host and $host_address are set to the name and address of the server during the
expansion of this option. See chapter 43 for details of TLS.

For back-compatibility, if neither tls_verify_hosts nor tls_try_verify_hosts are set (a single-colon
empty list counts as being set) and certificate verification fails the TLS connection is closed.

tls_verify_hosts Use: smtp Type: host list† Default: unset

This option gives a list of hosts for which, on encrypted connections, certificate verification must
succeed. The tls_verify_certificates option must also be set. If both this option and tls_try_verify_
hosts are unset operation is as if this option selected all hosts. Warning: Including a host in tls_
verify_hosts does not require that connections use TLS. Fallback to in-clear communication will be
done unless restricted by the hosts_require_tls option.

324 The smtp transport (30)

utf8_downconvert Use: smtp Type: integer† Default: -1

If built with internationalization support, this option controls conversion of UTF-8 in message envel-
ope addresses to a-label form. If, after expansion, the value is 1, 0, or -1 then this value overrides any
value previously set for the message. Otherwise, any previously set value is used. To permit use of a
previous value, set this option to an empty string. For details on the values see section 60.1.

30.5 How the limits for the number of hosts to try are used

There are two options that are concerned with the number of hosts that are tried when an SMTP
delivery takes place. They are hosts_max_try and hosts_max_try_hardlimit.

The hosts_max_try option limits the number of hosts that are tried for a single delivery. However,
despite the term “host” in its name, the option actually applies to each IP address independently. In
other words, a multihomed host is treated as several independent hosts, just as it is for retrying.

Many of the larger ISPs have multiple MX records which often point to multihomed hosts. As a
result, a list of a dozen or more IP addresses may be created as a result of routing one of these
domains.

Trying every single IP address on such a long list does not seem sensible; if several at the top of the
list fail, it is reasonable to assume there is some problem that is likely to affect all of them. Roughly
speaking, the value of hosts_max_try is the maximum number that are tried before deferring the
delivery. However, the logic cannot be quite that simple.

Firstly, IP addresses that are skipped because their retry times have not arrived do not count, and in
addition, addresses that are past their retry limits are also not counted, even when they are tried. This
means that when some IP addresses are past their retry limits, more than the value of hosts_max_
retry may be tried. The reason for this behaviour is to ensure that all IP addresses are considered
before timing out an email address (but see below for an exception).

Secondly, when the hosts_max_try limit is reached, Exim looks down the host list to see if there is a
subsequent host with a different (higher valued) MX. If there is, that host is considered next, and the
current IP address is used but not counted. This behaviour helps in the case of a domain with a retry
rule that hardly ever delays any hosts, as is now explained:

Consider the case of a long list of hosts with one MX value, and a few with a higher MX value. If
hosts_max_try is small (the default is 5) only a few hosts at the top of the list are tried at first. With
the default retry rule, which specifies increasing retry times, the higher MX hosts are eventually tried
when those at the top of the list are skipped because they have not reached their retry times.

However, it is common practice to put a fixed short retry time on domains for large ISPs, on the
grounds that their servers are rarely down for very long. Unfortunately, these are exactly the domains
that tend to resolve to long lists of hosts. The short retry time means that the lowest MX hosts are
tried every time. The attempts may be in a different order because of random sorting, but without the
special MX check, the higher MX hosts would never be tried until all the lower MX hosts had timed
out (which might be several days), because there are always some lower MX hosts that have reached
their retry times. With the special check, Exim considers at least one IP address from each MX value
at every delivery attempt, even if the hosts_max_try limit has already been reached.

The above logic means that hosts_max_try is not a hard limit, and in particular, Exim normally
eventually tries all the IP addresses before timing out an email address. When hosts_max_try was
implemented, this seemed a reasonable thing to do. Recently, however, some lunatic DNS configur-
ations have been set up with hundreds of IP addresses for some domains. It can take a very long time
indeed for an address to time out in these cases.

The hosts_max_try_hardlimit option was added to help with this problem. Exim never tries more
than this number of IP addresses; if it hits this limit and they are all timed out, the email address is
bounced, even though not all possible IP addresses have been tried.

325 The smtp transport (30)

31. Address rewriting

There are some circumstances in which Exim automatically rewrites domains in addresses. The two
most common are when an address is given without a domain (referred to as an “unqualified address”)
or when an address contains an abbreviated domain that is expanded by DNS lookup.

Unqualified envelope addresses are accepted only for locally submitted messages, or for messages
that are received from hosts matching sender_unqualified_hosts or recipient_unqualified_hosts, as
appropriate. Unqualified addresses in header lines are qualified if they are in locally submitted mess-
ages, or messages from hosts that are permitted to send unqualified envelope addresses. Otherwise,
unqualified addresses in header lines are neither qualified nor rewritten.

One situation in which Exim does not automatically rewrite a domain is when it is the name of a
CNAME record in the DNS. The older RFCs suggest that such a domain should be rewritten using the
“canonical” name, and some MTAs do this. The new RFCs do not contain this suggestion.

31.1 Explicitly configured address rewriting

This chapter describes the rewriting rules that can be used in the main rewrite section of the configur-
ation file, and also in the generic headers_rewrite option that can be set on any transport.

Some people believe that configured address rewriting is a Mortal Sin. Others believe that life is not
possible without it. Exim provides the facility; you do not have to use it.

The main rewriting rules that appear in the “rewrite” section of the configuration file are applied to
addresses in incoming messages, both envelope addresses and addresses in header lines. Each rule
specifies the types of address to which it applies.

Whether or not addresses in header lines are rewritten depends on the origin of the headers and the
type of rewriting. Global rewriting, that is, rewriting rules from the rewrite section of the configur-
ation file, is applied only to those headers that were received with the message. Header lines that are
added by ACLs or by a system filter or by individual routers or transports (which are specific to
individual recipient addresses) are not rewritten by the global rules.

Rewriting at transport time, by means of the headers_rewrite option, applies all headers except those
added by routers and transports. That is, as well as the headers that were received with the message, it
also applies to headers that were added by an ACL or a system filter.

In general, rewriting addresses from your own system or domain has some legitimacy. Rewriting
other addresses should be done only with great care and in special circumstances. The author of Exim
believes that rewriting should be used sparingly, and mainly for “regularizing” addresses in your own
domains. Although it can sometimes be used as a routing tool, this is very strongly discouraged.

There are two commonly encountered circumstances where rewriting is used, as illustrated by these
examples:

• The company whose domain is hitch.fict.example has a number of hosts that exchange mail with
each other behind a firewall, but there is only a single gateway to the outer world. The gateway
rewrites *.hitch.fict.example as hitch.fict.example when sending mail off-site.

• A host rewrites the local parts of its own users so that, for example, fp42@hitch.fict.example
becomes Ford.Prefect@hitch.fict.example.

31.2 When does rewriting happen?

Configured address rewriting can take place at several different stages of a message’s processing.

At the start of an ACL for MAIL, the sender address may have been rewritten by a special SMTP-
time rewrite rule (see section 31.6.3), but no ordinary rewrite rules have yet been applied. If, however,
the sender address is verified in the ACL, it is rewritten before verification, and remains rewritten
thereafter. The subsequent value of $sender_address is the rewritten address. This also applies if
sender verification happens in a RCPT ACL. Otherwise, when the sender address is not verified, it is
rewritten as soon as a message’s header lines have been received.

326 Address rewriting (31)

Similarly, at the start of an ACL for RCPT, the current recipient’s address may have been rewritten by
a special SMTP-time rewrite rule, but no ordinary rewrite rules have yet been applied to it. However,
the behaviour is different from the sender address when a recipient is verified. The address is rewrit-
ten for the verification, but the rewriting is not remembered at this stage. The value of $local_part
and $domain after verification are always the same as they were before (that is, they contain the
unrewritten – except for SMTP-time rewriting – address).

As soon as a message’s header lines have been received, all the envelope recipient addresses are
permanently rewritten, and rewriting is also applied to the addresses in the header lines (if con-
figured). This happens before adding any header lines that were specified in MAIL or RCPT ACLs,
and before the DATA ACL and local_scan() functions are run.

When an address is being routed, either for delivery or for verification, rewriting is applied immedi-
ately to child addresses that are generated by redirection, unless no_rewrite is set on the router.

At transport time, additional rewriting of addresses in header lines can be specified by setting the
generic headers_rewrite option on a transport. This option contains rules that are identical in form to
those in the rewrite section of the configuration file. They are applied to the original message header
lines and any that were added by ACLs or a system filter. They are not applied to header lines that are
added by routers or the transport.

The outgoing envelope sender can be rewritten by means of the return_path transport option.
However, it is not possible to rewrite envelope recipients at transport time.

31.3 Testing the rewriting rules that apply on input

Exim’s input rewriting configuration appears in a part of the runtime configuration file headed by
“begin rewrite”. It can be tested by the -brw command line option. This takes an address (which can
be a full RFC 2822 address) as its argument. The output is a list of how the address would be
transformed by the rewriting rules for each of the different places it might appear in an incoming
message, that is, for each different header and for the envelope sender and recipient fields. For
example,

exim -brw ph10@exim.workshop.example

might produce the output

sender: Philip.Hazel@exim.workshop.example
from: Philip.Hazel@exim.workshop.example
to: ph10@exim.workshop.example
cc: ph10@exim.workshop.example
bcc: ph10@exim.workshop.example
reply-to: Philip.Hazel@exim.workshop.example
env-from: Philip.Hazel@exim.workshop.example
env-to: ph10@exim.workshop.example

which shows that rewriting has been set up for that address when used in any of the source fields, but
not when it appears as a recipient address. At the present time, there is no equivalent way of testing
rewriting rules that are set for a particular transport.

31.4 Rewriting rules

The rewrite section of the configuration file consists of lines of rewriting rules in the form

<source pattern> <replacement> <flags>

Rewriting rules that are specified for the headers_rewrite generic transport option are given as a
colon-separated list. Each item in the list takes the same form as a line in the main rewriting configur-
ation (except that any colons must be doubled, of course).

The formats of source patterns and replacement strings are described below. Each is terminated by
white space, unless enclosed in double quotes, in which case normal quoting conventions apply inside

327 Address rewriting (31)

the quotes. The flags are single characters which may appear in any order. Spaces and tabs between
them are ignored.

For each address that could potentially be rewritten, the rules are scanned in order, and replacements
for the address from earlier rules can themselves be replaced by later rules (but see the “q” and “R”
flags).

The order in which addresses are rewritten is undefined, may change between releases, and must not
be relied on, with one exception: when a message is received, the envelope sender is always rewritten
first, before any header lines are rewritten. For example, the replacement string for a rewrite of an
address in To: must not assume that the message’s address in From: has (or has not) already been
rewritten. However, a rewrite of From: may assume that the envelope sender has already been
rewritten.

The variables $local_part and $domain can be used in the replacement string to refer to the address
that is being rewritten. Note that lookup-driven rewriting can be done by a rule of the form

@ ${lookup ...

where the lookup key uses $1 and $2 or $local_part and $domain to refer to the address that is being
rewritten.

31.5 Rewriting patterns

The source pattern in a rewriting rule is any item which may appear in an address list (see section
10.5). It is in fact processed as a single-item address list, which means that it is expanded before being
tested against the address. As always, if you use a regular expression as a pattern, you must take care
to escape dollar and backslash characters, or use the \N facility to suppress string expansion within
the regular expression.

Domains in patterns should be given in lower case. Local parts in patterns are case-sensitive. If you
want to do case-insensitive matching of local parts, you can use a regular expression that starts with
^(?i).

After matching, the numerical variables $1, $2, etc. may be set, depending on the type of match
which occurred. These can be used in the replacement string to insert portions of the incoming
address. $0 always refers to the complete incoming address. When a regular expression is used, the
numerical variables are set from its capturing subexpressions. For other types of pattern they are set as
follows:

• If a local part or domain starts with an asterisk, the numerical variables refer to the character
strings matched by asterisks, with $1 associated with the first asterisk, and $2 with the second, if
present. For example, if the pattern

queen@.fict.example

is matched against the address hearts-queen@wonderland.fict.example then

$0 = hearts-queen@wonderland.fict.example
$1 = hearts-
$2 = wonderland

Note that if the local part does not start with an asterisk, but the domain does, it is $1 that contains
the wild part of the domain.

• If the domain part of the pattern is a partial lookup, the wild and fixed parts of the domain are
placed in the next available numerical variables. Suppose, for example, that the address
foo@bar.baz.example is processed by a rewriting rule of the form

*@partial-dbm;/some/dbm/file <replacement string>

and the key in the file that matches the domain is *.baz.example. Then

$1 = foo
$2 = bar
$3 = baz.example

328 Address rewriting (31)

If the address foo@baz.example is looked up, this matches the same wildcard file entry, and in this
case $2 is set to the empty string, but $3 is still set to baz.example. If a non-wild key is matched in
a partial lookup, $2 is again set to the empty string and $3 is set to the whole domain. For
non-partial domain lookups, no numerical variables are set.

31.6 Rewriting replacements

If the replacement string for a rule is a single asterisk, addresses that match the pattern and the flags
are not rewritten, and no subsequent rewriting rules are scanned. For example,

hatta@lookingglass.fict.example * f

specifies that hatta@lookingglass.fict.example is never to be rewritten in From: headers.

If the replacement string is not a single asterisk, it is expanded, and must yield a fully qualified
address. Within the expansion, the variables $local_part and $domain refer to the address that is
being rewritten. Any letters they contain retain their original case – they are not lower cased. The
numerical variables are set up according to the type of pattern that matched the address, as described
above. If the expansion is forced to fail by the presence of “fail” in a conditional or lookup item,
rewriting by the current rule is abandoned, but subsequent rules may take effect. Any other expansion
failure causes the entire rewriting operation to be abandoned, and an entry written to the panic log.

31.6.1 Rewriting flags

There are three different kinds of flag that may appear on rewriting rules:

• Flags that specify which headers and envelope addresses to rewrite: E, F, T, b, c, f, h, r, s, t.

• A flag that specifies rewriting at SMTP time: S.

• Flags that control the rewriting process: Q, q, R, w.

For rules that are part of the headers_rewrite generic transport option, E, F, T, and S are not
permitted.

31.6.2 Flags specifying which headers and envelope addresses to rewrite

If none of the following flag letters, nor the “S” flag (see section 31.6.3) are present, a main rewriting
rule applies to all headers and to both the sender and recipient fields of the envelope, whereas a
transport-time rewriting rule just applies to all headers. Otherwise, the rewriting rule is skipped unless
the relevant addresses are being processed.

E rewrite all envelope fields
F rewrite the envelope From field
T rewrite the envelope To field
b rewrite the Bcc: header
c rewrite the Cc: header
f rewrite the From: header
h rewrite all headers
r rewrite the Reply-To: header
s rewrite the Sender: header
t rewrite the To: header

"All headers" means all of the headers listed above that can be selected individually, plus their Resent-
versions. It does not include other headers such as Subject: etc.

You should be particularly careful about rewriting Sender: headers, and restrict this to special known
cases in your own domains.

31.6.3 The SMTP-time rewriting flag

The rewrite flag “S” specifies a rewrite of incoming envelope addresses at SMTP time, as soon as an
address is received in a MAIL or RCPT command, and before any other processing; even before

329 Address rewriting (31)

syntax checking. The pattern is required to be a regular expression, and it is matched against the
whole of the data for the command, including any surrounding angle brackets.

This form of rewrite rule allows for the handling of addresses that are not compliant with RFCs 2821
and 2822 (for example, “bang paths” in batched SMTP input). Because the input is not required to be
a syntactically valid address, the variables $local_part and $domain are not available during the
expansion of the replacement string. The result of rewriting replaces the original address in the MAIL
or RCPT command.

31.6.4 Flags controlling the rewriting process

There are four flags which control the way the rewriting process works. These take effect only when a
rule is invoked, that is, when the address is of the correct type (matches the flags) and matches the
pattern:

• If the “Q” flag is set on a rule, the rewritten address is permitted to be an unqualified local part. It
is qualified with qualify_recipient. In the absence of “Q” the rewritten address must always
include a domain.

• If the “q” flag is set on a rule, no further rewriting rules are considered, even if no rewriting
actually takes place because of a “fail” in the expansion. The “q” flag is not effective if the address
is of the wrong type (does not match the flags) or does not match the pattern.

• The “R” flag causes a successful rewriting rule to be re-applied to the new address, up to ten times.
It can be combined with the “q” flag, to stop rewriting once it fails to match (after at least one
successful rewrite).

• When an address in a header is rewritten, the rewriting normally applies only to the working part of
the address, with any comments and RFC 2822 “phrase” left unchanged. For example, rewriting
might change

From: Ford Prefect <fp42@restaurant.hitch.fict.example>

into

From: Ford Prefect <prefectf@hitch.fict.example>

Sometimes there is a need to replace the whole address item, and this can be done by adding the
flag letter “w” to a rule. If this is set on a rule that causes an address in a header line to be
rewritten, the entire address is replaced, not just the working part. The replacement must be a
complete RFC 2822 address, including the angle brackets if necessary. If text outside angle
brackets contains a character whose value is greater than 126 or less than 32 (except for tab), the
text is encoded according to RFC 2047. The character set is taken from headers_charset, which
gets its default at build time.

When the “w” flag is set on a rule that causes an envelope address to be rewritten, all but the
working part of the replacement address is discarded.

31.7 Rewriting examples

Here is an example of the two common rewriting paradigms:

@.hitch.fict.example $1@hitch.fict.example
*@hitch.fict.example ${lookup{$1}dbm{/etc/realnames}\
 {$value}fail}@hitch.fict.example bctfrF

Note the use of “fail” in the lookup expansion in the second rule, forcing the string expansion to fail if
the lookup does not succeed. In this context it has the effect of leaving the original address un-
changed, but Exim goes on to consider subsequent rewriting rules, if any, because the “q” flag is not
present in that rule. An alternative to “fail” would be to supply $1 explicitly, which would cause the
rewritten address to be the same as before, at the cost of a small bit of processing. Not supplying
either of these is an error, since the rewritten address would then contain no local part.

330 Address rewriting (31)

The first example above replaces the domain with a superior, more general domain. This may not be
desirable for certain local parts. If the rule

root@*.hitch.fict.example *

were inserted before the first rule, rewriting would be suppressed for the local part root at any domain
ending in hitch.fict.example.

Rewriting can be made conditional on a number of tests, by making use of ${if in the expansion item.
For example, to apply a rewriting rule only to messages that originate outside the local host:

@.hitch.fict.example "${if !eq {$sender_host_address}{}\
 {$1@hitch.fict.example}fail}"

The replacement string is quoted in this example because it contains white space.

Exim does not handle addresses in the form of “bang paths”. If it sees such an address it treats it as an
unqualified local part which it qualifies with the local qualification domain (if the source of the
message is local or if the remote host is permitted to send unqualified addresses). Rewriting can
sometimes be used to handle simple bang paths with a fixed number of components. For example, the
rule

\N^([^!]+)!(.*)@your.domain.example$\N $2@$1

rewrites a two-component bang path host.name!user as the domain address user@host.name.
However, there is a security implication in using this as a global rewriting rule for envelope addresses.
It can provide a backdoor method for using your system as a relay, because the incoming addresses
appear to be local. If the bang path addresses are received via SMTP, it is safer to use the “S” flag to
rewrite them as they are received, so that relay checking can be done on the rewritten addresses.

331 Address rewriting (31)

32. Retry configuration

The “retry” section of the runtime configuration file contains a list of retry rules that control how
often Exim tries to deliver messages that cannot be delivered at the first attempt. If there are no retry
rules (the section is empty or not present), there are no retries. In this situation, temporary errors are
treated as permanent. The default configuration contains a single, general-purpose retry rule (see
section 7.6). The -brt command line option can be used to test which retry rule will be used for a
given address, domain and error.

The most common cause of retries is temporary failure to deliver to a remote host because the host is
down, or inaccessible because of a network problem. Exim’s retry processing in this case is applied
on a per-host (strictly, per IP address) basis, not on a per-message basis. Thus, if one message has
recently been delayed, delivery of a new message to the same host is not immediately tried, but waits
for the host’s retry time to arrive. If the retry_defer log selector is set, the message “retry time not
reached” is written to the main log whenever a delivery is skipped for this reason. Section 49.1.1
contains more details of the handling of errors during remote deliveries.

Retry processing applies to routing as well as to delivering, except as covered in the next paragraph.
The retry rules do not distinguish between these actions. It is not possible, for example, to specify
different behaviour for failures to route the domain snark.fict.example and failures to deliver to the
host snark.fict.example. I didn’t think anyone would ever need this added complication, so did not
implement it. However, although they share the same retry rule, the actual retry times for routing and
transporting a given domain are maintained independently.

When a delivery is not part of a queue run (typically an immediate delivery on receipt of a message),
the routers are always run, and local deliveries are always attempted, even if retry times are set for
them. This makes for better behaviour if one particular message is causing problems (for example,
causing quota overflow, or provoking an error in a filter file). If such a delivery suffers a temporary
failure, the retry data is updated as normal, and subsequent delivery attempts from queue runs occur
only when the retry time for the local address is reached.

32.1 Changing retry rules

If you change the retry rules in your configuration, you should consider whether or not to delete the
retry data that is stored in Exim’s spool area in files with names like db/retry. Deleting any of Exim’s
hints files is always safe; that is why they are called “hints”.

The hints retry data contains suggested retry times based on the previous rules. In the case of a
long-running problem with a remote host, it might record the fact that the host has timed out. If your
new rules increase the timeout time for such a host, you should definitely remove the old retry data
and let Exim recreate it, based on the new rules. Otherwise Exim might bounce messages that it
should now be retaining.

32.2 Format of retry rules

Each retry rule occupies one line and consists of three or four parts, separated by white space: a
pattern, an error name, an optional list of sender addresses, and a list of retry parameters. The pattern
and sender lists must be enclosed in double quotes if they contain white space. The rules are searched
in order until one is found where the pattern, error name, and sender list (if present) match the failing
host or address, the error that occurred, and the message’s sender, respectively.

The pattern is any single item that may appear in an address list (see section 10.5). It is in fact
processed as a one-item address list, which means that it is expanded before being tested against the
address that has been delayed. A negated address list item is permitted. Address list processing treats
a plain domain name as if it were preceded by “*@”, which makes it possible for many retry rules to
start with just a domain. For example,

lookingglass.fict.example * F,24h,30m;

provides a rule for any address in the lookingglass.fict.example domain, whereas

332 Retry configuration (32)

alice@lookingglass.fict.example * F,24h,30m;

applies only to temporary failures involving the local part alice. In practice, almost all rules start with
a domain name pattern without a local part.

Warning: If you use a regular expression in a retry rule pattern, it must match a complete address, not
just a domain, because that is how regular expressions work in address lists.

^\Nxyz\d+\.abc\.example$\N * G,1h,10m,2 Wrong
^\N[^@]+@xyz\d+\.abc\.example$\N * G,1h,10m,2 Right

32.3 Choosing which retry rule to use for address errors

When Exim is looking for a retry rule after a routing attempt has failed (for example, after a DNS
timeout), each line in the retry configuration is tested against the complete address only if retry_use_
local_part is set for the router. Otherwise, only the domain is used, except when matching against a
regular expression, when the local part of the address is replaced with “*”. A domain on its own can
match a domain pattern, or a pattern that starts with “*@”. By default, retry_use_local_part is true
for routers where check_local_user is true, and false for other routers.

Similarly, when Exim is looking for a retry rule after a local delivery has failed (for example, after a
mailbox full error), each line in the retry configuration is tested against the complete address only if
retry_use_local_part is set for the transport (it defaults true for all local transports).

However, when Exim is looking for a retry rule after a remote delivery attempt suffers an address
error (a 4xx SMTP response for a recipient address), the whole address is always used as the key
when searching the retry rules. The rule that is found is used to create a retry time for the combination
of the failing address and the message’s sender. It is the combination of sender and recipient that is
delayed in subsequent queue runs until its retry time is reached. You can delay the recipient without
regard to the sender by setting address_retry_include_sender false in the smtp transport but this can
lead to problems with servers that regularly issue 4xx responses to RCPT commands.

32.4 Choosing which retry rule to use for host and message errors

For a temporary error that is not related to an individual address (for example, a connection timeout),
each line in the retry configuration is checked twice. First, the name of the remote host is used as a
domain name (preceded by “*@” when matching a regular expression). If this does not match the
line, the domain from the email address is tried in a similar fashion. For example, suppose the MX
records for a.b.c.example are

a.b.c.example MX 5 x.y.z.example
 MX 6 p.q.r.example
 MX 7 m.n.o.example

and the retry rules are

p.q.r.example * F,24h,30m;
a.b.c.example * F,4d,45m;

and a delivery to the host x.y.z.example suffers a connection failure. The first rule matches neither the
host nor the domain, so Exim looks at the second rule. This does not match the host, but it does match
the domain, so it is used to calculate the retry time for the host x.y.z.example. Meanwhile, Exim tries
to deliver to p.q.r.example. If this also suffers a host error, the first retry rule is used, because it
matches the host.

In other words, temporary failures to deliver to host p.q.r.example use the first rule to determine retry
times, but for all the other hosts for the domain a.b.c.example, the second rule is used. The second
rule is also used if routing to a.b.c.example suffers a temporary failure.

Note: The host name is used when matching the patterns, not its IP address. However, if a message is
routed directly to an IP address without the use of a host name, for example, if a manualroute router
contains a setting such as:

route_list = *.a.example 192.168.34.23

333 Retry configuration (32)

then the “host name” that is used when searching for a retry rule is the textual form of the IP address.

32.5 Retry rules for specific errors

The second field in a retry rule is the name of a particular error, or an asterisk, which matches any
error. The errors that can be tested for are:

auth_failed
Authentication failed when trying to send to a host in the hosts_require_auth list in an smtp
transport.

data_4xx
A 4xx error was received for an outgoing DATA command, either immediately after the command,
or after sending the message’s data.

mail_4xx
A 4xx error was received for an outgoing MAIL command.

rcpt_4xx
A 4xx error was received for an outgoing RCPT command.

For the three 4xx errors, either the first or both of the x’s can be given as specific digits, for example:
mail_45x or rcpt_436. For example, to recognize 452 errors given to RCPT commands for
addresses in a certain domain, and have retries every ten minutes with a one-hour timeout, you could
set up a retry rule of this form:

the.domain.name rcpt_452 F,1h,10m

These errors apply to both outgoing SMTP (the smtp transport) and outgoing LMTP (either the lmtp
transport, or the smtp transport in LMTP mode).

lost_connection
A server unexpectedly closed the SMTP connection. There may, of course, legitimate reasons for
this (host died, network died), but if it repeats a lot for the same host, it indicates something odd.

lookup
A DNS lookup for a host failed. Note that a dnslookup router will need to have matched its fail_
defer_domains option for this retry type to be usable. Also note that a manualroute router will
probably need its host_find_failed option set to defer.

refused_MX
A connection to a host obtained from an MX record was refused.

refused_A
A connection to a host not obtained from an MX record was refused.

refused
A connection was refused.

timeout_connect_MX
A connection attempt to a host obtained from an MX record timed out.

timeout_connect_A
A connection attempt to a host not obtained from an MX record timed out.

timeout_connect
A connection attempt timed out.

timeout_MX
There was a timeout while connecting or during an SMTP session with a host obtained from an
MX record.

timeout_A
There was a timeout while connecting or during an SMTP session with a host not obtained from an
MX record.

334 Retry configuration (32)

timeout
There was a timeout while connecting or during an SMTP session.

tls_required
The server was required to use TLS (it matched hosts_require_tls in the smtp transport), but either
did not offer TLS, or it responded with 4xx to STARTTLS, or there was a problem setting up the
TLS connection.

quota
A mailbox quota was exceeded in a local delivery by the appendfile transport.

quota_<time>
A mailbox quota was exceeded in a local delivery by the appendfile transport, and the mailbox has
not been accessed for <time>. For example, quota_4d applies to a quota error when the mailbox
has not been accessed for four days.

The idea of quota_<time> is to make it possible to have shorter timeouts when the mailbox is full and
is not being read by its owner. Ideally, it should be based on the last time that the user accessed the
mailbox. However, it is not always possible to determine this. Exim uses the following heuristic rules:

• If the mailbox is a single file, the time of last access (the “atime”) is used. As no new messages are
being delivered (because the mailbox is over quota), Exim does not access the file, so this is the
time of last user access.

• For a maildir delivery, the time of last modification of the new subdirectory is used. As the mailbox
is over quota, no new files are created in the new subdirectory, because no new messages are being
delivered. Any change to the new subdirectory is therefore assumed to be the result of an MUA
moving a new message to the cur directory when it is first read. The time that is used is therefore
the last time that the user read a new message.

• For other kinds of multi-file mailbox, the time of last access cannot be obtained, so a retry rule that
uses this type of error field is never matched.

The quota errors apply both to system-enforced quotas and to Exim’s own quota mechanism in the
appendfile transport. The quota error also applies when a local delivery is deferred because a partition
is full (the ENOSPC error).

32.6 Retry rules for specified senders

You can specify retry rules that apply only when the failing message has a specific sender. In particu-
lar, this can be used to define retry rules that apply only to bounce messages. The third item in a retry
rule can be of this form:

senders=<address list>

The retry timings themselves are then the fourth item. For example:

* rcpt_4xx senders=: F,1h,30m

matches recipient 4xx errors for bounce messages sent to any address at any host. If the address list
contains white space, it must be enclosed in quotes. For example:

a.domain rcpt_452 senders="xb.dom : yc.dom" G,8h,10m,1.5

Warning: This facility can be unhelpful if it is used for host errors (which do not depend on the
recipient). The reason is that the sender is used only to match the retry rule. Once the rule has been
found for a host error, its contents are used to set a retry time for the host, and this will apply to all
messages, not just those with specific senders.

When testing retry rules using -brt, you can supply a sender using the -f command line option, like
this:

exim -f "" -brt user@dom.ain

If you do not set -f with -brt, a retry rule that contains a senders list is never matched.

335 Retry configuration (32)

32.7 Retry parameters

The third (or fourth, if a senders list is present) field in a retry rule is a sequence of retry parameter
sets, separated by semicolons. Each set consists of

<letter>,<cutoff time>,<arguments>

The letter identifies the algorithm for computing a new retry time; the cutoff time is the time beyond
which this algorithm no longer applies, and the arguments vary the algorithm’s action. The cutoff time
is measured from the time that the first failure for the domain (combined with the local part if
relevant) was detected, not from the time the message was received.

The available algorithms are:

• F: retry at fixed intervals. There is a single time parameter specifying the interval.

• G: retry at geometrically increasing intervals. The first argument specifies a starting value for the
interval, and the second a multiplier, which is used to increase the size of the interval at each retry.

• H: retry at randomized intervals. The arguments are as for G. For each retry, the previous interval is
multiplied by the factor in order to get a maximum for the next interval. The minimum interval is
the first argument of the parameter, and an actual interval is chosen randomly between them. Such
a rule has been found to be helpful in cluster configurations when all the members of the cluster
restart at once, and may therefore synchronize their queue processing times.

When computing the next retry time, the algorithm definitions are scanned in order until one whose
cutoff time has not yet passed is reached. This is then used to compute a new retry time that is later
than the current time. In the case of fixed interval retries, this simply means adding the interval to the
current time. For geometrically increasing intervals, retry intervals are computed from the rule’s
parameters until one that is greater than the previous interval is found. The main configuration
variable retry_interval_max limits the maximum interval between retries. It cannot be set greater
than 24h, which is its default value.

A single remote domain may have a number of hosts associated with it, and each host may have more
than one IP address. Retry algorithms are selected on the basis of the domain name, but are applied to
each IP address independently. If, for example, a host has two IP addresses and one is unusable, Exim
will generate retry times for it and will not try to use it until its next retry time comes. Thus the good
IP address is likely to be tried first most of the time.

Retry times are hints rather than promises. Exim does not make any attempt to run deliveries exactly
at the computed times. Instead, a queue runner process starts delivery processes for delayed messages
periodically, and these attempt new deliveries only for those addresses that have passed their next
retry time. If a new message arrives for a deferred address, an immediate delivery attempt occurs only
if the address has passed its retry time. In the absence of new messages, the minimum time between
retries is the interval between queue runner processes. There is not much point in setting retry times
of five minutes if your queue runners happen only once an hour, unless there are a significant number
of incoming messages (which might be the case on a system that is sending everything to a smart
host, for example).

The data in the retry hints database can be inspected by using the exim_dumpdb or exim_fixdb utility
programs (see chapter 54). The latter utility can also be used to change the data. The exinext utility
script can be used to find out what the next retry times are for the hosts associated with a particular
mail domain, and also for local deliveries that have been deferred.

32.8 Retry rule examples

Here are some example retry rules:

alice@wonderland.fict.example quota_5d F,7d,3h
wonderland.fict.example quota_5d
wonderland.fict.example * F,1h,15m; G,2d,1h,2;
lookingglass.fict.example * F,24h,30m;
* refused_A F,2h,20m;
* * F,2h,15m; G,16h,1h,1.5; F,5d,8h

336 Retry configuration (32)

The first rule sets up special handling for mail to alice@wonderland.fict.example when there is an
over-quota error and the mailbox has not been read for at least 5 days. Retries continue every three
hours for 7 days. The second rule handles over-quota errors for all other local parts at
wonderland.fict.example; the absence of a local part has the same effect as supplying “*@”. As no
retry algorithms are supplied, messages that fail are bounced immediately if the mailbox has not been
read for at least 5 days.

The third rule handles all other errors at wonderland.fict.example; retries happen every 15 minutes for
an hour, then with geometrically increasing intervals until two days have passed since a delivery first
failed. After the first hour there is a delay of one hour, then two hours, then four hours, and so on (this
is a rather extreme example).

The fourth rule controls retries for the domain lookingglass.fict.example. They happen every 30
minutes for 24 hours only. The remaining two rules handle all other domains, with special action for
connection refusal from hosts that were not obtained from an MX record.

The final rule in a retry configuration should always have asterisks in the first two fields so as to
provide a general catch-all for any addresses that do not have their own special handling. This
example tries every 15 minutes for 2 hours, then with intervals starting at one hour and increasing by
a factor of 1.5 up to 16 hours, then every 8 hours up to 5 days.

32.9 Timeout of retry data

Exim timestamps the data that it writes to its retry hints database. When it consults the data during a
delivery it ignores any that is older than the value set in retry_data_expire (default 7 days). If, for
example, a host hasn’t been tried for 7 days, Exim will try to deliver to it immediately a message
arrives, and if that fails, it will calculate a retry time as if it were failing for the first time.

This improves the behaviour for messages routed to rarely-used hosts such as MX backups. If such a
host was down at one time, and happens to be down again when Exim tries a month later, using the
old retry data would imply that it had been down all the time, which is not a justified assumption.

If a host really is permanently dead, this behaviour causes a burst of retries every now and again, but
only if messages routed to it are rare. If there is a message at least once every 7 days the retry data
never expires.

32.10 Long-term failures

Special processing happens when an email address has been failing for so long that the cutoff time for
the last algorithm is reached. For example, using the default retry rule:

* * F,2h,15m; G,16h,1h,1.5; F,4d,6h

the cutoff time is four days. Reaching the retry cutoff is independent of how long any specific
message has been failing; it is the length of continuous failure for the recipient address that counts.

When the cutoff time is reached for a local delivery, or for all the IP addresses associated with a
remote delivery, a subsequent delivery failure causes Exim to give up on the address, and a bounce
message is generated. In order to cater for new messages that use the failing address, a next retry time
is still computed from the final algorithm, and is used as follows:

For local deliveries, one delivery attempt is always made for any subsequent messages. If this delivery
fails, the address fails immediately. The post-cutoff retry time is not used.

If the delivery is remote, there are two possibilities, controlled by the delay_after_cutoff option of
the smtp transport. The option is true by default. Until the post-cutoff retry time for one of the IP
addresses, as set by the retry_data_expire option, is reached, the failing email address is bounced
immediately, without a delivery attempt taking place. After that time, one new delivery attempt is
made to those IP addresses that are past their retry times, and if that still fails, the address is bounced
and new retry times are computed.

In other words, when all the hosts for a given email address have been failing for a long time, Exim
bounces rather then defers until one of the hosts’ retry times is reached. Then it tries once, and

337 Retry configuration (32)

bounces if that attempt fails. This behaviour ensures that few resources are wasted in repeatedly
trying to deliver to a broken destination, but if the host does recover, Exim will eventually notice.

If delay_after_cutoff is set false, Exim behaves differently. If all IP addresses are past their final
cutoff time, Exim tries to deliver to those IP addresses that have not been tried since the message
arrived. If there are no suitable IP addresses, or if they all fail, the address is bounced. In other words,
it does not delay when a new message arrives, but tries the expired addresses immediately, unless they
have been tried since the message arrived. If there is a continuous stream of messages for the failing
domains, setting delay_after_cutoff false means that there will be many more attempts to deliver to
permanently failing IP addresses than when delay_after_cutoff is true.

32.11 Deliveries that work intermittently

Some additional logic is needed to cope with cases where a host is intermittently available, or when a
message has some attribute that prevents its delivery when others to the same address get through. In
this situation, because some messages are successfully delivered, the “retry clock” for the host or
address keeps getting reset by the successful deliveries, and so failing messages remain in the queue
for ever because the cutoff time is never reached.

Two exceptional actions are applied to prevent this happening. The first applies to errors that are
related to a message rather than a remote host. Section 49.1.1 has a discussion of the different kinds
of error; examples of message-related errors are 4xx responses to MAIL or DATA commands, and
quota failures. For this type of error, if a message’s arrival time is earlier than the “first failed” time
for the error, the earlier time is used when scanning the retry rules to decide when to try next and
when to time out the address.

The exceptional second action applies in all cases. If a message has been on the queue for longer than
the cutoff time of any applicable retry rule for a given address, a delivery is attempted for that
address, even if it is not yet time, and if this delivery fails, the address is timed out. A new retry time
is not computed in this case, so that other messages for the same address are considered immediately.

338 Retry configuration (32)

33. SMTP authentication

The “authenticators” section of Exim’s runtime configuration is concerned with SMTP authentication.
This facility is an extension to the SMTP protocol, described in RFC 2554, which allows a client
SMTP host to authenticate itself to a server. This is a common way for a server to recognize clients
that are permitted to use it as a relay. SMTP authentication is not of relevance to the transfer of mail
between servers that have no managerial connection with each other.

The name of an authenticator is limited to be 64 ASCII characters long; prior to Exim 4.95 names
would be silently truncated at this length, but now it is enforced.

Very briefly, the way SMTP authentication works is as follows:

(1) The server advertises a number of authentication mechanisms in response to the client’s EHLO
command.

(2) The client issues an AUTH command, naming a specific mechanism. The command may,
optionally, contain some authentication data.

(3) The server may issue one or more challenges, to which the client must send appropriate
responses. In simple authentication mechanisms, the challenges are just prompts for user names
and passwords. The server does not have to issue any challenges – in some mechanisms the
relevant data may all be transmitted with the AUTH command.

(4) The server either accepts or denies authentication.

(5) If authentication succeeds, the client may optionally make use of the AUTH option on the MAIL
command to pass an authenticated sender in subsequent mail transactions. Authentication lasts
for the remainder of the SMTP connection.

(6) If authentication fails, the client may give up, or it may try a different authentication mechanism,
or it may try transferring mail over the unauthenticated connection.

If you are setting up a client, and want to know which authentication mechanisms the server supports,
you can use Telnet to connect to port 25 (the SMTP port) on the server, and issue an EHLO com-
mand. The response to this includes the list of supported mechanisms. For example:

$ telnet server.example 25
Trying 192.168.34.25...
Connected to server.example.
Escape character is '^]'.
220 server.example ESMTP Exim 4.20 ...
ehlo client.example

250-server.example Hello client.example [10.8.4.5]
250-SIZE 52428800
250-PIPELINING
250-AUTH PLAIN
250 HELP

The second-last line of this example output shows that the server supports authentication using the
PLAIN mechanism. In Exim, the different authentication mechanisms are configured by specifying
authenticator drivers. Like the routers and transports, which authenticators are included in the binary
is controlled by build-time definitions. The following are currently available, included by setting

AUTH_CRAM_MD5=yes
AUTH_CYRUS_SASL=yes
AUTH_DOVECOT=yes
AUTH_EXTERNAL=yes
AUTH_GSASL=yes
AUTH_HEIMDAL_GSSAPI=yes
AUTH_PLAINTEXT=yes
AUTH_SPA=yes
AUTH_TLS=yes

339 SMTP authentication (33)

in Local/Makefile, respectively. The first of these supports the CRAM-MD5 authentication mechan-
ism (RFC 2195), and the second provides an interface to the Cyrus SASL authentication library. The
third is an interface to Dovecot’s authentication system, delegating the work via a socket interface.
The fourth provides for negotiation of authentication done via non-SMTP means, as defined by RFC
4422 Appendix A. The fifth provides an interface to the GNU SASL authentication library, which
provides mechanisms but typically not data sources. The sixth provides direct access to Heimdal
GSSAPI, geared for Kerberos, but supporting setting a server keytab. The seventh can be configured
to support the PLAIN authentication mechanism (RFC 2595) or the LOGIN mechanism, which is not
formally documented, but used by several MUAs. The eighth authenticator supports Microsoft’s
Secure Password Authentication mechanism. The last is an Exim authenticator but not an SMTP one;
instead it can use information from a TLS negotiation.

The authenticators are configured using the same syntax as other drivers (see section 6.23). If no
authenticators are required, no authentication section need be present in the configuration file. Each
authenticator can in principle have both server and client functions. When Exim is receiving SMTP
mail, it is acting as a server; when it is sending out messages over SMTP, it is acting as a client.
Authenticator configuration options are provided for use in both these circumstances.

To make it clear which options apply to which situation, the prefixes server_ and client_ are used on
option names that are specific to either the server or the client function, respectively. Server and client
functions are disabled if none of their options are set. If an authenticator is to be used for both server
and client functions, a single definition, using both sets of options, is required. For example:

cram:
 driver = cram_md5
 public_name = CRAM-MD5
 server_secret = ${if eq{$auth1}{ph10}{secret1}fail}
 client_name = ph10
 client_secret = secret2

The server_ option is used when Exim is acting as a server, and the client_ options when it is acting
as a client.

Descriptions of the individual authenticators are given in subsequent chapters. The remainder of this
chapter covers the generic options for the authenticators, followed by general discussion of the way
authentication works in Exim.

Beware: the meaning of $auth1, $auth2, ... varies on a per-driver and per-mechanism basis. Please
read carefully to determine which variables hold account labels such as usercodes and which hold
passwords or other authenticating data.

Note that some mechanisms support two different identifiers for accounts: the authentication id and
the authorization id. The contractions authn and authz are commonly encountered. The American
spelling is standard here. Conceptually, authentication data such as passwords are tied to the identifier
used to authenticate; servers may have rules to permit one user to act as a second user, so that after
login the session is treated as though that second user had logged in. That second user is the
authorization id. A robust configuration might confirm that the authz field is empty or matches the
authn field. Often this is just ignored. The authn can be considered as verified data, the authz as an
unverified request which the server might choose to honour.

A realm is a text string, typically a domain name, presented by a server to a client to help it select an
account and credentials to use. In some mechanisms, the client and server provably agree on the
realm, but clients typically can not treat the realm as secure data to be blindly trusted.

33.1 Generic options for authenticators

client_condition Use: authenticators Type: string† Default: unset

When Exim is authenticating as a client, it skips any authenticator whose client_condition expansion
yields “0”, “no”, or “false”. This can be used, for example, to skip plain text authenticators when the
connection is not encrypted by a setting such as:

340 SMTP authentication (33)

client_condition = ${if !eq{$tls_out_cipher}{}}

client_set_id Use: authenticators Type: string† Default: unset

When client authentication succeeds, this condition is expanded; the result is used in the log lines for
outbound messages. Typically it will be the user name used for authentication.

driver Use: authenticators Type: string Default: unset

This option must always be set. It specifies which of the available authenticators is to be used.

public_name Use: authenticators Type: string Default: unset

This option specifies the name of the authentication mechanism that the driver implements, and by
which it is known to the outside world. These names should contain only upper case letters, digits,
underscores, and hyphens (RFC 2222), but Exim in fact matches them caselessly. If public_name is
not set, it defaults to the driver’s instance name.

server_advertise_condition Use: authenticators Type: string† Default: unset

When a server is about to advertise an authentication mechanism, the condition is expanded. If it
yields the empty string, “0”, “no”, or “false”, the mechanism is not advertised. If the expansion fails,
the mechanism is not advertised. If the failure was not forced, and was not caused by a lookup defer,
the incident is logged. See section 33.3 below for further discussion.

server_condition Use: authenticators Type: string† Default: unset

This option must be set for a plaintext server authenticator, where it is used directly to control
authentication. See section 34.3 for details.

For the gsasl authenticator, this option is required for various mechanisms; see chapter 38 for details.

For the other authenticators, server_condition can be used as an additional authentication or
authorization mechanism that is applied after the other authenticator conditions succeed. If it is set, it
is expanded when the authenticator would otherwise return a success code. If the expansion is forced
to fail, authentication fails. Any other expansion failure causes a temporary error code to be returned.
If the result of a successful expansion is an empty string, “0”, “no”, or “false”, authentication fails. If
the result of the expansion is “1”, “yes”, or “true”, authentication succeeds. For any other result, a
temporary error code is returned, with the expanded string as the error text.

server_debug_print Use: authenticators Type: string† Default: unset

If this option is set and authentication debugging is enabled (see the -d command line option), the
string is expanded and included in the debugging output when the authenticator is run as a server.
This can help with checking out the values of variables. If expansion of the string fails, the error
message is written to the debugging output, and Exim carries on processing.

server_set_id Use: authenticators Type: string† Default: unset

When an Exim server successfully authenticates a client, this string is expanded using data from the
authentication, and preserved for any incoming messages in the variable $authenticated_id. It is also
included in the log lines for incoming messages. For example, a user/password authenticator con-
figuration might preserve the user name that was used to authenticate, and refer to it subsequently

341 SMTP authentication (33)

during delivery of the message. On a failing authentication the expansion result is instead saved in the
$authenticated_fail_id variable. If expansion fails, the option is ignored.

server_mail_auth_condition Use: authenticators Type: string† Default: unset

This option allows a server to discard authenticated sender addresses supplied as part of MAIL
commands in SMTP connections that are authenticated by the driver on which server_mail_auth_
condition is set. The option is not used as part of the authentication process; instead its (unexpanded)
value is remembered for later use. How it is used is described in the following section.

33.2 The AUTH parameter on MAIL commands

When a client supplied an AUTH= item on a MAIL command, Exim applies the following checks
before accepting it as the authenticated sender of the message:

• If the connection is not using extended SMTP (that is, HELO was used rather than EHLO), the use
of AUTH= is a syntax error.

• If the value of the AUTH= parameter is “<>”, it is ignored.

• If acl_smtp_mailauth is defined, the ACL it specifies is run. While it is running, the value of
$authenticated_sender is set to the value obtained from the AUTH= parameter. If the ACL does
not yield “accept”, the value of $authenticated_sender is deleted. The acl_smtp_mailauth ACL
may not return “drop” or “discard”. If it defers, a temporary error code (451) is given for the MAIL
command.

• If acl_smtp_mailauth is not defined, the value of the AUTH= parameter is accepted and placed in
$authenticated_sender only if the client has authenticated.

• If the AUTH= value was accepted by either of the two previous rules, and the client has
authenticated, and the authenticator has a setting for the server_mail_auth_condition, the con-
dition is checked at this point. The valued that was saved from the authenticator is expanded. If the
expansion fails, or yields an empty string, “0”, “no”, or “false”, the value of $authenticated_sender
is deleted. If the expansion yields any other value, the value of $authenticated_sender is retained
and passed on with the message.

When $authenticated_sender is set for a message, it is passed on to other hosts to which Exim
authenticates as a client. Do not confuse this value with $authenticated_id, which is a string obtained
from the authentication process, and which is not usually a complete email address.

Whenever an AUTH= value is ignored, the incident is logged. The ACL for MAIL, if defined, is run
after AUTH= is accepted or ignored. It can therefore make use of $authenticated_sender. The con-
verse is not true: the value of $sender_address is not yet set up when the acl_smtp_mailauth ACL is
run.

33.3 Authentication on an Exim server

When Exim receives an EHLO command, it advertises the public names of those authenticators that
are configured as servers, subject to the following conditions:

• The client host must match auth_advertise_hosts (default *).

• If the server_advertise_condition option is set, its expansion must not yield the empty string, “0”,
“no”, or “false”.

The order in which the authenticators are defined controls the order in which the mechanisms are
advertised.

Some mail clients (for example, some versions of Netscape) require the user to provide a name and
password for authentication whenever AUTH is advertised, even though authentication may not in
fact be needed (for example, Exim may be set up to allow unconditional relaying from the client by
an IP address check). You can make such clients more friendly by not advertising AUTH to them. For

342 SMTP authentication (33)

example, if clients on the 10.9.8.0/24 network are permitted (by the ACL that runs for RCPT) to relay
without authentication, you should set

auth_advertise_hosts = ! 10.9.8.0/24

so that no authentication mechanisms are advertised to them.

The server_advertise_condition controls the advertisement of individual authentication mechanisms.
For example, it can be used to restrict the advertisement of a particular mechanism to encrypted
connections, by a setting such as:

server_advertise_condition = ${if eq{$tls_in_cipher}{}{no}{yes}}

If the session is encrypted, $tls_in_cipher is not empty, and so the expansion yields “yes”, which
allows the advertisement to happen.

When an Exim server receives an AUTH command from a client, it rejects it immediately if AUTH
was not advertised in response to an earlier EHLO command. This is the case if

• The client host does not match auth_advertise_hosts; or

• No authenticators are configured with server options; or

• Expansion of server_advertise_condition blocked the advertising of all the server authenticators.

Otherwise, Exim runs the ACL specified by acl_smtp_auth in order to decide whether to accept the
command. If acl_smtp_auth is not set, AUTH is accepted from any client host.

If AUTH is not rejected by the ACL, Exim searches its configuration for a server authentication
mechanism that was advertised in response to EHLO and that matches the one named in the AUTH
command. If it finds one, it runs the appropriate authentication protocol, and authentication either
succeeds or fails. If there is no matching advertised mechanism, the AUTH command is rejected with
a 504 error.

When a message is received from an authenticated host, the value of $received_protocol is set to
“esmtpa” or “esmtpsa” instead of “esmtp” or “esmtps”, and $sender_host_authenticated contains the
name (not the public name) of the authenticator driver that successfully authenticated the client from
which the message was received. This variable is empty if there was no successful authentication.

Successful authentication sets up information used by the authresults expansion item.

If an authenticator is run and does not succeed, an event (see 61) of type "auth:fail" is raised. While
the event is being processed the variables $sender_host_authenticated (with the authenticator name)
and $authenticated_fail_id (as set by the authenticator server_set_id option) will be valid. If the
event is serviced and a string is returned then the string will be logged instead of the default log line.
See <<CHAPevents>> for details on events.

33.4 Testing server authentication

Exim’s -bh option can be useful for testing server authentication configurations. The data for the
AUTH command has to be sent using base64 encoding. A quick way to produce such data for testing
is the following Perl script:

use MIME::Base64;
printf ("%s", encode_base64(eval "\"$ARGV[0]\""));

This interprets its argument as a Perl string, and then encodes it. The interpretation as a Perl string
allows binary zeros, which are required for some kinds of authentication, to be included in the data.
For example, a command line to run this script on such data might be

encode '\0user\0password'

Note the use of single quotes to prevent the shell interpreting the backslashes, so that they can be
interpreted by Perl to specify characters whose code value is zero.

343 SMTP authentication (33)

Warning 1: If either of the user or password strings starts with an octal digit, you must use three
zeros instead of one after the leading backslash. If you do not, the octal digit that starts your string
will be incorrectly interpreted as part of the code for the first character.

Warning 2: If there are characters in the strings that Perl interprets specially, you must use a Perl
escape to prevent them being misinterpreted. For example, a command such as

encode '\0user@domain.com\0pas$$word'

gives an incorrect answer because of the unescaped “@” and “$” characters.

If you have the mimencode command installed, another way to produce base64-encoded strings is to
run the command

echo -e -n `\0user\0password' | mimencode

The -e option of echo enables the interpretation of backslash escapes in the argument, and the -n
option specifies no newline at the end of its output. However, not all versions of echo recognize these
options, so you should check your version before relying on this suggestion.

33.5 Authentication by an Exim client

The smtp transport has two options called hosts_require_auth and hosts_try_auth. When the smtp
transport connects to a server that announces support for authentication, and the host matches an entry
in either of these options, Exim (as a client) tries to authenticate as follows:

• For each authenticator that is configured as a client, in the order in which they are defined in the
configuration, it searches the authentication mechanisms announced by the server for one whose
name matches the public name of the authenticator.

• When it finds one that matches, it runs the authenticator’s client code. The variables $host and
$host_address are available for any string expansions that the client might do. They are set to the
server’s name and IP address. If any expansion is forced to fail, the authentication attempt is
abandoned, and Exim moves on to the next authenticator. Otherwise an expansion failure causes
delivery to be deferred.

• If the result of the authentication attempt is a temporary error or a timeout, Exim abandons trying
to send the message to the host for the moment. It will try again later. If there are any backup hosts
available, they are tried in the usual way.

• If the response to authentication is a permanent error (5xx code), an event (see 61) of type
"auth:fail" is raised. While the event is being processed the variable $sender_host_authenticated
(with the authenticator name) will be valid. If the event is serviced and a string is returned then the
string will be logged. See <<CHAPevents>> for details on events.

• If the response to authentication is a permanent error (5xx code), Exim carries on searching the list
of authenticators and tries another one if possible. If all authentication attempts give permanent
errors, or if there are no attempts because no mechanisms match (or option expansions force
failure), what happens depends on whether the host matches hosts_require_auth or hosts_try_
auth. In the first case, a temporary error is generated, and delivery is deferred. The error can be
detected in the retry rules, and thereby turned into a permanent error if you wish. In the second
case, Exim tries to deliver the message unauthenticated.

Note that the hostlist test for whether to do authentication can be confused if name-IP lookups change
between the time the peer is decided upon and the time that the transport runs. For example, with a
manualroute router given a host name, and with DNS "round-robin" used by that name: if the local
resolver cache times out between the router and the transport running, the transport may get an IP for
the name for its authentication check which does not match the connection peer IP. No authentication
will then be done, despite the names being identical.

For such cases use a separate transport which always authenticates.

When Exim has authenticated itself to a remote server, it adds the AUTH parameter to the MAIL
commands it sends, if it has an authenticated sender for the message. If the message came from a
remote host, the authenticated sender is the one that was receiving on an incoming MAIL command,

344 SMTP authentication (33)

provided that the incoming connection was authenticated and the server_mail_auth condition
allowed the authenticated sender to be retained. If a local process calls Exim to send a message, the
sender address that is built from the login name and qualify_domain is treated as authenticated.
However, if the authenticated_sender option is set on the smtp transport, it overrides the
authenticated sender that was received with the message.

345 SMTP authentication (33)

34. The plaintext authenticator

The plaintext authenticator can be configured to support the PLAIN and LOGIN authentication mech-
anisms, both of which transfer authentication data as plain (unencrypted) text (though base64
encoded). The use of plain text is a security risk; you are strongly advised to insist on the use of
SMTP encryption (see chapter 43) if you use the PLAIN or LOGIN mechanisms. If you do use
unencrypted plain text, you should not use the same passwords for SMTP connections as you do for
login accounts.

34.1 Avoiding cleartext use

The following generic option settings will disable plaintext authenticators when TLS is not being
used:

server_advertise_condition = ${if def:tls_in_cipher }
client_condition = ${if def:tls_out_cipher}

Note: a plaintext SMTP AUTH done inside TLS is not vulnerable to casual snooping, but is still
vulnerable to a Man In The Middle attack unless certificates (including their names) have been
properly verified.

34.2 Plaintext server options

When configured as a server, plaintext uses the following options:

server_condition Use: authenticators Type: string† Default: unset

This is actually a global authentication option, but it must be set in order to configure the plaintext
driver as a server. Its use is described below.

server_prompts Use: plaintext Type: string list† Default: unset

The contents of this option, after expansion, must be a colon-separated list of prompt strings. If
expansion fails, a temporary authentication rejection is given.

34.3 Using plaintext in a server

When running as a server, plaintext performs the authentication test by expanding a string. The data
sent by the client with the AUTH command, or in response to subsequent prompts, is base64 encoded,
and so may contain any byte values when decoded. If any data is supplied with the command, it is
treated as a list of strings, separated by NULs (binary zeros), the first three of which are placed in the
expansion variables $auth1, $auth2, and $auth3 (neither LOGIN nor PLAIN uses more than three
strings).

For compatibility with previous releases of Exim, the values are also placed in the expansion variables
$1, $2, and $3. However, the use of these variables for this purpose is now deprecated, as it can lead
to confusion in string expansions that also use them for other things.

If there are more strings in server_prompts than the number of strings supplied with the AUTH
command, the remaining prompts are used to obtain more data. Each response from the client may be
a list of NUL-separated strings.

Once a sufficient number of data strings have been received, server_condition is expanded. If the
expansion is forced to fail, authentication fails. Any other expansion failure causes a temporary error
code to be returned. If the result of a successful expansion is an empty string, “0”, “no”, or “false”,
authentication fails. If the result of the expansion is “1”, “yes”, or “true”, authentication succeeds and
the generic server_set_id option is expanded and saved in $authenticated_id. For any other result, a
temporary error code is returned, with the expanded string as the error text.

346 The plaintext authenticator (34)

Warning: If you use a lookup in the expansion to find the user’s password, be sure to make the
authentication fail if the user is unknown. There are good and bad examples at the end of the next
section.

34.4 The PLAIN authentication mechanism

The PLAIN authentication mechanism (RFC 2595) specifies that three strings be sent as one item of
data (that is, one combined string containing two NUL separators). The data is sent either as part of
the AUTH command, or subsequently in response to an empty prompt from the server.

The second and third strings are a user name and a corresponding password. Using a single fixed user
name and password as an example, this could be configured as follows:

fixed_plain:
 driver = plaintext
 public_name = PLAIN
 server_prompts = :
 server_condition = \
 ${if and {{eq{$auth2}{username}}{eq{$auth3}{mysecret}}}}
 server_set_id = $auth2

Note that the default result strings from if (“true” or an empty string) are exactly what we want here,
so they need not be specified. Obviously, if the password contains expansion-significant characters
such as dollar, backslash, or closing brace, they have to be escaped.

The server_prompts setting specifies a single, empty prompt (empty items at the end of a string list
are ignored). If all the data comes as part of the AUTH command, as is commonly the case, the
prompt is not used. This authenticator is advertised in the response to EHLO as

250-AUTH PLAIN

and a client host can authenticate itself by sending the command

AUTH PLAIN AHVzZXJuYW1lAG15c2VjcmV0

As this contains three strings (more than the number of prompts), no further data is required from the
client. Alternatively, the client may just send

AUTH PLAIN

to initiate authentication, in which case the server replies with an empty prompt. The client must
respond with the combined data string.

The data string is base64 encoded, as required by the RFC. This example, when decoded, is
<NUL>username<NUL>mysecret, where <NUL> represents a zero byte. This is split up into
three strings, the first of which is empty. The server_condition option in the authenticator checks that
the second two are username and mysecret respectively.

Having just one fixed user name and password, as in this example, is not very realistic, though for a
small organization with only a handful of authenticating clients it could make sense.

A more sophisticated instance of this authenticator could use the user name in $auth2 to look up a
password in a file or database, and maybe do an encrypted comparison (see crypteq in chapter 11).
Here is a example of this approach, where the passwords are looked up in a DBM file. Warning: This
is an incorrect example:

server_condition = \
 ${if eq{$auth3}{${lookup{$auth2}dbm{/etc/authpwd}}}}

The expansion uses the user name ($auth2) as the key to look up a password, which it then compares
to the supplied password ($auth3). Why is this example incorrect? It works fine for existing users, but
consider what happens if a non-existent user name is given. The lookup fails, but as no success/failure
strings are given for the lookup, it yields an empty string. Thus, to defeat the authentication, all a
client has to do is to supply a non-existent user name and an empty password. The correct way of
writing this test is:

347 The plaintext authenticator (34)

server_condition = ${lookup{$auth2}dbm{/etc/authpwd}\
 {${if eq{$value}{$auth3}}} {false}}

In this case, if the lookup succeeds, the result is checked; if the lookup fails, “false” is returned and
authentication fails. If crypteq is being used instead of eq, the first example is in fact safe, because
crypteq always fails if its second argument is empty. However, the second way of writing the test
makes the logic clearer.

34.5 The LOGIN authentication mechanism

The LOGIN authentication mechanism is not documented in any RFC, but is in use in a number of
programs. No data is sent with the AUTH command. Instead, a user name and password are supplied
separately, in response to prompts. The plaintext authenticator can be configured to support this as in
this example:

fixed_login:
 driver = plaintext
 public_name = LOGIN
 server_prompts = User Name : Password
 server_condition = \
 ${if and {{eq{$auth1}{username}}{eq{$auth2}{mysecret}}}}
 server_set_id = $auth1

Because of the way plaintext operates, this authenticator accepts data supplied with the AUTH com-
mand (in contravention of the specification of LOGIN), but if the client does not supply it (as is the
case for LOGIN clients), the prompt strings are used to obtain two data items.

Some clients are very particular about the precise text of the prompts. For example, Outlook Express
is reported to recognize only “Username:” and “Password:”. Here is an example of a LOGIN
authenticator that uses those strings. It uses the ldapauth expansion condition to check the user name
and password by binding to an LDAP server:

login:
 driver = plaintext
 public_name = LOGIN
 server_prompts = Username:: : Password::
 server_condition = ${if and{{ \
 !eq{}{$auth1} }{ \
 ldapauth{\
 user="uid=${quote_ldap_dn:$auth1},ou=people,o=example.org" \
 pass=${quote:$auth2} \
 ldap://ldap.example.org/} }} }
 server_set_id = uid=$auth1,ou=people,o=example.org

We have to check that the username is not empty before using it, because LDAP does not permit
empty DN components. We must also use the quote_ldap_dn operator to correctly quote the DN for
authentication. However, the basic quote operator, rather than any of the LDAP quoting operators, is
the correct one to use for the password, because quoting is needed only to make the password
conform to the Exim syntax. At the LDAP level, the password is an uninterpreted string.

34.6 Support for different kinds of authentication

A number of string expansion features are provided for the purpose of interfacing to different ways of
user authentication. These include checking traditionally encrypted passwords from /etc/passwd (or
equivalent), PAM, Radius, ldapauth, pwcheck, and saslauthd. For details see section 11.7.

34.7 Using plaintext in a client

The plaintext authenticator has two client options:

348 The plaintext authenticator (34)

client_ignore_invalid_base64 Use: plaintext Type: boolean Default: false

If the client receives a server prompt that is not a valid base64 string, authentication is abandoned by
default. However, if this option is set true, the error in the challenge is ignored and the client sends the
response as usual.

client_send Use: plaintext Type: string† Default: unset

The string is a colon-separated list of authentication data strings. Each string is independently
expanded before being sent to the server. The first string is sent with the AUTH command; any more
strings are sent in response to prompts from the server. Before each string is expanded, the value of
the most recent prompt is placed in the next $auth<n> variable, starting with $auth1 for the first
prompt. Up to three prompts are stored in this way. Thus, the prompt that is received in response to
sending the first string (with the AUTH command) can be used in the expansion of the second string,
and so on. If an invalid base64 string is received when client_ignore_invalid_base64 is set, an empty
string is put in the $auth<n> variable.

Note: You cannot use expansion to create multiple strings, because splitting takes priority and hap-
pens first.

Because the PLAIN authentication mechanism requires NUL (binary zero) bytes in the data, further
processing is applied to each string before it is sent. If there are any single circumflex characters in
the string, they are converted to NULs. Should an actual circumflex be required as data, it must be
doubled in the string.

This is an example of a client configuration that implements the PLAIN authentication mechanism
with a fixed user name and password:

fixed_plain:
 driver = plaintext
 public_name = PLAIN
 client_send = ^username^mysecret

The lack of colons means that the entire text is sent with the AUTH command, with the circumflex
characters converted to NULs. Note that due to the ambiguity of parsing three consectutive circumflex
characters there is no way to provide a password having a leading circumflex.

A similar example that uses the LOGIN mechanism is:

fixed_login:
 driver = plaintext
 public_name = LOGIN
 client_send = : username : mysecret

The initial colon means that the first string is empty, so no data is sent with the AUTH command
itself. The remaining strings are sent in response to prompts.

349 The plaintext authenticator (34)

35. The cram_md5 authenticator

The CRAM-MD5 authentication mechanism is described in RFC 2195. The server sends a challenge
string to the client, and the response consists of a user name and the CRAM-MD5 digest of the
challenge string combined with a secret string (password) which is known to both server and client.
Thus, the secret is not sent over the network as plain text, which makes this authenticator more secure
than plaintext. However, the downside is that the secret has to be available in plain text at either end.

35.1 Using cram_md5 as a server

This authenticator has one server option, which must be set to configure the authenticator as a server:

server_secret Use: cram_md5 Type: string† Default: unset

When the server receives the client’s response, the user name is placed in the expansion variable
$auth1, and server_secret is expanded to obtain the password for that user. The server then computes
the CRAM-MD5 digest that the client should have sent, and checks that it received the correct string.
If the expansion of server_secret is forced to fail, authentication fails. If the expansion fails for some
other reason, a temporary error code is returned to the client.

For compatibility with previous releases of Exim, the user name is also placed in $1. However, the use
of this variables for this purpose is now deprecated, as it can lead to confusion in string expansions
that also use numeric variables for other things.

For example, the following authenticator checks that the user name given by the client is “ph10”, and
if so, uses “secret” as the password. For any other user name, authentication fails.

fixed_cram:
 driver = cram_md5
 public_name = CRAM-MD5
 server_secret = ${if eq{$auth1}{ph10}{secret}fail}
 server_set_id = $auth1

If authentication succeeds, the setting of server_set_id preserves the user name in $authenticated_id.
A more typical configuration might look up the secret string in a file, using the user name as the key.
For example:

lookup_cram:
 driver = cram_md5
 public_name = CRAM-MD5
 server_secret = ${lookup{$auth1}lsearch{/etc/authpwd}\
 {$value}fail}
 server_set_id = $auth1

Note that this expansion explicitly forces failure if the lookup fails because $auth1 contains an
unknown user name.

As another example, if you wish to re-use a Cyrus SASL sasldb2 file without using the relevant
libraries, you need to know the realm to specify in the lookup and then ask for the “userPassword”
attribute for that user in that realm, with:

cyrusless_crammd5:
 driver = cram_md5
 public_name = CRAM-MD5
 server_secret = ${lookup{$auth1:mail.example.org:userPassword}\
 dbmjz{/etc/sasldb2}{$value}fail}
 server_set_id = $auth1

35.2 Using cram_md5 as a client

When used as a client, the cram_md5 authenticator has two options:

350 The cram_md5 authenticator (35)

client_name Use: cram_md5 Type: string† Default: the primary
host name

This string is expanded, and the result used as the user name data when computing the response to the
server’s challenge.

client_secret Use: cram_md5 Type: string† Default: unset

This option must be set for the authenticator to work as a client. Its value is expanded and the result
used as the secret string when computing the response.

Different user names and secrets can be used for different servers by referring to $host or $host_
address in the options. Forced failure of either expansion string is treated as an indication that this
authenticator is not prepared to handle this case. Exim moves on to the next configured client
authenticator. Any other expansion failure causes Exim to give up trying to send the message to the
current server.

A simple example configuration of a cram_md5 authenticator, using fixed strings, is:

fixed_cram:
 driver = cram_md5
 public_name = CRAM-MD5
 client_name = ph10
 client_secret = secret

351 The cram_md5 authenticator (35)

36. The cyrus_sasl authenticator

The code for this authenticator was provided by Matthew Byng-Maddick while at A L Digital Ltd.

The cyrus_sasl authenticator provides server support for the Cyrus SASL library implementation of
the RFC 2222 (“Simple Authentication and Security Layer”). This library supports a number of
authentication mechanisms, including PLAIN and LOGIN, but also several others that Exim does not
support directly. In particular, there is support for Kerberos authentication.

The cyrus_sasl authenticator provides a gatewaying mechanism directly to the Cyrus interface, so if
your Cyrus library can do, for example, CRAM-MD5, then so can the cyrus_sasl authenticator. By
default it uses the public name of the driver to determine which mechanism to support.

Where access to some kind of secret file is required, for example, in GSSAPI or CRAM-MD5, it is
worth noting that the authenticator runs as the Exim user, and that the Cyrus SASL library has no way
of escalating privileges by default. You may also find you need to set environment variables, depend-
ing on the driver you are using.

The application name provided by Exim is “exim”, so various SASL options may be set in exim.conf
in your SASL directory. If you are using GSSAPI for Kerberos, note that because of limitations in the
GSSAPI interface, changing the server keytab might need to be communicated down to the Kerberos
layer independently. The mechanism for doing so is dependent upon the Kerberos implementation.

For example, for older releases of Heimdal, the environment variable KRB5_KTNAME may be set to
point to an alternative keytab file. Exim will pass this variable through from its own inherited environ-
ment when started as root or the Exim user. The keytab file needs to be readable by the Exim user.
With newer releases of Heimdal, a setuid Exim may cause Heimdal to discard the environment
variable. In practice, for those releases, the Cyrus authenticator is not a suitable interface for GSSAPI
(Kerberos) support. Instead, consider the heimdal_gssapi authenticator, described in chapter 39

36.1 Using cyrus_sasl as a server

The cyrus_sasl authenticator has four private options. It puts the username (on a successful authenti-
cation) into $auth1. For compatibility with previous releases of Exim, the username is also placed in
$1. However, the use of this variable for this purpose is now deprecated, as it can lead to confusion in
string expansions that also use numeric variables for other things.

server_hostname Use: cyrus_sasl Type: string† Default: see below

This option selects the hostname that is used when communicating with the library. The default value
is $primary_hostname. It is up to the underlying SASL plug-in what it does with this data.

server_mech Use: cyrus_sasl Type: string Default: see below

This option selects the authentication mechanism this driver should use. The default is the value of the
generic public_name option. This option allows you to use a different underlying mechanism from
the advertised name. For example:

sasl:
 driver = cyrus_sasl
 public_name = X-ANYTHING
 server_mech = CRAM-MD5
 server_set_id = $auth1

server_realm Use: cyrus_sasl Type: string† Default: unset

This specifies the SASL realm that the server claims to be in.

352 The cyrus_sasl authenticator (36)

server_service Use: cyrus_sasl Type: string Default: smtp

This is the SASL service that the server claims to implement.

For straightforward cases, you do not need to set any of the authenticator’s private options. All you
need to do is to specify an appropriate mechanism as the public name. Thus, if you have a SASL
library that supports CRAM-MD5 and PLAIN, you could have two authenticators as follows:

sasl_cram_md5:
 driver = cyrus_sasl
 public_name = CRAM-MD5
 server_set_id = $auth1

sasl_plain:
 driver = cyrus_sasl
 public_name = PLAIN
 server_set_id = $auth2

Cyrus SASL does implement the LOGIN authentication method, even though it is not a standard
method. It is disabled by default in the source distribution, but it is present in many binary
distributions.

353 The cyrus_sasl authenticator (36)

37. The dovecot authenticator

This authenticator is an interface to the authentication facility of the Dovecot 2 POP/IMAP server,
which can support a number of authentication methods. Note that Dovecot must be configured to use
auth-client not auth-userdb. If you are using Dovecot to authenticate POP/IMAP clients, it might be
helpful to use the same mechanisms for SMTP authentication. This is a server authenticator only.
There is only one non-generic option:

server_socket Use: dovecot Type: string Default: unset

This option must specify the UNIX socket that is the interface to Dovecot authentication. The public_
name option must specify an authentication mechanism that Dovecot is configured to support. You
can have several authenticators for different mechanisms. For example:

dovecot_plain:
 driver = dovecot
 public_name = PLAIN
 server_advertise_condition = ${if def:tls_in_cipher}
 server_socket = /var/run/dovecot/auth-client
 server_set_id = $auth1

dovecot_ntlm:
 driver = dovecot
 public_name = NTLM
 server_socket = /var/run/dovecot/auth-client
 server_set_id = $auth1

Note: plaintext authentication methods such as PLAIN and LOGIN should not be advertised on
cleartext SMTP connections. See the discussion in section 34.1.

If the SMTP connection is encrypted, or if $sender_host_address is equal to $received_ip_address
(that is, the connection is local), the “secured” option is passed in the Dovecot authentication com-
mand. If, for a TLS connection, a client certificate has been verified, the “valid-client-cert” option is
passed. When authentication succeeds, the identity of the user who authenticated is placed in $auth1.

The Dovecot configuration to match the above will look something like:

conf.d/10-master.conf :-

service auth {
...
#SASL
 unix_listener auth-client {
 mode = 0660
 user = mail
 }
...
}

conf.d/10-auth.conf :-

auth_mechanisms = plain login ntlm

354 The dovecot authenticator (37)

38. The gsasl authenticator

The gsasl authenticator provides integration for the GNU SASL library and the mechanisms it pro-
vides. This is new as of the 4.80 release and there are a few areas where the library does not let Exim
smoothly scale to handle future authentication mechanisms, so no guarantee can be made that any
particular new authentication mechanism will be supported without code changes in Exim.

The library is expected to add support in an upcoming realease for the SCRAM-SHA-256 method.
The macro _HAVE_AUTH_GSASL_SCRAM_SHA_256 will be defined when this happens.

To see the list of mechanisms supported by the library run Exim with "auth" debug enabled and look
for a line containing "GNU SASL supports". Note however that some may not have been tested from
Exim.

client_authz Use: gsasl Type: string† Default: unset

This option can be used to supply an authorization id which is different to the authentication_id
provided by client_username option. If unset or (after expansion) empty it is not used, which is the
common case.

client_channelbinding Use: gsasl Type: boolean Default: false

See server_channelbinding below.

client_password Use: gsasl Type: string† Default: unset

This option is exapanded before use, and should result in the password to be used, in clear.

client_username Use: gsasl Type: string† Default: unset

This option is exapanded before use, and should result in the account name to be used.

client_spassword Use: gsasl Type: string† Default: unset

This option is only supported for library versions 1.9.1 and greater. The macro _HAVE_AUTH_
GSASL_SCRAM_S_KEY will be defined when this is so.

If a SCRAM mechanism is being used and this option is set and correctly sized it is used in prefer-
ence to client_password. The value after expansion should be a 40 (for SHA-1) or 64 (for SHA-256)
character string with the PBKDF2-prepared password, hex-encoded.

Note that this value will depend on the salt and iteration-count supplied by the server. The option is
expanded before use. During the expansion $auth1 is set with the client username, $auth2 with the
iteration count, and $auth3 with the salt.

The intent of this option is to support clients that can cache thes salted password to save on
recalculation costs. The cache lookup should return an unusable value (eg. an empty string) if the salt
or iteration count has changed

If the authentication succeeds then the above variables are set, plus the calculated salted password
value value in $auth4, during the expansion of the client_set_id option. A side-effect of this expan-
sion can be used to prime the cache.

355 The gsasl authenticator (38)

server_channelbinding Use: gsasl Type: boolean Default: false

Some authentication mechanisms are able to use external context at both ends of the session to bind
the authentication to that context, and fail the authentication process if that context differs.
Specifically, some TLS ciphersuites can provide identifying information about the cryptographic
context.

This should have meant that certificate identity and verification becomes a non-issue, as a man-in-the-
middle attack will cause the correct client and server to see different identifiers and authentication
will fail.

This is only usable by mechanisms which support "channel binding"; at time of writing, that’s the
SCRAM family. When using this feature the "-PLUS" variants of the method names need to be used.

This defaults off to ensure smooth upgrade across Exim releases, in case this option causes some
clients to start failing. Some future release of Exim might have switched the default to be true.

This option was deprecated in previous releases due to doubts over the "Triple Handshake" vulner-
ability. Exim takes suitable precausions (requiring Extended Master Secret if TLS Session
Resumption was used) for safety.

server_hostname Use: gsasl Type: string† Default: see below

This option selects the hostname that is used when communicating with the library. The default value
is $primary_hostname. Some mechanisms will use this data.

server_mech Use: gsasl Type: string Default: see below

This option selects the authentication mechanism this driver should use. The default is the value of the
generic public_name option. This option allows you to use a different underlying mechanism from
the advertised name. For example:

sasl:
 driver = gsasl
 public_name = X-ANYTHING
 server_mech = CRAM-MD5
 server_set_id = $auth1

server_password Use: gsasl Type: string† Default: unset

Various mechanisms need access to the cleartext password on the server, so that proof-of-possession
can be demonstrated on the wire, without sending the password itself.

The data available for lookup varies per mechanism. In all cases, $auth1 is set to the authentication
id. The $auth2 variable will always be the authorization id (authz) if available, else the empty string.
The $auth3 variable will always be the realm if available, else the empty string.

A forced failure will cause authentication to defer.

If using this option, it may make sense to set the server_condition option to be simply "true".

server_realm Use: gsasl Type: string† Default: unset

This specifies the SASL realm that the server claims to be in. Some mechanisms will use this data.

356 The gsasl authenticator (38)

server_scram_iter Use: gsasl Type: string† Default: 4096

This option provides data for the SCRAM family of mechanisms. The $auth1, $auth2 and $auth3
variables are available when this option is expanded.

The result of expansion should be a decimal number, and represents both a lower-bound on the
security, and a compute cost factor imposed on the client (if it does not cache results, or the server
changes either the iteration count or the salt). A minimum value of 4096 is required by the standards
for all current SCRAM mechanism variants.

server_scram_salt Use: gsasl Type: string† Default: unset

This option provides data for the SCRAM family of mechanisms. The $auth1, $auth2 and $auth3
variables are available when this option is expanded. The value should be a base64-encoded string, of
random data typically 4-to-16 bytes long. If unset or empty after expansion the library will provides a
value for the protocol conversation.

server_key Use: gsasl Type: string† Default: unset

server_skey Use: gsasl Type: string† Default: unset

These options can be used for the SCRAM family of mechanisms to provide stored information
related to a password, the storage of which is preferable to plaintext.

server_key is the value defined in the SCRAM standards as ServerKey; server_skey is StoredKey.

They are only available for version 1.9.0 (or later) of the gsasl library. When this is so, the macros _
OPT_AUTHENTICATOR_GSASL_SERVER_KEY and _HAVE_AUTH_GSASL_SCRAM_S_KEY
will be defined.

The $authN variables are available when these options are expanded.

If set, the results of expansion should for each should be a 28 (for SHA-1) or 44 (for SHA-256)
character string of base64-coded data, and will be used in preference to the server_password option.
If unset or not of the right length, server_password will be used.

The libgsasl library release includes a utility gsasl which can be used to generate these values.

server_service Use: gsasl Type: string Default: smtp

This is the SASL service that the server claims to implement. Some mechanisms will use this data.

38.1 gsasl auth variables

These may be set when evaluating specific options, as detailed above. They will also be set when
evaluating server_condition.

Unless otherwise stated below, the gsasl integration will use the following meanings for these
variables:

• $auth1: the authentication id

• $auth2: the authorization id

• $auth3: the realm

On a per-mechanism basis:

• EXTERNAL: only $auth1 is set, to the possibly empty authorization id; the server_condition
option must be present.

357 The gsasl authenticator (38)

• ANONYMOUS: only $auth1 is set, to the possibly empty anonymous token; the server_condition
option must be present.

• GSSAPI: $auth1 will be set to the GSSAPI Display Name; $auth2 will be set to the authorization
id, the server_condition option must be present.

An anonymous token is something passed along as an unauthenticated identifier; this is analogous to
FTP anonymous authentication passing an email address, or software-identifier@, as the "password".

An example showing the password having the realm specified in the callback and demonstrating a
Cyrus SASL to GSASL migration approach is:

gsasl_cyrusless_crammd5:
 driver = gsasl
 public_name = CRAM-MD5
 server_realm = imap.example.org
 server_password = ${lookup{$auth1:$auth3:userPassword}\
 dbmjz{/etc/sasldb2}{$value}fail}
 server_set_id = ${quote:$auth1}
 server_condition = yes

358 The gsasl authenticator (38)

39. The heimdal_gssapi authenticator

The heimdal_gssapi authenticator provides server integration for the Heimdal GSSAPI/Kerberos
library, permitting Exim to set a keytab pathname reliably.

server_hostname Use: heimdal_gssapi Type: string† Default: see below

This option selects the hostname that is used, with server_service, for constructing the GSS server
name, as a GSS_C_NT_HOSTBASED_SERVICE identifier. The default value is
$primary_hostname.

server_keytab Use: heimdal_gssapi Type: string† Default: unset

If set, then Heimdal will not use the system default keytab (typically /etc/krb5.keytab) but instead the
pathname given in this option. The value should be a pathname, with no “file:” prefix.

server_service Use: heimdal_gssapi Type: string† Default: smtp

This option specifies the service identifier used, in conjunction with server_hostname, for building
the identifier for finding credentials from the keytab.

39.1 heimdal_gssapi auth variables

Beware that these variables will typically include a realm, thus will appear to be roughly like an email
address already. The authzid in $auth2 is not verified, so a malicious client can set it to anything.

The $auth1 field should be safely trustable as a value from the Key Distribution Center. Note that
these are not quite email addresses. Each identifier is for a role, and so the left-hand-side may include
a role suffix. For instance, “joe/admin@EXAMPLE.ORG”.

• $auth1: the authentication id, set to the GSS Display Name.

• $auth2: the authorization id, sent within SASL encapsulation after authentication. If that was
empty, this will also be set to the GSS Display Name.

359 The heimdal_gssapi authenticator (39)

40. The spa authenticator

The spa authenticator provides client support for Microsoft’s Secure Password Authentication mech-
anism, which is also sometimes known as NTLM (NT LanMan). The code for client side of this
authenticator was contributed by Marc Prud’hommeaux, and much of it is taken from the Samba
project (https://www.samba.org/). The code for the server side was subsequently contributed by Tom
Kistner. The mechanism works as follows:

• After the AUTH command has been accepted, the client sends an SPA authentication request based
on the user name and optional domain.

• The server sends back a challenge.

• The client builds a challenge response which makes use of the user’s password and sends it to the
server, which then accepts or rejects it.

Encryption is used to protect the password in transit.

40.1 Using spa as a server

The spa authenticator has just one server option:

server_password Use: spa Type: string† Default: unset

This option is expanded, and the result must be the cleartext password for the authenticating user,
whose name is at this point in $auth1. For compatibility with previous releases of Exim, the user
name is also placed in $1. However, the use of this variable for this purpose is now deprecated, as it
can lead to confusion in string expansions that also use numeric variables for other things. For
example:

spa:
 driver = spa
 public_name = NTLM
 server_password = \
 ${lookup{$auth1}lsearch{/etc/exim/spa_clearpass}{$value}fail}

If the expansion is forced to fail, authentication fails. Any other expansion failure causes a temporary
error code to be returned.

40.2 Using spa as a client

The spa authenticator has the following client options:

client_domain Use: spa Type: string† Default: unset

This option specifies an optional domain for the authentication.

client_password Use: spa Type: string† Default: unset

This option specifies the user’s password, and must be set.

client_username Use: spa Type: string† Default: unset

This option specifies the user name, and must be set. Here is an example of a configuration of this
authenticator for use with the mail servers at msn.com:

msn:
 driver = spa

360 The spa authenticator (40)

 public_name = MSN
 client_username = msn/msn_username
 client_password = msn_plaintext_password
 client_domain = DOMAIN_OR_UNSET

361 The spa authenticator (40)

41. The external authenticator

The external authenticator provides support for authentication based on non-SMTP information. The
specification is in RFC 4422 Appendix A (https://tools.ietf.org/html/rfc4422). It is only a transport
and negotiation mechanism; the process of authentication is entirely controlled by the server
configuration.

The client presents an identity in-clear. It is probably wise for a server to only advertise, and for
clients to only attempt, this authentication method on a secure (eg. under TLS) connection.

One possible use, compatible with the K-9 Mail Android client (https://k9mail.github.io/), is for
using X509 client certificates.

It thus overlaps in function with the TLS authenticator (see 42) but is a full SMTP SASL
authenticator rather than being implicit for TLS-connection carried client certificates only.

The examples and discussion in this chapter assume that client-certificate authentication is being
done.

The client must present a certificate, for which it must have been requested via the tls_verify_hosts or
tls_try_verify_hosts main options (see 43). For authentication to be effective the certificate should be
verifiable against a trust-anchor certificate known to the server.

41.1 External options

The external authenticator has two server options:

server_param2 Use: external Type: string† Default: unset

server_param3 Use: external Type: string† Default: unset

These options are expanded before the server_condition option and the result are placed in $auth2
and $auth3 resectively. If the expansion is forced to fail, authentication fails. Any other expansion
failure causes a temporary error code to be returned.

They can be used to clarify the coding of a complex server_condition.

41.2 Using external in a server

When running as a server, external performs the authentication test by expanding a string. The data
sent by the client with the AUTH command, or in response to subsequent prompts, is base64 encoded,
and so may contain any byte values when decoded. The decoded value is treated as an identity for
authentication and placed in the expansion variable $auth1.

For compatibility with previous releases of Exim, the value is also placed in the expansion variable
$1. However, the use of this variable for this purpose is now deprecated, as it can lead to confusion in
string expansions that also use them for other things.

Once an identity has been received, server_condition is expanded. If the expansion is forced to fail,
authentication fails. Any other expansion failure causes a temporary error code to be returned. If the
result of a successful expansion is an empty string, “0”, “no”, or “false”, authentication fails. If the
result of the expansion is “1”, “yes”, or “true”, authentication succeeds and the generic server_set_id
option is expanded and saved in $authenticated_id. For any other result, a temporary error code is
returned, with the expanded string as the error text.

Example:

ext_ccert_san_mail:
 driver = external
 public_name = EXTERNAL

362 The external authenticator (41)

 server_advertise_condition = $tls_in_certificate_verified
 server_param2 = ${certextract {subj_altname,mail,>:} \
 {$tls_in_peercert}}
 server_condition = ${if forany {$auth2} \
 {eq {$item}{$auth1}}}
 server_set_id = $auth1

This accepts a client certificate that is verifiable against any of your configured trust-anchors (which
usually means the full set of public CAs) and which has a mail-SAN matching the claimed identity
sent by the client.

Note: up to TLS1.2, the client cert is on the wire in-clear, including the SAN. The account name is
therefore guessable by an opponent. TLS 1.3 protects both server and client certificates, and is not
vulnerable in this way.

41.3 Using external in a client

The external authenticator has one client option:

client_send Use: external Type: string† Default: unset

This option is expanded and sent with the AUTH command as the identity being asserted.

Example:

ext_ccert:
 driver = external
 public_name = EXTERNAL

 client_condition = ${if !eq{$tls_out_cipher}{}}
 client_send = myaccount@smarthost.example.net

363 The external authenticator (41)

42. The tls authenticator

The tls authenticator provides server support for authentication based on client certificates.

It is not an SMTP authentication mechanism and is not advertised by the server as part of the SMTP
EHLO response. It is an Exim authenticator in the sense that it affects the protocol element of the
log line, can be tested for by the authenticated ACL condition, and can set the $authenticated_id
variable.

The client must present a verifiable certificate, for which it must have been requested via the tls_
verify_hosts or tls_try_verify_hosts main options (see 43).

If an authenticator of this type is configured it is run immediately after a TLS connection being
negotiated (due to either STARTTLS or TLS-on-connect) and can authenticate the connection. If it
does, SMTP authentication is not subsequently offered.

A maximum of one authenticator of this type may be present.

The tls authenticator has three server options:

server_param1 Use: tls Type: string† Default: unset

This option is expanded after the TLS negotiation and the result is placed in $auth1. If the expansion
is forced to fail, authentication fails. Any other expansion failure causes a temporary error code to be
returned.

server_param2 Use: tls Type: string† Default: unset

server_param3 Use: tls Type: string† Default: unset

As above, for $auth2 and $auth3.

server_param1 may also be spelled server_param.

Example:

tls:
 driver = tls
 server_param1 = ${certextract {subj_altname,mail,>:} \
 {$tls_in_peercert}}
 server_condition = ${if and { {eq{$tls_in_certificate_verified}{1}} \
 {forany {$auth1} \
 {!= {0} \
 {${lookup ldap{ldap:///\
 mailname=${quote_ldap_dn:${lc:$item}},\
 ou=users,LDAP_DC?mailid} {$value}{0} \
 } } } }}}
 server_set_id = ${if = {1}{${listcount:$auth1}} {$auth1}{}}

This accepts a client certificate that is verifiable against any of your configured trust-anchors (which
usually means the full set of public CAs) and which has a SAN with a good account name.

Note that, up to TLS1.2, the client cert is on the wire in-clear, including the SAN, The account name
is therefore guessable by an opponent. TLS 1.3 protects both server and client certificates, and is not
vulnerable in this way. Likewise, a traditional plaintext SMTP AUTH done inside TLS is not.

Note that because authentication is traditionally an SMTP operation, the authenticated ACL con-
dition cannot be used in a connect- or helo-ACL.

364 The tls authenticator (42)

43. Encrypted SMTP connections using TLS/SSL

Support for TLS (Transport Layer Security), formerly known as SSL (Secure Sockets Layer), is
implemented by making use of the OpenSSL library or the GnuTLS library (Exim requires GnuTLS
release 1.0 or later). There is no cryptographic code in the Exim distribution itself for implementing
TLS. In order to use this feature you must install OpenSSL or GnuTLS, and then build a version of
Exim that includes TLS support (see section 4.7). You also need to understand the basic concepts of
encryption at a managerial level, and in particular, the way that public keys, private keys, and certifi-
cates are used.

RFC 3207 defines how SMTP connections can make use of encryption. Once a connection is estab-
lished, the client issues a STARTTLS command. If the server accepts this, the client and the server
negotiate an encryption mechanism. If the negotiation succeeds, the data that subsequently passes
between them is encrypted.

Exim’s ACLs can detect whether the current SMTP session is encrypted or not, and if so, what cipher
suite is in use, whether the client supplied a certificate, and whether or not that certificate was
verified. This makes it possible for an Exim server to deny or accept certain commands based on the
encryption state.

Warning: Certain types of firewall and certain anti-virus products can disrupt TLS connections. You
need to turn off SMTP scanning for these products in order to get TLS to work.

43.1 Support for the “submissions” (aka “ssmtp” and “smtps”) protocol

The history of port numbers for TLS in SMTP is a little messy and has been contentious. As of RFC
8314, the common practice of using the historically allocated port 465 for "email submission but with
TLS immediately upon connect instead of using STARTTLS" is officially blessed by the IETF, and
recommended by them in preference to STARTTLS.

The name originally assigned to the port was “ssmtp” or “smtps”, but as clarity emerged over the dual
roles of SMTP, for MX delivery and Email Submission, nomenclature has shifted. The modern name
is now “submissions”.

This approach was, for a while, officially abandoned when encrypted SMTP was standardized, but
many clients kept using it, even as the TCP port number was reassigned for other use. Thus you may
encounter guidance claiming that you shouldn’t enable use of this port. In practice, a number of
mail-clients have only ever supported submissions, not submission with STARTTLS upgrade. Ideally,
offer both submission (587) and submissions (465) service.

Exim supports TLS-on-connect by means of the tls_on_connect_ports global option. Its value must
be a list of port numbers; the most common use is expected to be:

tls_on_connect_ports = 465

The port numbers specified by this option apply to all SMTP connections, both via the daemon and
via inetd. You still need to specify all the ports that the daemon uses (by setting daemon_smtp_ports
or local_interfaces or the -oX command line option) because tls_on_connect_ports does not add an
extra port – rather, it specifies different behaviour on a port that is defined elsewhere.

There is also a -tls-on-connect command line option. This overrides tls_on_connect_ports; it forces
the TLS-only behaviour for all ports.

43.2 OpenSSL vs GnuTLS

TLS is supported in Exim using either the OpenSSL or GnuTLS library. To build Exim to use
OpenSSL you need to set

USE_OPENSSL=yes

in Local/Makefile.

To build Exim to use GnuTLS, you need to set

365 Encrypted SMTP connections (43)

USE_GNUTLS=yes

in Local/Makefile.

You must also set TLS_LIBS and TLS_INCLUDE appropriately, so that the include files and libraries
for GnuTLS can be found.

There are some differences in usage when using GnuTLS instead of OpenSSL:

• The tls_verify_certificates option cannot be the path of a directory for GnuTLS versions before
3.3.6 (for later versions, or OpenSSL, it can be either).

• The default value for tls_dhparam differs for historical reasons.

• Distinguished Name (DN) strings reported by the OpenSSL library use a slash for separating
fields; GnuTLS uses commas, in accordance with RFC 2253. This affects the value of the $tls_in_
peerdn and $tls_out_peerdn variables.

• OpenSSL identifies cipher suites using hyphens as separators, for example: DES-CBC3-SHA.
GnuTLS historically used underscores, for example: RSA_ARCFOUR_SHA. What is more,
OpenSSL complains if underscores are present in a cipher list. To make life simpler, Exim changes
underscores to hyphens for OpenSSL and passes the string unchanged to GnuTLS (expecting the
library to handle its own older variants) when processing lists of cipher suites in the tls_require_
ciphers options (the global option and the smtp transport option).

• The tls_require_ciphers options operate differently, as described in the sections 43.4 and 43.5.

• The tls_dh_min_bits SMTP transport option is only honoured by GnuTLS. When using OpenSSL,
this option is ignored. (If an API is found to let OpenSSL be configured in this way, let the Exim
Maintainers know and we’ll likely use it).

• With GnuTLS, if an explicit list is used for the tls_privatekey main option, it must be ordered to
match the tls_certificate list.

• Some other recently added features may only be available in one or the other. This should be
documented with the feature. If the documentation does not explicitly state that the feature is
infeasible in the other TLS implementation, then patches are welcome.

• The output from "exim -bV" will show which (if any) support was included in the build. Also, the
macro "_HAVE_OPENSSL" or "_HAVE_GNUTLS" will be defined.

43.3 GnuTLS parameter computation

This section only applies if tls_dhparam is set to historic or to an explicit path; if the latter, then
the text about generation still applies, but not the chosen filename. By default, as of Exim 4.80 a
hard-coded D-H prime is used. See the documentation of tls_dhparam for more information.

GnuTLS uses D-H parameters that may take a substantial amount of time to compute. It is unreason-
able to re-compute them for every TLS session. Therefore, Exim keeps this data in a file in its spool
directory, called gnutls-params-NNNN for some value of NNNN, corresponding to the number of bits
requested. The file is owned by the Exim user and is readable only by its owner. Every Exim process
that start up GnuTLS reads the D-H parameters from this file. If the file does not exist, the first Exim
process that needs it computes the data and writes it to a temporary file which is renamed once it is
complete. It does not matter if several Exim processes do this simultaneously (apart from wasting a
few resources). Once a file is in place, new Exim processes immediately start using it.

For maximum security, the parameters that are stored in this file should be recalculated periodically,
the frequency depending on your paranoia level. If you are avoiding using the fixed D-H primes
published in RFCs, then you are concerned about some advanced attacks and will wish to do this; if
you do not regenerate then you might as well stick to the standard primes.

Arranging this is easy in principle; just delete the file when you want new values to be computed.
However, there may be a problem. The calculation of new parameters needs random numbers, and
these are obtained from /dev/random. If the system is not very active, /dev/random may delay return-

366 Encrypted SMTP connections (43)

ing data until enough randomness (entropy) is available. This may cause Exim to hang for a substan-
tial amount of time, causing timeouts on incoming connections.

The solution is to generate the parameters externally to Exim. They are stored in gnutls-params-N in
PEM format, which means that they can be generated externally using the certtool command that is
part of GnuTLS.

To replace the parameters with new ones, instead of deleting the file and letting Exim re-create it, you
can generate new parameters using certtool and, when this has been done, replace Exim’s cache file
by renaming. The relevant commands are something like this:

ls
[look for file; assume gnutls-params-2236 is the most recent]
rm -f new-params
touch new-params
chown exim:exim new-params
chmod 0600 new-params
certtool --generate-dh-params --bits 2236 >>new-params
openssl dhparam -noout -text -in new-params | head
[check the first line, make sure it's not more than 2236;
 if it is, then go back to the start ("rm") and repeat
 until the size generated is at most the size requested]
chmod 0400 new-params
mv new-params gnutls-params-2236

If Exim never has to generate the parameters itself, the possibility of stalling is removed.

The filename changed in Exim 4.80, to gain the -bits suffix. The value which Exim will choose
depends upon the version of GnuTLS in use. For older GnuTLS, the value remains hard-coded in
Exim as 1024. As of GnuTLS 2.12.x, there is a way for Exim to ask for the "normal" number of
bits for D-H public-key usage, and Exim does so. This attempt to remove Exim from TLS policy
decisions failed, as GnuTLS 2.12 returns a value higher than the current hard-coded limit of the NSS
library. Thus Exim gains the tls_dh_max_bits global option, which applies to all D-H usage, client or
server. If the value returned by GnuTLS is greater than tls_dh_max_bits then the value will be
clamped down to tls_dh_max_bits. The default value has been set at the current NSS limit, which is
still much higher than Exim historically used.

The filename and bits used will change as the GnuTLS maintainers change the value for their par-
ameter GNUTLS_SEC_PARAM_NORMAL, as clamped by tls_dh_max_bits. At the time of writing
(mid 2012), GnuTLS 2.12 recommends 2432 bits, while NSS is limited to 2236 bits.

In fact, the requested value will be *lower* than tls_dh_max_bits, to increase the chance of the
generated prime actually being within acceptable bounds, as GnuTLS has been observed to overshoot.
Note the check step in the procedure above. There is no sane procedure available to Exim to double-
check the size of the generated prime, so it might still be too large.

43.4 Requiring specific ciphers in OpenSSL

There is a function in the OpenSSL library that can be passed a list of cipher suites before the cipher
negotiation takes place. This specifies which ciphers are acceptable for TLS versions prior to 1.3. The
list is colon separated and may contain names like DES-CBC3-SHA. Exim passes the expanded value
of tls_require_ciphers directly to this function call. Many systems will install the OpenSSL manual-
pages, so you may have ciphers(1) available to you. The following quotation from the OpenSSL
documentation specifies what forms of item are allowed in the cipher string:

• It can consist of a single cipher suite such as RC4-SHA.

• It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain
type. For example SHA1 represents all ciphers suites using the digest algorithm SHA1 and SSLv3
represents all SSL v3 algorithms.

367 Encrypted SMTP connections (43)

• Lists of cipher suites can be combined in a single cipher string using the + character. This is used
as a logical and operation. For example SHA1+DES represents all cipher suites containing the
SHA1 and the DES algorithms.

Each cipher string can be optionally preceded by one of the characters !, - or +.

• If ! is used, the ciphers are permanently deleted from the list. The ciphers deleted can never
reappear in the list even if they are explicitly stated.

• If - is used, the ciphers are deleted from the list, but some or all of the ciphers can be added again
by later options.

• If + is used, the ciphers are moved to the end of the list. This option does not add any new ciphers;
it just moves matching existing ones.

If none of these characters is present, the string is interpreted as a list of ciphers to be appended to the
current preference list. If the list includes any ciphers already present they will be ignored: that is,
they will not be moved to the end of the list.

The OpenSSL ciphers(1) command may be used to test the results of a given string:

note single-quotes to get ! past any shell history expansion
$ openssl ciphers 'HIGH:!MD5:!SHA1'

This example will let the library defaults be permitted on the MX port, where there’s probably no
identity verification anyway, but ups the ante on the submission ports where the administrator might
have some influence on the choice of clients used:

OpenSSL variant; see man ciphers(1)
tls_require_ciphers = ${if =={$received_port}{25}\
 {DEFAULT}\
 {HIGH:!MD5:!SHA1}}

This example will prefer ECDSA-authenticated ciphers over RSA ones:

tls_require_ciphers = ECDSA:RSA:!COMPLEMENTOFDEFAULT

For TLS version 1.3 the control available is less fine-grained and Exim does not provide access to it at
present. The value of the tls_require_ciphers option is ignored when TLS version 1.3 is negotiated.

As of writing the library default cipher suite list for TLSv1.3 is

TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256

43.5 Requiring specific ciphers or other parameters in GnuTLS

The GnuTLS library allows the caller to provide a "priority string", documented as part of the
gnutls_priority_init function. This is very similar to the ciphersuite specification in OpenSSL.

The tls_require_ciphers option is treated as the GnuTLS priority string and controls both protocols
and ciphers.

The tls_require_ciphers option is available both as an global option, controlling how Exim behaves
as a server, and also as an option of the smtp transport, controlling how Exim behaves as a client. In
both cases the value is string expanded. The resulting string is not an Exim list and the string is given
to the GnuTLS library, so that Exim does not need to be aware of future feature enhancements of
GnuTLS.

Documentation of the strings accepted may be found in the GnuTLS manual, under "Priority strings".
This is online as https://www.gnutls.org/manual/html_node/Priority-Strings.html, but beware that
this relates to GnuTLS 3, which may be newer than the version installed on your system. If you are
using GnuTLS 3, then the example code https://www.gnutls.org/manual/gnutls.html#Listing-the-
ciphersuites-in-a-priority-string on that site can be used to test a given string.

For example:

368 Encrypted SMTP connections (43)

Disable older versions of protocols
tls_require_ciphers = NORMAL:%LATEST_RECORD_VERSION:-VERS-SSL3.0

Prior to Exim 4.80, an older API of GnuTLS was used, and Exim supported three additional options,
"gnutls_require_kx", "gnutls_require_mac" and "gnutls_require_protocols". tls_require_ciphers
was an Exim list.

This example will let the library defaults be permitted on the MX port, where there’s probably no
identity verification anyway, and lowers security further by increasing compatibility; but this ups the
ante on the submission ports where the administrator might have some influence on the choice of
clients used:

GnuTLS variant
tls_require_ciphers = ${if =={$received_port}{25}\
 {NORMAL:%COMPAT}\
 {SECURE128}}

43.6 Configuring an Exim server to use TLS

When Exim has been built with TLS support, it advertises the availability of the STARTTLS com-
mand to client hosts that match tls_advertise_hosts, but not to any others. The default value of this
option is *, which means that STARTTLS is always advertised. Set it to blank to never advertise; this
is reasonable for systems that want to use TLS only as a client.

If STARTTLS is to be used you need to set some other options in order to make TLS available.

If a client issues a STARTTLS command and there is some configuration problem in the server, the
command is rejected with a 454 error. If the client persists in trying to issue SMTP commands, all
except QUIT are rejected with the error

554 Security failure

If a STARTTLS command is issued within an existing TLS session, it is rejected with a 554 error
code.

To enable TLS operations on a server, the tls_advertise_hosts option must be set to match some
hosts. The default is * which matches all hosts.

If this is all you do, TLS encryption will be enabled but not authentication - meaning that the peer has
no assurance it is actually you he is talking to. You gain protection from a passive sniffer listening on
the wire but not from someone able to intercept the communication.

Further protection requires some further configuration at the server end.

To make TLS work you need to set, in the server,

tls_certificate = /some/file/name
tls_privatekey = /some/file/name

These options are, in fact, expanded strings, so you can make them depend on the identity of the
client that is connected if you wish. The first file contains the server’s X509 certificate, and the second
contains the private key that goes with it. These files need to be PEM format and readable by the
Exim user, and must always be given as full path names. The key must not be password-protected.
They can be the same file if both the certificate and the key are contained within it. If tls_privatekey
is not set, or if its expansion is forced to fail or results in an empty string, this is assumed to be the
case. The certificate file may also contain intermediate certificates that need to be sent to the client to
enable it to authenticate the server’s certificate.

For dual-stack (eg. RSA and ECDSA) configurations, these options can be colon-separated lists of file
paths. Ciphers using given authentication algorithms require the presence of a suitable certificate to
supply the public-key. The server selects among the certificates to present to the client depending on
the selected cipher, hence the priority ordering for ciphers will affect which certificate is used.

If you do not understand about certificates and keys, please try to find a source of this background
information, which is not Exim-specific. (There are a few comments below in section 43.10.)

369 Encrypted SMTP connections (43)

Note: These options do not apply when Exim is operating as a client – they apply only in the case of a
server. If you need to use a certificate in an Exim client, you must set the options of the same names
in an smtp transport.

With just these options, an Exim server will be able to use TLS. It does not require the client to have a
certificate (but see below for how to insist on this). There is one other option that may be needed in
other situations. If

tls_dhparam = /some/file/name

is set, the SSL library is initialized for the use of Diffie-Hellman ciphers with the parameters con-
tained in the file. Set this to none to disable use of DH entirely, by making no prime available:

tls_dhparam = none

This may also be set to a string identifying a standard prime to be used for DH; if it is set to
default or, for OpenSSL, is unset, then the prime used is ike23. There are a few standard primes
available, see the documentation for tls_dhparam for the complete list.

See the command

openssl dhparam

for a way of generating file data.

The strings supplied for these three options are expanded every time a client host connects. It is
therefore possible to use different certificates and keys for different hosts, if you so wish, by making
use of the client’s IP address in $sender_host_address to control the expansion. If a string expansion
is forced to fail, Exim behaves as if the option is not set.

The variable $tls_in_cipher is set to the cipher suite that was negotiated for an incoming TLS connec-
tion. It is included in the Received: header of an incoming message (by default – you can, of course,
change this), and it is also included in the log line that records a message’s arrival, keyed by “X=”,
unless the tls_cipher log selector is turned off. The encrypted condition can be used to test for
specific cipher suites in ACLs.

Once TLS has been established, the ACLs that run for subsequent SMTP commands can check the
name of the cipher suite and vary their actions accordingly. The cipher suite names vary, depending
on which TLS library is being used. For example, OpenSSL uses the name DES-CBC3-SHA for the
cipher suite which in other contexts is known as TLS_RSA_WITH_3DES_EDE_CBC_SHA. Check
the OpenSSL or GnuTLS documentation for more details.

For outgoing SMTP deliveries, $tls_out_cipher is used and logged (again depending on the tls_
cipher log selector).

43.6.1 Requesting and verifying client certificates

If you want an Exim server to request a certificate when negotiating a TLS session with a client, you
must set either tls_verify_hosts or tls_try_verify_hosts. You can, of course, set either of them to * to
apply to all TLS connections. For any host that matches one of these options, Exim requests a
certificate as part of the setup of the TLS session. The contents of the certificate are verified by
comparing it with a list of expected trust-anchors or certificates. These may be the system default set
(depending on library version), an explicit file or, depending on library version, a directory, identified
by tls_verify_certificates.

A file can contain multiple certificates, concatenated end to end. If a directory is used (OpenSSL
only), each certificate must be in a separate file, with a name (or a symbolic link) of the form
<hash>.0, where <hash> is a hash value constructed from the certificate. You can compute the
relevant hash by running the command

openssl x509 -hash -noout -in /cert/file

where /cert/file contains a single certificate.

There is no checking of names of the client against the certificate Subject Name or Subject Alternate
Names.

370 Encrypted SMTP connections (43)

The difference between tls_verify_hosts and tls_try_verify_hosts is what happens if the client does
not supply a certificate, or if the certificate does not match any of the certificates in the collection
named by tls_verify_certificates. If the client matches tls_verify_hosts, the attempt to set up a TLS
session is aborted, and the incoming connection is dropped. If the client matches tls_try_verify_
hosts, the (encrypted) SMTP session continues. ACLs that run for subsequent SMTP commands can
detect the fact that no certificate was verified, and vary their actions accordingly. For example, you
can insist on a certificate before accepting a message for relaying, but not when the message is
destined for local delivery.

When a client supplies a certificate (whether it verifies or not), the value of the Distinguished Name of
the certificate is made available in the variable $tls_in_peerdn during subsequent processing of the
message.

Because it is often a long text string, it is not included in the log line or Received: header by default.
You can arrange for it to be logged, keyed by “DN=”, by setting the tls_peerdn log selector, and you
can use received_header_text to change the Received: header. When no certificate is supplied, $tls_
in_peerdn is empty.

43.6.2 Caching of static server configuration items

If any of the main configuration options tls_certificate, tls_privatekey, tls_crl and tls_ocsp_file have
values with no expandable elements, then the associated information is loaded at daemon startup. It is
made available to child processes forked for handling received SMTP connections.

This caching is currently only supported under Linux and FreeBSD.

If caching is not possible, for example if an item has to be dependent on the peer host so contains a
$sender_host_name expansion, the load of the associated information is done at the startup of the
TLS connection.

The cache is invalidated and reloaded after any changes to the directories containing files specified by
these options.

The information specified by the main option tls_verify_certificates is similarly cached so long as it
specifies files explicitly or (under GnuTLS) is the string “system,cache”. The latter case is not auto-
matically invalidated; it is the operator’s responsibility to arrange for a daemon restart any time the
system certificate authority bundle is updated. A HUP signal is sufficient for this. The value “system”
results in no caching under GnuTLS.

The macro _HAVE_TLS_CA_CACHE will be defined if the suffix for "system" is acceptable in
configurations for the Exim executable.

Caching of the system Certificate Authorities bundle can save significant time and processing on
every TLS connection accepted by Exim.

43.7 Configuring an Exim client to use TLS

The tls_cipher and tls_peerdn log selectors apply to outgoing SMTP deliveries as well as to
incoming, the latter one causing logging of the server certificate’s DN. The remaining client configur-
ation for TLS is all within the smtp transport.

It is not necessary to set any options to have TLS work in the smtp transport. If Exim is built with
TLS support, and TLS is advertised by a server, the smtp transport always tries to start a TLS session.
However, this can be prevented by setting hosts_avoid_tls (an option of the transport) to a list of
server hosts for which TLS should not be used.

If you do not want Exim to attempt to send messages unencrypted when an attempt to set up an
encrypted connection fails in any way, you can set hosts_require_tls to a list of hosts for which
encryption is mandatory. For those hosts, delivery is always deferred if an encrypted connection
cannot be set up. If there are any other hosts for the address, they are tried in the usual way.

When the server host is not in hosts_require_tls, Exim may try to deliver the message unencrypted. It
always does this if the response to STARTTLS is a 5xx code. For a temporary error code, or for a

371 Encrypted SMTP connections (43)

failure to negotiate a TLS session after a success response code, what happens is controlled by the
tls_tempfail_tryclear option of the smtp transport. If it is false, delivery to this host is deferred, and
other hosts (if available) are tried. If it is true, Exim attempts to deliver unencrypted after a 4xx
response to STARTTLS, and if STARTTLS is accepted, but the subsequent TLS negotiation fails,
Exim closes the current connection (because it is in an unknown state), opens a new one to the same
host, and then tries the delivery unencrypted.

The tls_certificate and tls_privatekey options of the smtp transport provide the client with a certifi-
cate, which is passed to the server if it requests it. This is an optional thing for TLS connections,
although either end may insist on it. If the server is Exim, it will request a certificate only if tls_
verify_hosts or tls_try_verify_hosts matches the client.

Note: Do not use a certificate which has the OCSP-must-staple extension, for client use (they are
usable for server use). As the TLS protocol has no means for the client to staple before TLS 1.3 it will
result in failed connections.

If the tls_verify_certificates option is set on the smtp transport, it specifies a collection of expected
server certificates. These may be the system default set (depending on library version), a file, or
(depending on library version) a directory. The client verifies the server’s certificate against this
collection, taking into account any revoked certificates that are in the list defined by tls_crl. Failure to
verify fails the TLS connection unless either of the tls_verify_hosts or tls_try_verify_hosts options
are set.

The tls_verify_hosts and tls_try_verify_hosts options restrict certificate verification to the listed
servers. Verification either must or need not succeed respectively.

The tls_verify_cert_hostnames option lists hosts for which additional name checks are made on the
server certificate. The match against this list is, as per other Exim usage, the IP for the host. That is
most closely associated with the name on the DNS A (or AAAA) record for the host. However, the
name that needs to be in the certificate is the one at the head of any CNAME chain leading to the A
record. The option defaults to always checking.

The smtp transport has two OCSP-related options: hosts_require_ocsp; a host-list for which a
Certificate Status is requested and required for the connection to proceed. The default value is empty.
hosts_request_ocsp; a host-list for which (additionally) a Certificate Status is requested (but not
necessarily verified). The default value is "*" meaning that requests are made unless configured
otherwise.

The host(s) should also be in hosts_require_tls, and tls_verify_certificates configured for the trans-
port, for OCSP to be relevant.

If tls_require_ciphers is set on the smtp transport, it must contain a list of permitted cipher suites. If
either of these checks fails, delivery to the current host is abandoned, and the smtp transport tries to
deliver to alternative hosts, if any.

Note: These options must be set in the smtp transport for Exim to use TLS when it is operating as a
client. Exim does not assume that a server certificate (set by the global options of the same name)
should also be used when operating as a client.

All the TLS options in the smtp transport are expanded before use, with $host and $host_address
containing the name and address of the server to which the client is connected. Forced failure of an
expansion causes Exim to behave as if the relevant option were unset.

Before an SMTP connection is established, the $tls_out_bits, $tls_out_cipher, $tls_out_peerdn and
$tls_out_sni variables are emptied. (Until the first connection, they contain the values that were set
when the message was received.) If STARTTLS is subsequently successfully obeyed, these variables
are set to the relevant values for the outgoing connection.

43.7.1 Caching of static client configuration items

If any of the transport configuration options tls_certificate, tls_privatekey and tls_crl have values
with no expandable elements, then the associated information is loaded per smtp transport at daemon

372 Encrypted SMTP connections (43)

startup, at the start of a queue run, or on a command-line specified message delivery. It is made
available to child processes forked for handling making SMTP connections.

This caching is currently only supported under Linux.

If caching is not possible, the load of the associated information is done at the startup of the TLS
connection.

The cache is invalidated in the daemon and reloaded after any changes to the directories containing
files specified by these options.

The information specified by the main option tls_verify_certificates is similarly cached so long as it
specifies files explicitly or (under GnuTLS) is the string “system,cache”. The latter case is not auto-
matically invaludated; it is the operator’s responsibility to arrange for a daemon restart any time the
system certificate authority bundle is updated. A HUP signal is sufficient for this. The value “system”
results in no caching under GnuTLS.

The macro _HAVE_TLS_CA_CACHE will be defined if the suffix for "system" is acceptable in
configurations for the Exim executable.

Caching of the system Certificate Authorities bundle can save significant time and processing on
every TLS connection initiated by Exim.

43.8 Use of TLS Server Name Indication

With TLS1.0 or above, there is an extension mechanism by which extra information can be included
at various points in the protocol. One of these extensions, documented in RFC 6066 (and before that
RFC 4366) is “Server Name Indication”, commonly “SNI”. This extension is sent by the client in the
initial handshake, so that the server can examine the servername within and possibly choose to use
different certificates and keys (and more) for this session.

This is analogous to HTTP’s “Host:” header, and is the main mechanism by which HTTPS-enabled
web-sites can be virtual-hosted, many sites to one IP address.

With SMTP to MX, there are the same problems here as in choosing the identity against which to
validate a certificate: you can’t rely on insecure DNS to provide the identity which you then
cryptographically verify. So this will be of limited use in that environment.

With SMTP to Submission, there is a well-defined hostname which clients are connecting to and can
validate certificates against. Thus clients can choose to include this information in the TLS nego-
tiation. If this becomes wide-spread, then hosters can choose to present different certificates to differ-
ent clients. Or even negotiate different cipher suites.

The tls_sni option on an SMTP transport is an expanded string; the result, if not empty, will be sent
on a TLS session as part of the handshake. There’s nothing more to it. Choosing a sensible value not
derived insecurely is the only point of caution. The $tls_out_sni variable will be set to this string for
the lifetime of the client connection (including during authentication).

If DANE validated the connection attempt then the value of the tls_sni option is forced to the name of
the destination host, after any MX- or CNAME-following.

Except during SMTP client sessions, if $tls_in_sni is set then it is a string received from a client. It
can be logged with the log_selector item +tls_sni.

If the string tls_in_sni appears in the main section’s tls_certificate option (prior to expansion)
then the following options will be re-expanded during TLS session handshake, to permit alternative
values to be chosen:

• tls_certificate

• tls_crl

• tls_privatekey

• tls_verify_certificates

• tls_ocsp_file

373 Encrypted SMTP connections (43)

Great care should be taken to deal with matters of case, various injection attacks in the string (../ or
SQL), and ensuring that a valid filename can always be referenced; it is important to remember that
$tls_in_sni is arbitrary unverified data provided prior to authentication. Further, the initial certificate
is loaded before SNI has arrived, so an expansion for tls_certificate must have a default which is used
when $tls_in_sni is empty.

The Exim developers are proceeding cautiously and so far no other TLS options are re-expanded.

When Exim is built against OpenSSL, OpenSSL must have been built with support for TLS
Extensions. This holds true for OpenSSL 1.0.0+ and 0.9.8+ with enable-tlsext in
EXTRACONFIGURE. If you invoke openssl s_client -h and see -servername in the output, then
OpenSSL has support.

When Exim is built against GnuTLS, SNI support is available as of GnuTLS 0.5.10. (Its presence
predates the current API which Exim uses, so if Exim built, then you have SNI support).

43.8.1 ALPN

There is a TLS feature related to SNI called Application Layer Protocol Name (ALPN). This is
intended to declare, or select, what protocol layer will be using a TLS connection. The client for the
connection proposes a set of protocol names, and the server responds with a selected one. It is not, as
of 2021, commonly used for SMTP connections. However, to guard against misdirected or malicious
use of web clients (which often do use ALPN) against MTA ports, Exim by default check that there is
no incompatible ALPN specified by a client for a TLS connection. If there is, the connection is
rejected.

As a client Exim does not supply ALPN by default. The behaviour of both client and server can be
configured using the options tls_alpn and hosts_require_alpn. There are no variables providing
observability. Some feature-specific logging may appear on denied connections, but this depends on
the behaviour of the peer (not all peers can send a feature-specific TLS Alert).

This feature is available when Exim is built with OpenSSL 1.1.0 or later or GnuTLS 3.2.0 or later; the
macro _HAVE_TLS_ALPN will be defined when this is so.

43.9 Multiple messages on the same encrypted TCP/IP connection

Exim sends multiple messages down the same TCP/IP connection by starting up an entirely new
delivery process for each message, passing the socket from one process to the next. This implemen-
tation does not fit well with the use of TLS, because there is quite a lot of state information associated
with a TLS connection, not just a socket identification. Passing all the state information to a new
process is not feasible. Consequently, for sending using TLS Exim starts an additional proxy process
for handling the encryption, piping the unencrypted data stream from and to the delivery processes.

An older mode of operation can be enabled on a per-host basis by the hosts_noproxy_tls option on
the smtp transport. If the host matches this list the proxy process described above is not used; instead
Exim shuts down an existing TLS session being run by the delivery process before passing the socket
to a new process. The new process may then try to start a new TLS session, and if successful, may try
to re-authenticate if AUTH is in use, before sending the next message.

The RFC is not clear as to whether or not an SMTP session continues in clear after TLS has been shut
down, or whether TLS may be restarted again later, as just described. However, if the server is Exim,
this shutdown and reinitialization works. It is not known which (if any) other servers operate success-
fully if the client closes a TLS session and continues with unencrypted SMTP, but there are certainly
some that do not work. For such servers, Exim should not pass the socket to another process, because
the failure of the subsequent attempt to use it would cause Exim to record a temporary host error, and
delay other deliveries to that host.

To test for this case, Exim sends an EHLO command to the server after closing down the TLS
session. If this fails in any way, the connection is closed instead of being passed to a new delivery
process, but no retry information is recorded.

374 Encrypted SMTP connections (43)

There is also a manual override; you can set hosts_nopass_tls on the smtp transport to match those
hosts for which Exim should not pass connections to new processes if TLS has been used.

43.10 Certificates and all that

In order to understand fully how TLS works, you need to know about certificates, certificate signing,
and certificate authorities. This is a large topic and an introductory guide is unsuitable for the Exim
reference manual, so instead we provide pointers to existing documentation.

The Apache web-server was for a long time the canonical guide, so their documentation is a good
place to start; their SSL module’s Introduction document is currently at

https://httpd.apache.org/docs/current/ssl/ssl_intro.html

and their FAQ is at

https://httpd.apache.org/docs/current/ssl/ssl_faq.html

Eric Rescorla’s book, SSL and TLS, published by Addison-Wesley (ISBN 0-201-61598-3) in 2001,
contains both introductory and more in-depth descriptions. More recently Ivan Ristić’s book
Bulletproof SSL and TLS, published by Feisty Duck (ISBN 978-1907117046) in 2013 is good. Ivan is
the author of the popular TLS testing tools at https://www.ssllabs.com/.

43.10.1 Certificate chains

A file named by tls_certificate may contain more than one certificate. This is useful in the case where
the certificate that is being sent is validated by an intermediate certificate which the other end does not
have. Multiple certificates must be in the correct order in the file. First the host’s certificate itself, then
the first intermediate certificate to validate the issuer of the host certificate, then the next intermediate
certificate to validate the issuer of the first intermediate certificate, and so on, until finally (optionally)
the root certificate. The root certificate must already be trusted by the recipient for validation to
succeed, of course, but if it’s not preinstalled, sending the root certificate along with the rest makes it
available for the user to install if the receiving end is a client MUA that can interact with a user.

Note that certificates using MD5 are unlikely to work on today’s Internet; even if your libraries allow
loading them for use in Exim when acting as a server, increasingly clients will not accept such
certificates. The error diagnostics in such a case can be frustratingly vague.

43.10.2 Self-signed certificates

You can create a self-signed certificate using the req command provided with OpenSSL, like this:

openssl req -x509 -newkey rsa:1024 -keyout file1 -out file2 \
 -days 9999 -nodes

file1 and file2 can be the same file; the key and the certificate are delimited and so can be identified
independently. The -days option specifies a period for which the certificate is valid. The -nodes
option is important: if you do not set it, the key is encrypted with a passphrase that you are prompted
for, and any use that is made of the key causes more prompting for the passphrase. This is not helpful
if you are going to use this certificate and key in an MTA, where prompting is not possible.

NB: we are now past the point where 9999 days takes us past the 32-bit Unix epoch. If your system
uses unsigned time_t (most do) and is 32-bit, then the above command might produce a date in the
past. Think carefully about the lifetime of the systems you’re deploying, and either reduce the dur-
ation of the certificate or reconsider your platform deployment. (At time of writing, reducing the
duration is the most likely choice, but the inexorable progression of time takes us steadily towards an
era where this will not be a sensible resolution).

A self-signed certificate made in this way is sufficient for testing, and may be adequate for all your
requirements if you are mainly interested in encrypting transfers, and not in secure identification.

However, many clients require that the certificate presented by the server be a user (also called “leaf”
or “site”) certificate, and not a self-signed certificate. In this situation, the self-signed certificate

375 Encrypted SMTP connections (43)

described above must be installed on the client host as a trusted root certification authority (CA), and
the certificate used by Exim must be a user certificate signed with that self-signed certificate.

For information on creating self-signed CA certificates and using them to sign user certificates, see
the General implementation overview chapter of the Open-source PKI book, available online at
https://sourceforge.net/projects/ospkibook/.

43.10.3 Revoked certificates

There are three ways for a certificate to be made unusable before its expiry.

• Certificate issuing authorities issue Certificate Revocation Lists (CRLs) when certificates are
revoked. If you have such a list, you can pass it to an Exim server using the global option called
tls_crl and to an Exim client using an identically named option for the smtp transport. In each case,
the value of the option is expanded and must then be the name of a file that contains a CRL in PEM
format. The downside is that clients have to periodically re-download a potentially huge file from
every certificate authority they know of.

• The way with most moving parts at query time is Online Certificate Status Protocol (OCSP), where
the client verifies the certificate against an OCSP server run by the CA. This lets the CA track all
usage of the certs. It requires running software with access to the private key of the CA, to sign the
responses to the OCSP queries. OCSP is based on HTTP and can be proxied accordingly.

The only widespread OCSP server implementation (known to this writer) comes as part of
OpenSSL and aborts on an invalid request, such as connecting to the port and then disconnecting.
This requires re-entering the passphrase each time some random client does this.

• The third way is OCSP Stapling; in this, the server using a certificate issued by the CA periodically
requests an OCSP proof of validity from the OCSP server, then serves it up inline as part of the
TLS negotiation. This approach adds no extra round trips, does not let the CA track users, scales
well with number of certs issued by the CA and is resilient to temporary OCSP server failures, as
long as the server starts retrying to fetch an OCSP proof some time before its current proof expires.
The downside is that it requires server support.

Unless Exim is built with the support disabled, or with GnuTLS earlier than version 3.3.16 / 3.4.8
support for OCSP stapling is included.

There is a global option called tls_ocsp_file. The file specified therein is expected to be in DER
format, and contain an OCSP proof. Exim will serve it as part of the TLS handshake. This option
will be re-expanded for SNI, if the tls_certificate option contains tls_in_sni, as per other TLS
options.

Exim does not at this time implement any support for fetching a new OCSP proof. The burden
is on the administrator to handle this, outside of Exim. The file specified should be replaced
atomically, so that the contents are always valid. Exim will expand the tls_ocsp_file option on each
connection, so a new file will be handled transparently on the next connection.

When built with OpenSSL Exim will check for a valid next update timestamp in the OCSP proof;
if not present, or if the proof has expired, it will be ignored.

For the client to be able to verify the stapled OCSP the server must also supply, in its stapled
information, any intermediate certificates for the chain leading to the OCSP proof from the signer
of the server certificate. There may be zero or one such. These intermediate certificates should be
added to the server OCSP stapling file named by tls_ocsp_file.

Note that the proof only covers the terminal server certificate, not any of the chain from CA to it.

There is no current way to staple a proof for a client certificate.

 A helper script "ocsp_fetch.pl" for fetching a proof from a CA
 OCSP server is supplied. The server URL may be included in the
 server certificate, if the CA is helpful.

 One failure mode seen was the OCSP Signer cert expiring before the end

376 Encrypted SMTP connections (43)

 of validity of the OCSP proof. The checking done by Exim/OpenSSL
 noted this as invalid overall, but the re-fetch script did not.

43.11 TLS Resumption

TLS Session Resumption for TLS 1.2 and TLS 1.3 connections can be used (defined in RFC 5077 for
1.2). The support for this requires GnuTLS 3.6.3 or OpenSSL 1.1.1 (or later).

Session resumption (this is the "stateless" variant) involves the server sending a "session ticket" to the
client on one connection, which can be stored by the client and used for a later session. The ticket
contains sufficient state for the server to reconstruct the TLS session, avoiding some expensive crypto
calculation and (on TLS1.2) one full packet roundtrip time.

• Operational cost/benefit:

The extra data being transmitted costs a minor amount, and the client has extra costs in storing and
retrieving the data.

In the Exim/Gnutls implementation the extra cost on an initial connection which is TLS1.2 over a
loopback path is about 6ms on 2017-laptop class hardware. The saved cost on a subsequent con-
nection is about 4ms; three or more connections become a net win. On longer network paths, two
or more connections will have an average lower startup time thanks to the one saved packet
roundtrip. TLS1.3 will save the crypto cpu costs but not any packet roundtrips.

Since a new hints DB is used on the TLS client, the hints DB maintenance should be updated to
additionally handle "tls".

• Security aspects:

The session ticket is encrypted, but is obviously an additional security vulnarability surface. An
attacker able to decrypt it would have access all connections using the resumed session. The
session ticket encryption key is not committed to storage by the server and is rotated regularly
(OpenSSL: 1hr, and one previous key is used for overlap; GnuTLS 6hr but does not specify any
overlap). Tickets have limited lifetime (2hr, and new ones issued after 1hr under OpenSSL.
GnuTLS 2hr, appears to not do overlap).

There is a question-mark over the security of the Diffie-Helman parameters used for session
negotiation.

• Observability:

The log_selector "tls_resumption" appends an asterisk to the tls_cipher "X=" element.

The variables $tls_in_resumption and $tls_out_resumption have bits 0-4 indicating respectively
support built, client requested ticket, client offered session, server issued ticket, resume used. A
suitable decode list is provided in the builtin macro _RESUME_DECODE for in listextract
expansions.

• Control:

The tls_resumption_hosts main option specifies a hostlist for which exim, operating as a server,
will offer resumption to clients. Current best practice is to not offer the feature to MUA connection.
Commonly this can be done like this:

tls_resumption_hosts = ${if inlist {$received_port}{587:465} {:}{*}}

If the peer host matches the list after expansion then resumption is offered and/or accepted.

The tls_resumption_hosts smtp transport option performs the equivalent function for operation as
a client. If the peer host matches the list after expansion then resumption is attempted (if a stored
session is available) or the information stored (if supplied by the peer).

• Issues:

In a resumed session:

− The variables $tls_{in,out}_cipher will have values different to the original (under GnuTLS).

377 Encrypted SMTP connections (43)

− The variables $tls_{in,out}_ocsp will be "not requested" or "no response", and the hosts_
require_ocsp smtp trasnport option will fail.

43.12 DANE

DNS-based Authentication of Named Entities, as applied to SMTP over TLS, provides assurance to a
client that it is actually talking to the server it wants to rather than some attacker operating a Man In
The Middle (MITM) operation. The latter can terminate the TLS connection you make, and make
another one to the server (so both you and the server still think you have an encrypted connection)
and, if one of the "well known" set of Certificate Authorities has been suborned - something which
has been seen already (2014), a verifiable certificate (if you’re using normal root CAs, eg. the
Mozilla set, as your trust anchors).

What DANE does is replace the CAs with the DNS as the trust anchor. The assurance is limited to a)
the possibility that the DNS has been suborned, b) mistakes made by the admins of the target server.
The attack surface presented by (a) is thought to be smaller than that of the set of root CAs.

It also allows the server to declare (implicitly) that connections to it should use TLS. An MITM could
simply fail to pass on a server’s STARTTLS.

DANE scales better than having to maintain (and communicate via side-channel) copies of server
certificates for every possible target server. It also scales (slightly) better than having to maintain on
an SMTP client a copy of the standard CAs bundle. It also means not having to pay a CA for
certificates.

DANE requires a server operator to do three things:

(1) Run DNSSEC. This provides assurance to clients that DNS lookups they do for the server have
not been tampered with. The domain MX record applying to this server, its A record, its TLSA
record and any associated CNAME records must all be covered by DNSSEC.

(2) Add TLSA DNS records. These say what the server certificate for a TLS connection should be.

(3) Offer a server certificate, or certificate chain, in TLS connections which is anchored by one of
the TLSA records.

There are no changes to Exim specific to server-side operation of DANE. Support for client-side
operation of DANE can be included at compile time by defining SUPPORT_DANE=yes in
Local/Makefile. If it has been included, the macro "_HAVE_DANE" will be defined.

43.12.1 DNS records

A TLSA record consist of 4 fields, the "Certificate Usage", the "Selector", the "Matching type", and
the "Certificate Association Data". For a detailed description of the TLSA record see RFC 7671
[https://tools.ietf.org/html/rfc7671#page-5].

The TLSA record for the server may have "Certificate Usage" (1st) field of DANE-TA(2) or DANE-
EE(3). These are the "Trust Anchor" and "End Entity" variants. The latter specifies the End Entity
directly, i.e. the certificate involved is that of the server (and if only DANE-EE is used then it should
be the sole one transmitted during the TLS handshake); this is appropriate for a single system, using a
self-signed certificate. DANE-TA usage is effectively declaring a specific CA to be used; this might
be a private CA or a public, well-known one. A private CA at simplest is just a self-signed certificate
(with certain attributes) which is used to sign server certificates, but running one securely does require
careful arrangement. With DANE-TA, as implemented in Exim and commonly in other MTAs, the
server TLS handshake must transmit the entire certificate chain from CA to server-certificate. DANE-
TA is commonly used for several services and/or servers, each having a TLSA query-domain
CNAME record, all of which point to a single TLSA record. DANE-TA and DANE-EE can both be
used together.

Our recommendation is to use DANE with a certificate from a public CA, because this enables a
variety of strategies for remote clients to verify your certificate. You can then publish information
both via DANE and another technology, "MTA-STS", described below.

378 Encrypted SMTP connections (43)

When you use DANE-TA to publish trust anchor information, you ask entities outside your adminis-
trative control to trust the Certificate Authority for connections to you. If using a private CA then you
should expect others to still apply the technical criteria they’d use for a public CA to your certificates.
In particular, you should probably try to follow current best practices for CA operation around hash
algorithms and key sizes. Do not expect other organizations to lower their security expectations just
because a particular profile might be reasonable for your own internal use.

When this text was last updated, this in practice means to avoid use of SHA-1 and MD5; if using RSA
to use key sizes of at least 2048 bits (and no larger than 4096, for interoperability); to use keyUsage
fields correctly; to use random serial numbers. The list of requirements is subject to change as best
practices evolve. If you’re not already using a private CA, or it doesn’t meet these requirements, then
we encourage you to avoid all these issues and use a public CA such as Let’s Encrypt
[https://letsencrypt.org/] instead.

The TLSA record should have a "Selector" (2nd) field of SPKI(1) and a "Matching Type" (3rd) field
of SHA2-512(2).

For the "Certificate Authority Data" (4th) field, commands like

openssl x509 -pubkey -noout <certificate.pem \
| openssl rsa -outform der -pubin 2>/dev/null \
| openssl sha512 \
| awk '{print $2}'

are workable to create a hash of the certificate’s public key.

An example TLSA record for DANE-EE(3), SPKI(1), and SHA-512 (2) looks like

_25._tcp.mail.example.com. TLSA 3 1 2 8BA8A336E...

At the time of writing, https://www.huque.com/bin/gen_tlsa is useful for quickly generating TLSA
records.

For use with the DANE-TA model, server certificates must have a correct name (SubjectName or
SubjectAltName).

The Certificate issued by the CA published in the DANE-TA model should be issued using a strong
hash algorithm. Exim, and importantly various other MTAs sending to you, will not re-enable hash
algorithms which have been disabled by default in TLS libraries. This means no MD5 and no SHA-1.
SHA2-256 is the minimum for reliable interoperability (and probably the maximum too, in 2018).

43.12.2 Interaction with OCSP

The use of OCSP-stapling should be considered, allowing for fast revocation of certificates (which
would otherwise be limited by the DNS TTL on the TLSA records). However, this is likely to only be
usable with DANE-TA. NOTE: the default of requesting OCSP for all hosts is modified iff DANE is
in use, to:

 hosts_request_ocsp = ${if or { {= {0}{$tls_out_tlsa_usage}} \
¤¤¤¤ {= {4}{$tls_out_tlsa_usage}} } \
 {*}{}}

The (new) variable $tls_out_tlsa_usage is a bitfield with numbered bits set for TLSA record usage
codes. The zero above means DANE was not in use, the four means that only DANE-TA usage TLSA
records were found. If the definition of hosts_request_ocsp includes the string "tls_out_tlsa_usage",
they are re-expanded in time to control the OCSP request.

This modification of hosts_request_ocsp is only done if it has the default value of "*". Admins who
change it, and those who use hosts_require_ocsp, should consider the interaction with DANE in their
OCSP settings.

43.12.3 Client configuration

For client-side DANE there are three new smtp transport options, hosts_try_dane, hosts_require_
dane and dane_require_tls_ciphers. The “require” variant will result in failure if the target host is

379 Encrypted SMTP connections (43)

not DNSSEC-secured. To get DNSSEC-secured hostname resolution, use the dnssec_request_
domains router or transport option.

DANE will only be usable if the target host has DNSSEC-secured MX, A and TLSA records.

A TLSA lookup will be done if either of the above options match and the host-lookup succeeded
using DNSSEC. If a TLSA lookup is done and succeeds, a DANE-verified TLS connection will be
required for the host. If it does not, the host will not be used; there is no fallback to non-DANE or
non-TLS.

If DANE is requested and usable, then the TLS cipher list configuration prefers to use the option
dane_require_tls_ciphers and falls back to tls_require_ciphers only if that is unset. This lets you
configure "decent crypto" for DANE and "better than nothing crypto" as the default. Note though that
while GnuTLS lets the string control which versions of TLS/SSL will be negotiated, OpenSSL does
not and you’re limited to ciphersuite constraints.

If DANE is requested and useable (see above) the following transport options are ignored:

hosts_require_tls
tls_verify_hosts
tls_try_verify_hosts
tls_verify_certificates
tls_crl
tls_verify_cert_hostnames
tls_sni

If DANE is not usable, whether requested or not, and CA-anchored verification evaluation is wanted,
the above variables should be set appropriately.

The router and transport option dnssec_request_domains must not be set to “never”, and dnssec_
require_domains is ignored.

43.12.4 Observability

If verification was successful using DANE then the "CV" item in the delivery log line will show as
"CV=dane".

There is a new variable $tls_out_dane which will have "yes" if verification succeeded using DANE
and "no" otherwise (only useful in combination with events; see 61), and a new variable $tls_out_
tlsa_usage (detailed above).

An event (see 61) of type "dane:fail" will be raised on failures to achieve DANE-verified connection,
if one was either requested and offered, or required. This is intended to support TLS-reporting as
defined in https://tools.ietf.org/html/draft-ietf-uta-smtp-tlsrpt-17. The $event_data will be one of
the Result Types defined in Section 4.3 of that document.

43.12.5 General

Under GnuTLS, DANE is only supported from version 3.0.0 onwards.

DANE is specified in RFC 6698. It decouples certificate authority trust selection from a "race to the
bottom" of "you must trust everything for mail to get through". It does retain the need to trust the
assurances provided by the DNSSEC tree.

There is an alternative technology called MTA-STS (RFC 8461), which instead publishes MX trust
anchor information on an HTTPS website. The discovery of the address for that website does not (per
standard) require DNSSEC, and could be regarded as being less secure than DANE as a result.

Exim has no support for MTA-STS as a client, but Exim mail server operators can choose to publish
information describing their TLS configuration using MTA-STS to let those clients who do use that
protocol derive trust information.

The MTA-STS design requires a certificate from a public Certificate Authority which is recognized by
clients sending to you. That selection of which CAs are trusted by others is outside your control.

380 Encrypted SMTP connections (43)

The most interoperable course of action is probably to use Let’s Encrypt [https://letsencrypt.org/],
with automated certificate renewal; to publish the anchor information in DNSSEC-secured DNS via
TLSA records for DANE clients (such as Exim and Postfix) and to publish anchor information for
MTA-STS as well. This is what is done for the exim.org domain itself (with caveats around occasion-
ally broken MTA-STS because of incompatible specification changes prior to reaching RFC status).

381 Encrypted SMTP connections (43)

44. Access control lists

Access Control Lists (ACLs) are defined in a separate section of the runtime configuration file,
headed by “begin acl”. Each ACL definition starts with a name, terminated by a colon. Here is a
complete ACL section that contains just one very small ACL:

begin acl
small_acl:
 accept hosts = one.host.only

You can have as many lists as you like in the ACL section, and the order in which they appear does
not matter. The lists are self-terminating.

The majority of ACLs are used to control Exim’s behaviour when it receives certain SMTP com-
mands. This applies both to incoming TCP/IP connections, and when a local process submits a
message using SMTP by specifying the -bs option. The most common use is for controlling which
recipients are accepted in incoming messages. In addition, you can define an ACL that is used to
check local non-SMTP messages. The default configuration file contains an example of a realistic
ACL for checking RCPT commands. This is discussed in chapter 7.

44.1 Testing ACLs

The -bh command line option provides a way of testing your ACL configuration locally by running a
fake SMTP session with which you interact.

44.2 Specifying when ACLs are used

In order to cause an ACL to be used, you have to name it in one of the relevant options in the main
part of the configuration. These options are:

 acl_not_smtp ACL for non-SMTP messages
 acl_not_smtp_mime ACL for non-SMTP MIME parts
 acl_not_smtp_start ACL at start of non-SMTP message
 acl_smtp_auth ACL for AUTH
 acl_smtp_connect ACL for start of SMTP connection
 acl_smtp_data ACL after DATA is complete
 acl_smtp_data_prdr ACL for each recipient, after DATA is complete
 acl_smtp_dkim ACL for each DKIM signer
 acl_smtp_etrn ACL for ETRN
 acl_smtp_expn ACL for EXPN
 acl_smtp_helo ACL for HELO or EHLO
 acl_smtp_mail ACL for MAIL
 acl_smtp_mailauth ACL for the AUTH parameter of MAIL
 acl_smtp_mime ACL for content-scanning MIME parts
 acl_smtp_notquit ACL for non-QUIT terminations
 acl_smtp_predata ACL at start of DATA command
 acl_smtp_quit ACL for QUIT
 acl_smtp_rcpt ACL for RCPT
 acl_smtp_starttls ACL for STARTTLS
 acl_smtp_vrfy ACL for VRFY
 acl_smtp_wellknown ACL for WELLKNOWN

For example, if you set

acl_smtp_rcpt = small_acl

the little ACL defined above is used whenever Exim receives a RCPT command in an SMTP dia-
logue. The majority of policy tests on incoming messages can be done when RCPT commands arrive.
A rejection of RCPT should cause the sending MTA to give up on the recipient address contained in
the RCPT command, whereas rejection at other times may cause the client MTA to keep on trying to

382 Access control lists (44)

deliver the message. It is therefore recommended that you do as much testing as possible at RCPT
time.

44.2.1 The non-SMTP ACLs

The non-SMTP ACLs apply to all non-interactive incoming messages, that is, they apply to batched
SMTP as well as to non-SMTP messages. (Batched SMTP is not really SMTP.) Many of the ACL
conditions (for example, host tests, and tests on the state of the SMTP connection such as encryption
and authentication) are not relevant and are forbidden in these ACLs. However, the sender and
recipients are known, so the senders and sender_domains conditions and the $sender_address and
$recipients variables can be used. Variables such as $authenticated_sender are also available. You can
specify added header lines in any of these ACLs.

The acl_not_smtp_start ACL is run right at the start of receiving a non-SMTP message, before any
of the message has been read. (This is the analogue of the acl_smtp_predata ACL for SMTP input.)
In the case of batched SMTP input, it runs after the DATA command has been reached. The result of
this ACL is ignored; it cannot be used to reject a message. If you really need to, you could set a value
in an ACL variable here and reject based on that in the acl_not_smtp ACL. However, this ACL can
be used to set controls, and in particular, it can be used to set

control = suppress_local_fixups

This cannot be used in the other non-SMTP ACLs because by the time they are run, it is too late.

The acl_not_smtp_mime ACL is available only when Exim is compiled with the content-scanning
extension. For details, see chapter 45.

The acl_not_smtp ACL is run just before the local_scan() function. Any kind of rejection is treated
as permanent, because there is no way of sending a temporary error for these kinds of message.

44.2.2 The SMTP connect ACL

The ACL test specified by acl_smtp_connect happens at the start of an SMTP session, after the test
specified by host_reject_connection (which is now an anomaly) and any TCP Wrappers testing (if
configured). If the connection is accepted by an accept verb that has a message modifier, the contents
of the message override the banner message that is otherwise specified by the smtp_banner option.

For tls-on-connect connections, the ACL is run before the TLS connection is accepted; if the ACL
does not accept then the TCP connection is dropped without any TLS startup attempt and without any
SMTP response being transmitted.

44.2.3 The EHLO/HELO ACL

The ACL test specified by acl_smtp_helo happens when the client issues an EHLO or HELO com-
mand, after the tests specified by helo_accept_junk_hosts, helo_allow_chars, helo_verify_hosts,
and helo_try_verify_hosts. Note that a client may issue more than one EHLO or HELO command in
an SMTP session, and indeed is required to issue a new EHLO or HELO after successfully setting up
encryption following a STARTTLS command.

Note also that a deny neither forces the client to go away nor means that mail will be refused on the
connection. Consider checking for $sender_helo_name being defined in a MAIL or RCPT ACL to do
that.

If the command is accepted by an accept verb that has a message modifier, the message may not
contain more than one line (it will be truncated at the first newline and a panic logged if it does). Such
a message cannot affect the EHLO options that are listed on the second and subsequent lines of an
EHLO response.

44.2.4 The DATA ACLs

Two ACLs are associated with the DATA command, because it is two-stage command, with two
responses being sent to the client. When the DATA command is received, the ACL defined by acl_
smtp_predata is obeyed. This gives you control after all the RCPT commands, but before the mess-

383 Access control lists (44)

age itself is received. It offers the opportunity to give a negative response to the DATA command
before the data is transmitted. Header lines added by MAIL or RCPT ACLs are not visible at this
time, but any that are defined here are visible when the acl_smtp_data ACL is run.

You cannot test the contents of the message, for example, to verify addresses in the headers, at RCPT
time or when the DATA command is received. Such tests have to appear in the ACL that is run after
the message itself has been received, before the final response to the DATA command is sent. This is
the ACL specified by acl_smtp_data, which is the second ACL that is associated with the DATA
command.

If CHUNKING was advertised and a BDAT command sequence is received, the acl_smtp_predata
ACL is not run. The acl_smtp_data is run after the last BDAT command and all of the data specified
is received.

For both of these ACLs, it is not possible to reject individual recipients. An error response rejects the
entire message. Unfortunately, it is known that some MTAs do not treat hard (5xx) responses to the
DATA command (either before or after the data) correctly – they keep the message on their queues
and try again later, but that is their problem, though it does waste some of your resources.

The acl_smtp_data ACL is run after the acl_smtp_data_prdr, the acl_smtp_dkim and the acl_
smtp_mime ACLs.

44.2.5 The SMTP DKIM ACL

The acl_smtp_dkim ACL is available only when Exim is compiled with DKIM support enabled
(which is the default).

If, for a specific message, an ACL control dkim_disable_verify has been set, this acl_smtp_dkim
ACL is not called.

The ACL test specified by acl_smtp_dkim happens after a message has been received, and is
executed for each DKIM signature found in a message. If not otherwise specified, the default action is
to accept.

This ACL is evaluated before acl_smtp_mime and acl_smtp_data.

For details on the operation of DKIM, see section 58.1.

44.2.6 The SMTP MIME ACL

The acl_smtp_mime option is available only when Exim is compiled with the content-scanning
extension. For details, see chapter 45.

This ACL is evaluated after acl_smtp_dkim but before acl_smtp_data.

44.2.7 The SMTP PRDR ACL

The acl_smtp_data_prdr ACL is available only when Exim is compiled with PRDR support enabled
(which is the default). It becomes active only when the PRDR feature is negotiated between client and
server for a message, and more than one recipient has been accepted.

The ACL test specified by acl_smtp_data_prdr happens after a message has been received, and is
executed once for each recipient of the message with $local_part and $domain valid. The test may
accept, defer or deny for individual recipients. The acl_smtp_data will still be called after this ACL
and can reject the message overall, even if this ACL has accepted it for some or all recipients.

PRDR may be used to support per-user content filtering. Without it one must defer any recipient after
the first that has a different content-filter configuration. With PRDR, the RCPT-time check for this can
be disabled when the variable $prdr_requested is “yes”. Any required difference in behaviour of the
main DATA-time ACL should however depend on the PRDR-time ACL having run, as Exim will
avoid doing so in some situations (e.g. single-recipient mails).

See also the prdr_enable global option and the hosts_try_prdr smtp transport option.

384 Access control lists (44)

This ACL is evaluated after acl_smtp_dkim but before acl_smtp_data. If the ACL is not defined,
processing completes as if the feature was not requested by the client.

44.2.8 The SMTP WELLKNOWN ACL

The acl_smtp_wellknown ACL is available only when Exim is compiled with WELLKNOWN sup-
port enabled.

The ACL determines the response to an SMTP WELLKNOWN command, using the normal
accept/defer/deny verbs for the response code, and a new “control=wellknown” modifier. This modi-
fier takes a single option, separated by a ’/’ character, which must be the name of a file containing the
response cleartext. The modifier is expanded before use in the usual way before it is used. The
configuration is responsible for picking a suitable file to return and, most importantly, not returning
any unexpected file. The argument for the SMTP verb will be available in the $smtp_command_
argument variable and can be used for building the file path. If the file path given in the modifier is
empty or inacessible, the control will fail.

For example:

 check_wellknown:
 accept control = wellknown/\
¤¤ ${lookup {${xtextd:$smtp_command_argument}} \
¤¤¤dsearch,key=path,filter=file,ret=full \
¤¤¤{$spooldir/wellknown.d}}

File content will be encoded in “xtext” form, and line-wrapping for line-length limitation will be done
before transmission. A response summary line will be prepended, with the (pre-encoding) file size.

The above example uses the expansion operator ${xtextd:<coded-string>} which is needed to decode
the xtext-encoded key from the SMTP verb.

Under the util directory there is a "mailtest" utility which can be used to test/retrieve WELLKNOWN
items. Syntax is

mailtest -h host.example.com -w security.txt

WELLKNOWN is a ESMTP extension providing access to extended information about the server. It
is modelled on the webserver facilities documented in RFC 8615 and can be used for a security.txt file
and could be used for ACME handshaking (RFC 8555).

Exim will advertise WELLKNOWN support in the EHLO response (conditional on a new option
wellknown_advertise_hosts) and service WELLKNOWN smtp verbs having a single parameter giv-
ing a key for an item of "site-wide metadata". The verb and key are separated by whitespace, and the
key is xtext-encoded (per RFC 3461 section 4).

44.2.9 The QUIT ACL

The ACL for the SMTP QUIT command is anomalous, in that the outcome of the ACL does not affect
the response code to QUIT, which is always 221. Thus, the ACL does not in fact control any access.
For this reason, it may only accept or warn as its final result.

This ACL can be used for tasks such as custom logging at the end of an SMTP session. For example,
you can use ACL variables in other ACLs to count messages, recipients, etc., and log the totals at
QUIT time using one or more logwrite modifiers on a warn verb.

Warning: Only the $acl_cx variables can be used for this, because the $acl_mx variables are reset at
the end of each incoming message.

You do not need to have a final accept, but if you do, you can use a message modifier to specify
custom text that is sent as part of the 221 response to QUIT.

This ACL is run only for a “normal” QUIT. For certain kinds of disastrous failure (for example,
failure to open a log file, or when Exim is bombing out because it has detected an unrecoverable
error), all SMTP commands from the client are given temporary error responses until QUIT is
received or the connection is closed. In these special cases, the QUIT ACL does not run.

385 Access control lists (44)

44.2.10 The not-QUIT ACL

The not-QUIT ACL, specified by acl_smtp_notquit, is run in most cases when an SMTP session
ends without sending QUIT. However, when Exim itself is in bad trouble, such as being unable to
write to its log files, this ACL is not run, because it might try to do things (such as write to log files)
that make the situation even worse.

Like the QUIT ACL, this ACL is provided to make it possible to do customized logging or to gather
statistics, and its outcome is ignored. The delay modifier is forbidden in this ACL, and the only
permitted verbs are accept and warn.

When the not-QUIT ACL is running, the variable $smtp_notquit_reason is set to a string that indi-
cates the reason for the termination of the SMTP connection. The possible values are:

 acl-drop Another ACL issued a drop command
 bad-commands Too many unknown or non-mail commands
 command-timeout Timeout while reading SMTP commands
 connection-lost The SMTP connection has been lost
 data-timeout Timeout while reading message data
 local-scan-error The local_scan() function crashed
 local-scan-timeout The local_scan() function timed out
 signal-exit SIGTERM or SIGINT
 synchronization-error SMTP synchronization error
 tls-failed TLS failed to start

In most cases when an SMTP connection is closed without having received QUIT, Exim sends an
SMTP response message before actually closing the connection. With the exception of the acl-
drop case, the default message can be overridden by the message modifier in the not-QUIT ACL. In
the case of a drop verb in another ACL, it is the message from the other ACL that is used.

44.3 Finding an ACL to use

The value of an acl_smtp_xxx option is expanded before use, so you can use different ACLs in
different circumstances. For example,

acl_smtp_rcpt = ${if ={25}{$interface_port} \
 {acl_check_rcpt} {acl_check_rcpt_submit} }

In the default configuration file there are some example settings for providing an RFC 4409 message
“submission” service on port 587 and an RFC 8314 “submissions” service on port 465. You can use a
string expansion like this to choose an ACL for MUAs on these ports which is more appropriate for
this purpose than the default ACL on port 25.

The expanded string does not have to be the name of an ACL in the configuration file; there are other
possibilities. Having expanded the string, Exim searches for an ACL as follows:

• If the string begins with a slash, Exim uses it as a filename, and reads its contents as an ACL. The
lines are processed in the same way as lines in the Exim configuration file. In particular, continu-
ation lines are supported, blank lines are ignored, as are lines whose first non-whitespace character
is “#”. If the file does not exist or cannot be read, an error occurs (typically causing a temporary
failure of whatever caused the ACL to be run). For example:

acl_smtp_data = /etc/acls/\
 ${lookup{$sender_host_address}lsearch\
 {/etc/acllist}{$value}{default}}

This looks up an ACL file to use on the basis of the host’s IP address, falling back to a default if the
lookup fails. If an ACL is successfully read from a file, it is retained in memory for the duration of
the Exim process, so that it can be re-used without having to re-read the file.

• If the string does not start with a slash, and does not contain any spaces, Exim searches the ACL
section of the configuration for an ACL whose name matches the string.

386 Access control lists (44)

• If no named ACL is found, or if the string contains spaces, Exim parses the string as an inline
ACL. This can save typing in cases where you just want to have something like

acl_smtp_vrfy = accept

in order to allow free use of the VRFY command. Such a string may contain newlines; it is
processed in the same way as an ACL that is read from a file.

44.4 ACL return codes

Except for the QUIT ACL, which does not affect the SMTP return code (see section 44.2.9 above),
the result of running an ACL is either “accept” or “deny”, or, if some test cannot be completed (for
example, if a database is down), “defer”. These results cause 2xx, 5xx, and 4xx return codes, respect-
ively, to be used in the SMTP dialogue. A fourth return, “error”, occurs when there is an error such as
invalid syntax in the ACL. This also causes a 4xx return code.

For the non-SMTP ACL, “defer” and “error” are treated in the same way as “deny”, because there is
no mechanism for passing temporary errors to the submitters of non-SMTP messages.

ACLs that are relevant to message reception may also return “discard”. This has the effect of
“accept”, but causes either the entire message or an individual recipient address to be discarded. In
other words, it is a blackholing facility. Use it with care.

If the ACL for MAIL returns “discard”, all recipients are discarded, and no ACL is run for subsequent
RCPT commands. The effect of “discard” in a RCPT ACL is to discard just the one recipient address.
If there are no recipients left when the message’s data is received, the DATA ACL is not run. A
“discard” return from the DATA or the non-SMTP ACL discards all the remaining recipients. The
“discard” return is not permitted for the acl_smtp_predata ACL.

If the ACL for VRFY returns “accept”, a recipient verify (without callout) is done on the address and
the result determines the SMTP response.

The local_scan() function is always run, even if there are no remaining recipients; it may create new
recipients.

44.5 Unset ACL options

The default actions when any of the acl_xxx options are unset are not all the same. Note: These
defaults apply only when the relevant ACL is not defined at all. For any defined ACL, the default
action when control reaches the end of the ACL statements is “deny”.

For acl_smtp_quit and acl_not_smtp_start there is no default because these two are ACLs that are
used only for their side effects. They cannot be used to accept or reject anything.

For acl_not_smtp, acl_smtp_auth, acl_smtp_connect, acl_smtp_data, acl_smtp_helo, acl_smtp_
mail, acl_smtp_mailauth, acl_smtp_mime, acl_smtp_predata, and acl_smtp_starttls, the action
when the ACL is not defined is “accept”.

For the others (acl_smtp_etrn, acl_smtp_expn, acl_smtp_rcpt, acl_smtp_vrfy

and acl_smtp_wellknown),

the action when the ACL is not defined is “deny”. This means that acl_smtp_rcpt must be defined in
order to receive any messages over an SMTP connection. For an example, see the ACL in the default
configuration file.

44.6 Data for message ACLs

When a MAIL or RCPT ACL, or either of the DATA ACLs, is running, the variables that contain
information about the host and the message’s sender (for example, $sender_host_address and
$sender_address) are set, and can be used in ACL statements. In the case of RCPT (but not MAIL or
DATA), $domain and $local_part are set from the argument address. The entire SMTP command is
available in $smtp_command.

387 Access control lists (44)

When an ACL for the AUTH parameter of MAIL is running, the variables that contain information
about the host are set, but $sender_address is not yet set. Section 33.2 contains a discussion of this
parameter and how it is used.

The $message_size variable is set to the value of the SIZE parameter on the MAIL command at
MAIL, RCPT and pre-data time, or to -1 if that parameter is not given. The value is updated to the
true message size by the time the final DATA ACL is run (after the message data has been received).

The $rcpt_count variable increases by one for each RCPT command received. The $recipients_count
variable increases by one each time a RCPT command is accepted, so while an ACL for RCPT is
being processed, it contains the number of previously accepted recipients. At DATA time (for both the
DATA ACLs), $rcpt_count contains the total number of RCPT commands, and $recipients_count
contains the total number of accepted recipients.

44.7 Data for non-message ACLs

When an ACL is being run for AUTH, EHLO, ETRN, EXPN, HELO, STARTTLS, or VRFY, the
remainder of the SMTP command line is placed in $smtp_command_argument, and the entire SMTP
command is available in $smtp_command. These variables can be tested using a condition condition.
For example, here is an ACL for use with AUTH, which insists that either the session is encrypted, or
the CRAM-MD5 authentication method is used. In other words, it does not permit authentication
methods that use cleartext passwords on unencrypted connections.

acl_check_auth:
 accept encrypted = *
 accept condition = ${if eq{${uc:$smtp_command_argument}}\
 {CRAM-MD5}}
 deny message = TLS encryption or CRAM-MD5 required

(Another way of applying this restriction is to arrange for the authenticators that use cleartext pass-
words not to be advertised when the connection is not encrypted. You can use the generic server_
advertise_condition authenticator option to do this.)

44.8 Format of an ACL

An individual ACL definition consists of a number of statements. Each statement starts with a verb,
optionally followed by a number of conditions and “modifiers”. Modifiers can change the way the
verb operates, define error and log messages, set variables, insert delays, and vary the processing of
accepted messages.

If all the conditions are met, the verb is obeyed. The same condition may be used (with different
arguments) more than once in the same statement. This provides a means of specifying an “and”
conjunction between conditions. For example:

deny dnslists = list1.example
 dnslists = list2.example

If there are no conditions, the verb is always obeyed. Exim stops evaluating the conditions and
modifiers when it reaches a condition that fails. What happens then depends on the verb (and in one
case, on a special modifier). Not all the conditions make sense at every testing point. For example,
you cannot test a sender address in the ACL that is run for a VRFY command.

The definition of an ACL ends where another starts, or a different configuration section starts.

44.9 ACL verbs

The ACL verbs are as follows:

• accept: If all the conditions are met, the ACL returns “accept”. If any of the conditions are not met,
what happens depends on whether endpass appears among the conditions (for syntax see below).
If the failing condition is before endpass, control is passed to the next ACL statement; if it is after
endpass, the ACL returns “deny”. Consider this statement, used to check a RCPT command:

388 Access control lists (44)

accept domains = +local_domains
 endpass
 verify = recipient

If the recipient domain does not match the domains condition, control passes to the next statement.
If it does match, the recipient is verified, and the command is accepted if verification succeeds.
However, if verification fails, the ACL yields “deny”, because the failing condition is after
endpass.

The endpass feature has turned out to be confusing to many people, so its use is not recommended
nowadays. It is always possible to rewrite an ACL so that endpass is not needed, and it is no longer
used in the default configuration.

If a message modifier appears on an accept statement, its action depends on whether or not
endpass is present. In the absence of endpass (when an accept verb either accepts or passes
control to the next statement), message can be used to vary the message that is sent when an SMTP
command is accepted. For example, in a RCPT ACL you could have:

accept <some conditions>
 message = OK, I will allow you through today

You can specify an SMTP response code, optionally followed by an “extended response code” at
the start of the message, but the first digit must be the same as would be sent by default, which is 2
for an accept verb.

If endpass is present in an accept statement, message specifies an error message that is used when
access is denied. This behaviour is retained for backward compatibility, but current “best practice”
is to avoid the use of endpass.

• defer: If all the conditions are true, the ACL returns “defer” which, in an SMTP session, causes a
4xx response to be given. For a non-SMTP ACL, defer is the same as deny, because there is no
way of sending a temporary error. For a RCPT command, defer is much the same as using a
redirect router and :defer: while verifying, but the defer verb can be used in any ACL, and
even for a recipient it might be a simpler approach.

• deny: If all the conditions are met, the ACL returns “deny”. If any of the conditions are not met,
control is passed to the next ACL statement. For example,

deny dnslists = blackholes.mail-abuse.org

rejects commands from hosts that are on a DNS black list.

• discard: This verb behaves like accept, except that it returns “discard” from the ACL instead of
“accept”. It is permitted only on ACLs that are concerned with receiving messages. When all the
conditions are true, the sending entity receives a “success” response. However, discard causes
recipients to be discarded. If it is used in an ACL for RCPT, just the one recipient is discarded; if
used for MAIL, DATA or in the non-SMTP ACL, all the message’s recipients are discarded.
Recipients that are discarded before DATA do not appear in the log line when the received_
recipients log selector is set.

If the log_message modifier is set when discard operates, its contents are added to the line that is
automatically written to the log. The message modifier operates exactly as it does for accept.

• drop: This verb behaves like deny, except that an SMTP connection is forcibly closed after the 5xx
error message has been sent. For example:

drop condition = ${if > {$rcpt_count}{20}}
 message = I don't take more than 20 RCPTs

There is no difference between deny and drop for the connect-time ACL. The connection is
always dropped after sending a 550 response.

• require: If all the conditions are met, control is passed to the next ACL statement. If any of the
conditions are not met, the ACL returns “deny”. For example, when checking a RCPT command,

389 Access control lists (44)

require message = Sender did not verify
 verify = sender

passes control to subsequent statements only if the message’s sender can be verified. Otherwise, it
rejects the command. Note the positioning of the message modifier, before the verify condition.
The reason for this is discussed in section 44.11.

• warn: If all the conditions are true, a line specified by the log_message modifier is written to
Exim’s main log. Control always passes to the next ACL statement. If any condition is false, the
log line is not written. If an identical log line is requested several times in the same message, only
one copy is actually written to the log. If you want to force duplicates to be written, use the
logwrite modifier instead.

If log_message is not present, a warn verb just checks its conditions and obeys any “immediate”
modifiers (such as control, set, logwrite, add_header, and remove_header) that appear before
the first failing condition. There is more about adding header lines in section 44.15.

If any condition on a warn statement cannot be completed (that is, there is some sort of defer), the
log line specified by log_message is not written. This does not include the case of a forced failure
from a lookup, which is considered to be a successful completion. After a defer, no further con-
ditions or modifiers in the warn statement are processed. The incident is logged, and the ACL
continues to be processed, from the next statement onwards.

When one of the warn conditions is an address verification that fails, the text of the verification
failure message is in $acl_verify_message. If you want this logged, you must set it up explicitly.
For example:

warn !verify = sender
 log_message = sender verify failed: $acl_verify_message

At the end of each ACL there is an implicit unconditional deny.

As you can see from the examples above, the conditions and modifiers are written one to a line, with
the first one on the same line as the verb, and subsequent ones on following lines. If you have a very
long condition, you can continue it onto several physical lines by the usual backslash continuation
mechanism. It is conventional to align the conditions vertically.

44.10 ACL variables

There are some special variables that can be set during ACL processing. They can be used to pass
information between different ACLs, different invocations of the same ACL in the same SMTP
connection, and between ACLs and the routers, transports, and filters that are used to deliver a
message. The names of these variables must begin with $acl_c or $acl_m, followed either by a digit
or an underscore, but the remainder of the name can be any sequence of alphanumeric characters and
underscores that you choose. There is no limit on the number of ACL variables. The two sets act as
follows:

• The values of those variables whose names begin with $acl_c persist throughout an SMTP connec-
tion. They are never reset. Thus, a value that is set while receiving one message is still available
when receiving the next message on the same SMTP connection.

• The values of those variables whose names begin with $acl_m persist only while a message is
being received. They are reset afterwards. They are also reset by MAIL, RSET, EHLO, HELO, and
after starting up a TLS session.

When a message is accepted, the current values of all the ACL variables are preserved with the
message and are subsequently made available at delivery time. The ACL variables are set by a
modifier called set. For example:

accept hosts = whatever
 set acl_m4 = some value
accept authenticated = *
 set acl_c_auth = yes

390 Access control lists (44)

Note: A leading dollar sign is not used when naming a variable that is to be set. If you want to set
a variable without taking any action, you can use a warn verb without any other modifiers or
conditions.

What happens if a syntactically valid but undefined ACL variable is referenced depends on the setting
of the strict_acl_vars option. If it is false (the default), an empty string is substituted; if it is true, an
error is generated.

Versions of Exim before 4.64 have a limited set of numbered variables, but their names are compat-
ible, so there is no problem with upgrading.

44.11 Condition and modifier processing

An exclamation mark preceding a condition negates its result. For example:

deny domains = *.dom.example
 !verify = recipient

causes the ACL to return “deny” if the recipient domain ends in dom.example and the recipient
address cannot be verified. Sometimes negation can be used on the right-hand side of a condition. For
example, these two statements are equivalent:

deny hosts = !192.168.3.4
deny !hosts = 192.168.3.4

However, for many conditions (verify being a good example), only left-hand side negation of the
whole condition is possible.

The arguments of conditions and modifiers are expanded. A forced failure of an expansion causes a
condition to be ignored, that is, it behaves as if the condition is true. Consider these two statements:

accept senders = ${lookup{$host_name}lsearch\
 {/some/file}{$value}fail}
accept senders = ${lookup{$host_name}lsearch\
 {/some/file}{$value}{}}

Each attempts to look up a list of acceptable senders. If the lookup succeeds, the returned list is
searched, but if the lookup fails the behaviour is different in the two cases. The fail in the first
statement causes the condition to be ignored, leaving no further conditions. The accept verb therefore
succeeds. The second statement, however, generates an empty list when the lookup fails. No sender
can match an empty list, so the condition fails, and therefore the accept also fails.

ACL modifiers appear mixed in with conditions in ACL statements. Some of them specify actions that
are taken as the conditions for a statement are checked; others specify text for messages that are used
when access is denied or a warning is generated. The control modifier affects the way an incoming
message is handled.

The positioning of the modifiers in an ACL statement is important, because the processing of a verb
ceases as soon as its outcome is known. Only those modifiers that have already been encountered will
take effect. For example, consider this use of the message modifier:

require message = Can't verify sender
 verify = sender
 message = Can't verify recipient
 verify = recipient
 message = This message cannot be used

If sender verification fails, Exim knows that the result of the statement is “deny”, so it goes no further.
The first message modifier has been seen, so its text is used as the error message. If sender verifi-
cation succeeds, but recipient verification fails, the second message is used. If recipient verification
succeeds, the third message becomes “current”, but is never used because there are no more con-
ditions to cause failure.

391 Access control lists (44)

For the deny verb, on the other hand, it is always the last message modifier that is used, because all
the conditions must be true for rejection to happen. Specifying more than one message modifier does
not make sense, and the message can even be specified after all the conditions. For example:

deny hosts = ...
 !senders = *@my.domain.example
 message = Invalid sender from client host

The “deny” result does not happen until the end of the statement is reached, by which time Exim has
set up the message.

44.12 ACL modifiers

The ACL modifiers are as follows:

add_header = <text>
This modifier specifies one or more header lines that are to be added to an incoming message,
assuming, of course, that the message is ultimately accepted. For details, see section 44.15.

continue = <text>
This modifier does nothing of itself, and processing of the ACL always continues with the next
condition or modifier. The value of continue is in the side effects of expanding its argument.
Typically this could be used to update a database. It is really just a syntactic tidiness, to avoid
having to write rather ugly lines like this:

condition = ${if eq{0}{<some expansion>}{true}{true}}

Instead, all you need is

continue = <some expansion>

control = <text>
This modifier affects the subsequent processing of the SMTP connection or of an incoming mess-
age that is accepted. The effect of the first type of control lasts for the duration of the connection,
whereas the effect of the second type lasts only until the current message has been received. The
message-specific controls always apply to the whole message, not to individual recipients, even if
the control modifier appears in a RCPT ACL.

As there are now quite a few controls that can be applied, they are described separately in section
44.13. The control modifier can be used in several different ways. For example:

• It can be at the end of an accept statement:

accept ...some conditions
 control = queue

In this case, the control is applied when this statement yields “accept”, in other words, when the
conditions are all true.

• It can be in the middle of an accept statement:

accept ...some conditions...
 control = queue
 ...some more conditions...

If the first set of conditions are true, the control is applied, even if the statement does not accept
because one of the second set of conditions is false. In this case, some subsequent statement
must yield “accept” for the control to be relevant.

• It can be used with warn to apply the control, leaving the decision about accepting or denying
to a subsequent verb. For example:

warn ...some conditions...
 control = freeze
accept ...

392 Access control lists (44)

This example of warn does not contain message, log_message, or logwrite, so it does not add
anything to the message and does not write a log entry.

• If you want to apply a control unconditionally, you can use it with a require verb. For example:

require control = no_multiline_responses

delay = <time>
This modifier may appear in any ACL except notquit. It causes Exim to wait for the time interval
before proceeding. However, when testing Exim using the -bh option, the delay is not actually
imposed (an appropriate message is output instead). The time is given in the usual Exim notation,
and the delay happens as soon as the modifier is processed. In an SMTP session, pending output is
flushed before the delay is imposed.

Like control, delay can be used with accept or deny, for example:

deny ...some conditions...
 delay = 30s

The delay happens if all the conditions are true, before the statement returns “deny”. Compare this
with:

deny delay = 30s
 ...some conditions...

which waits for 30s before processing the conditions. The delay modifier can also be used with
warn and together with control:

warn ...some conditions...
 delay = 2m
 control = freeze
accept ...

If delay is encountered when the SMTP PIPELINING extension is in use, responses to several
commands are no longer buffered and sent in one packet (as they would normally be) because all
output is flushed before imposing the delay. This optimization is disabled so that a number of
small delays do not appear to the client as one large aggregated delay that might provoke an
unwanted timeout. You can, however, disable output flushing for delay by using a control modi-
fier to set no_delay_flush.

endpass
This modifier, which has no argument, is recognized only in accept and discard statements. It
marks the boundary between the conditions whose failure causes control to pass to the next
statement, and the conditions whose failure causes the ACL to return “deny”. This concept has
proved to be confusing to some people, so the use of endpass is no longer recommended as “best
practice”. See the description of accept above for more details.

log_message = <text>
This modifier sets up a message that is used as part of the log message if the ACL denies access or
a warn statement’s conditions are true. For example:

require log_message = wrong cipher suite $tls_in_cipher
 encrypted = DES-CBC3-SHA

log_message is also used when recipients are discarded by discard. For example:

discard <some conditions>
 log_message = Discarded $local_part@$domain because...

When access is denied, log_message adds to any underlying error message that may exist because
of a condition failure. For example, while verifying a recipient address, a :fail: redirection might
have already set up a message.

The message may be defined before the conditions to which it applies, because the string expan-
sion does not happen until Exim decides that access is to be denied. This means that any variables
that are set by the condition are available for inclusion in the message. For example, the $dnslist_

393 Access control lists (44)

<xxx> variables are set after a DNS black list lookup succeeds. If the expansion of log_message
fails, or if the result is an empty string, the modifier is ignored.

If you want to use a warn statement to log the result of an address verification, you can use $acl_
verify_message to include the verification error message.

If log_message is used with a warn statement, “Warning:” is added to the start of the logged
message. If the same warning log message is requested more than once while receiving a single
email message, only one copy is actually logged. If you want to log multiple copies, use logwrite
instead of log_message. In the absence of log_message and logwrite, nothing is logged for a
successful warn statement.

If log_message is not present and there is no underlying error message (for example, from the
failure of address verification), but message is present, the message text is used for logging
rejections. However, if any text for logging contains newlines, only the first line is logged. In the
absence of both log_message and message, a default built-in message is used for logging
rejections.

log_reject_target = <log name list>
This modifier makes it possible to specify which logs are used for messages about ACL rejections.
Its argument is a colon-separated list of words that can be “main”, “reject”, or “panic”. The default
is main:reject. The list may be empty, in which case a rejection is not logged at all. For
example, this ACL fragment writes no logging information when access is denied:

deny <some conditions>
 log_reject_target =

This modifier can be used in SMTP and non-SMTP ACLs. It applies to both permanent and
temporary rejections. Its effect lasts for the rest of the current ACL.

logwrite = <text>
This modifier writes a message to a log file as soon as it is encountered when processing an ACL.
(Compare log_message, which, except in the case of warn and discard, is used only if the ACL
statement denies access.) The logwrite modifier can be used to log special incidents in ACLs. For
example:

accept <some special conditions>
 control = freeze
 logwrite = froze message because ...

By default, the message is written to the main log. However, it may begin with a colon, followed
by a comma-separated list of log names, and then another colon, to specify exactly which logs are
to be written. For example:

logwrite = :main,reject: text for main and reject logs
logwrite = :panic: text for panic log only

message = <text>
This modifier sets up a text string that is expanded and used as a response message when an ACL
statement terminates the ACL with an “accept”, “deny”, or “defer” response. (In the case of the
accept and discard verbs, there is some complication if endpass is involved; see the description of
accept for details.)

The expansion of the message happens at the time Exim decides that the ACL is to end, not at the
time it processes message. If the expansion fails, or generates an empty string, the modifier is
ignored. Here is an example where message must be specified first, because the ACL ends with a
rejection if the hosts condition fails:

require message = Host not recognized
 hosts = 10.0.0.0/8

(Once a condition has failed, no further conditions or modifiers are processed.)

For ACLs that are triggered by SMTP commands, the message is returned as part of the SMTP
response. The use of message with accept (or discard) is meaningful only for SMTP, as no

394 Access control lists (44)

message is returned when a non-SMTP message is accepted. In the case of the connect ACL,
accepting with a message modifier overrides the value of smtp_banner. For the EHLO/HELO
ACL, a customized accept message may not contain more than one line (otherwise it will be
truncated at the first newline and a panic logged), and it cannot affect the EHLO options.

When SMTP is involved, the message may begin with an overriding response code, consisting of
three digits optionally followed by an “extended response code” of the form n.n.n, each code being
followed by a space. For example:

deny message = 599 1.2.3 Host not welcome
 hosts = 192.168.34.0/24

The first digit of the supplied response code must be the same as would be sent by default. A panic
occurs if it is not. Exim uses a 550 code when it denies access, but for the predata ACL, note that
the default success code is 354, not 2xx.

Notwithstanding the previous paragraph, for the QUIT ACL, unlike the others, the message modi-
fier cannot override the 221 response code.

The text in a message modifier is literal; any quotes are taken as literals, but because the string is
expanded, backslash escapes are processed anyway. If the message contains newlines, this gives
rise to a multi-line SMTP response. A long message line will also be split into multi-line SMTP
responses, on word boundaries if possible.

While the text is being expanded, the $acl_verify_message variable contains any message previ-
ously set. Afterwards, $acl_verify_message is cleared.

If message is used on a statement that verifies an address, the message specified overrides any
message that is generated by the verification process. However, the original message is available in
the variable $acl_verify_message, so you can incorporate it into your message if you wish. In
particular, if you want the text from :fail: items in redirect routers to be passed back as part of the
SMTP response, you should either not use a message modifier, or make use of $acl_verify_
message.

For compatibility with previous releases of Exim, a message modifier that is used with a warn
verb behaves in a similar way to the add_header modifier, but this usage is now deprecated.
However, message acts only when all the conditions are true, wherever it appears in an ACL
command, whereas add_header acts as soon as it is encountered. If message is used with warn in
an ACL that is not concerned with receiving a message, it has no effect.

queue = <text>
This modifier specifies the use of a named queue for spool files for the message. It can only be
used before the message is received (i.e. not in the DATA ACL). This could be used, for example,
for known high-volume burst sources of traffic, or for quarantine of messages. Separate queue-
runner processes will be needed for named queues. If the text after expansion is empty, the default
queue is used.

remove_header = <text>
This modifier specifies one or more header names in a colon-separated list that are to be removed
from an incoming message, assuming, of course, that the message is ultimately accepted. For
details, see section 44.16.

set <acl_name> = <value>
This modifier puts a value into one of the ACL variables (see section 44.10).

udpsend = <parameters>
This modifier sends a UDP packet, for purposes such as statistics collection or behaviour monitor-
ing. The parameters are expanded, and the result of the expansion must be a colon-separated list
consisting of a destination server, port number, and the packet contents. The server can be speci-
fied as a host name or IPv4 or IPv6 address. The separator can be changed with the usual angle
bracket syntax. For example, you might want to collect information on which hosts connect when:

udpsend = <; 2001:dB8::dead:beef ; 1234 ;\
 $tod_zulu $sender_host_address

395 Access control lists (44)

44.13 Use of the control modifier

The control modifier supports the following settings:

control = allow_auth_unadvertised
This modifier allows a client host to use the SMTP AUTH command even when it has not been
advertised in response to EHLO. Furthermore, because there are apparently some really broken
clients that do this, Exim will accept AUTH after HELO (rather than EHLO) when this control is
set. It should be used only if you really need it, and you should limit its use to those broken clients
that do not work without it. For example:

warn hosts = 192.168.34.25
 control = allow_auth_unadvertised

Normally, when an Exim server receives an AUTH command, it checks the name of the authenti-
cation mechanism that is given in the command to ensure that it matches an advertised mechanism.
When this control is set, the check that a mechanism has been advertised is bypassed. Any
configured mechanism can be used by the client. This control is permitted only in the connection
and HELO ACLs.

control = caseful_local_part
control = caselower_local_part

These two controls are permitted only in the ACL specified by acl_smtp_rcpt (that is, during
RCPT processing). By default, the contents of $local_part are lower cased before ACL processing.
If “caseful_local_part” is specified, any uppercase letters in the original local part are restored in
$local_part for the rest of the ACL, or until a control that sets “caselower_local_part” is
encountered.

These controls affect only the current recipient. Moreover, they apply only to local part handling
that takes place directly in the ACL (for example, as a key in lookups). If a test to verify the
recipient is obeyed, the case-related handling of the local part during the verification is controlled
by the router configuration (see the caseful_local_part generic router option).

This facility could be used, for example, to add a spam score to local parts containing upper case
letters. For example, using $acl_m4 to accumulate the spam score:

warn control = caseful_local_part
 set acl_m4 = ${eval:\
 $acl_m4 + \
 ${if match{$local_part}{[A-Z]}{1}{0}}\
 }
 control = caselower_local_part

Notice that we put back the lower cased version afterwards, assuming that is what is wanted for
subsequent tests.

control = cutthrough_delivery/<options>
This option requests delivery be attempted while the item is being received.

The option is usable in the RCPT ACL. If enabled for a message received via smtp and routed to
an smtp transport, and only one transport, interface, destination host and port combination is used
for all recipients of the message, then the delivery connection is made while the receiving connec-
tion is open and data is copied from one to the other.

An attempt to set this option for any recipient but the first for a mail will be quietly ignored. If a
recipient-verify callout (with use_sender) connection is subsequently requested in the same ACL it
is held open and used for any subsequent recipients and the data, otherwise one is made after the
initial RCPT ACL completes.

Note that routers are used in verify mode, and cannot depend on content of received headers. Note
also that headers cannot be modified by any of the post-data ACLs (DATA, MIME and DKIM).
Headers may be modified by routers (subject to the above) and transports. The Received-By:
header is generated as soon as the body reception starts, rather than the traditional time after the
full message is received; this will affect the timestamp.

396 Access control lists (44)

All the usual ACLs are called; if one results in the message being rejected, all effort spent in
delivery (including the costs on the ultimate destination) will be wasted. Note that in the case of
data-time ACLs this includes the entire message body.

Cutthrough delivery is not supported via transport-filters or when DKIM signing of outgoing
messages is done, because it sends data to the ultimate destination before the entire message has
been received from the source. It is not supported for messages received with the SMTP PRDR or
CHUNKING options in use.

Should the ultimate destination system positively accept or reject the mail, a corresponding indi-
cation is given to the source system and nothing is queued. If the item is successfully delivered in
cutthrough mode the delivery log lines are tagged with ">>" rather than "=>" and appear before
the acceptance "<=" line.

If there is a temporary error the item is queued for later delivery in the usual fashion. This
behaviour can be adjusted by appending the option defer=<value> to the control; the default value
is “spool” and the alternate value “pass” copies an SMTP defer response from the target back to
the initiator and does not queue the message. Note that this is independent of any recipient verify
conditions in the ACL.

Delivery in this mode avoids the generation of a bounce mail to a (possibly faked) sender when the
destination system is doing content-scan based rejection.

control = debug/<options>
This control turns on debug logging, almost as though Exim had been invoked with -d, with the
output going to a new logfile in the usual logs directory, by default called debuglog.

Logging set up by the control will be maintained across spool residency.

Options are a slash-separated list. If an option takes an argument, the option name and argument
are separated by an equals character. Several options are supported:

tag=<suffix> The filename can be adjusted with thise option.
¤¤ The argument, which may access any variables already defined,
 is appended to the default name.

opts=<debug options> The argument specififes what is to be logged,
 using the same values as the -d command-line option.

stop Logging started with this control may be
 stopped by using this option.

kill Logging started with this control may be
 stopped by using this option.
 Additionally the debug file will be removed,
 providing one means for speculative debug tracing.

pretrigger=<size> This option specifies a memory buffuer to be used
 for pre-trigger debug capture.
 Debug lines are recorded in the buffer until
 and if) a trigger occurs; at which time they are
 dumped to the debug file. Newer lines displace the
 oldest if the buffer is full. After a trigger,
 immediate writes to file are done as normal.

trigger=<reason> This option selects cause for the pretrigger buffer
 see above) to be copied to file. A reason of now
 take effect immediately; one of paniclog triggers
 on a write to the panic log.

Some examples (which depend on variables that don’t exist in all contexts):

397 Access control lists (44)

control = debug
control = debug/tag=.$sender_host_address
control = debug/opts=+expand+acl
control = debug/tag=.$message_exim_id/opts=+expand
control = debug/kill
control = debug/opts=+all/pretrigger=1024/trigger=paniclog
control = debug/trigger=now

control = dkim_disable_verify
This control turns off DKIM verification processing entirely. For details on the operation and
configuration of DKIM, see section 58.1.

control = dmarc_disable_verify
This control turns off DMARC verification processing entirely. For details on the operation and
configuration of DMARC, see section 58.3.

control = dscp/<value>
This option causes the DSCP value associated with the socket for the inbound connection to be
adjusted to a given value, given as one of a number of fixed strings or to numeric value. The
-bI:dscp option may be used to ask Exim which names it knows of. Common values include
throughput, mincost, and on newer systems ef, af41, etc. Numeric values may be in the
range 0 to 0x3F.

The outbound packets from Exim will be marked with this value in the header (for IPv4, the TOS
field; for IPv6, the TCLASS field); there is no guarantee that these values will have any effect, not
be stripped by networking equipment, or do much of anything without cooperation with your
Network Engineer and those of all network operators between the source and destination.

control = enforce_sync
control = no_enforce_sync

These controls make it possible to be selective about when SMTP synchronization is enforced.
The global option smtp_enforce_sync specifies the initial state of the switch (it is true by default).
See the description of this option in chapter 14 for details of SMTP synchronization checking.

The effect of these two controls lasts for the remainder of the SMTP connection. They can appear
in any ACL except the one for the non-SMTP messages. The most straightforward place to put
them is in the ACL defined by acl_smtp_connect, which is run at the start of an incoming SMTP
connection, before the first synchronization check. The expected use is to turn off the
synchronization checks for badly-behaved hosts that you nevertheless need to work with.

control = fakedefer/<message>
This control works in exactly the same way as fakereject (described below) except that it causes
an SMTP 450 response after the message data instead of a 550 response. You must take care when
using fakedefer because it causes the messages to be duplicated when the sender retries.
Therefore, you should not use fakedefer if the message is to be delivered normally.

control = fakereject/<message>
This control is permitted only for the MAIL, RCPT, and DATA ACLs, in other words, only when
an SMTP message is being received. If Exim accepts the message, instead the final 250 response, a
550 rejection message is sent. However, Exim proceeds to deliver the message as normal. The
control applies only to the current message, not to any subsequent ones that may be received in the
same SMTP connection.

The text for the 550 response is taken from the control modifier. If no message is supplied, the
following is used:

550-Your message has been rejected but is being
550-kept for evaluation.
550-If it was a legitimate message, it may still be
550 delivered to the target recipient(s).

This facility should be used with extreme caution.

398 Access control lists (44)

control = freeze
This control is permitted only for the MAIL, RCPT, DATA, and non-SMTP ACLs, in other words,
only when a message is being received. If the message is accepted, it is placed on Exim’s queue
and frozen. The control applies only to the current message, not to any subsequent ones that may
be received in the same SMTP connection.

This modifier can optionally be followed by /no_tell. If the global option freeze_tell is set, it
is ignored for the current message (that is, nobody is told about the freezing), provided all the
control=freeze modifiers that are obeyed for the current message have the /no_tell option.

control = no_delay_flush
Exim normally flushes SMTP output before implementing a delay in an ACL, to avoid unexpected
timeouts in clients when the SMTP PIPELINING extension is in use. This control, as long as it is
encountered before the delay modifier, disables such output flushing.

control = no_callout_flush
Exim normally flushes SMTP output before performing a callout in an ACL, to avoid unexpected
timeouts in clients when the SMTP PIPELINING extension is in use. This control, as long as it is
encountered before the verify condition that causes the callout, disables such output flushing.

control = no_mbox_unspool
This control is available when Exim is compiled with the content scanning extension. Content
scanning may require a copy of the current message, or parts of it, to be written in “mbox format”
to a spool file, for passing to a virus or spam scanner. Normally, such copies are deleted when they
are no longer needed. If this control is set, the copies are not deleted. The control applies only to
the current message, not to any subsequent ones that may be received in the same SMTP connec-
tion. It is provided for debugging purposes and is unlikely to be useful in production.

control = no_multiline_responses
This control is permitted for any ACL except the one for non-SMTP messages. It seems that there
are broken clients in use that cannot handle multiline SMTP responses, despite the fact that RFC
821 defined them over 20 years ago.

If this control is set, multiline SMTP responses from ACL rejections are suppressed. One way of
doing this would have been to put out these responses as one long line. However, RFC 2821
specifies a maximum of 512 bytes per response (“use multiline responses for more” it says – ha!),
and some of the responses might get close to that. So this facility, which is after all only a sop to
broken clients, is implemented by doing two very easy things:

• Extra information that is normally output as part of a rejection caused by sender verification
failure is omitted. Only the final line (typically “sender verification failed”) is sent.

• If a message modifier supplies a multiline response, only the first line is output.

The setting of the switch can, of course, be made conditional on the calling host. Its effect lasts
until the end of the SMTP connection.

control = no_pipelining
This control turns off the advertising of the PIPELINING extension to SMTP in the current
session. To be useful, it must be obeyed before Exim sends its response to an EHLO command.
Therefore, it should normally appear in an ACL controlled by acl_smtp_connect or acl_smtp_
helo. See also pipelining_advertise_hosts.

control = queue/<options>*
control = queue_only

This control is permitted only for the MAIL, RCPT, DATA, and non-SMTP ACLs, in other words,
only when a message is being received. If the message is accepted, it is placed on Exim’s queue
and left there for delivery by a subsequent queue runner. If used with no options set, no immediate
delivery process is started. In other words, it has the effect as the queue_only global option or
-odq command-line option.

If the first_pass_route option is given then the behaviour is like the command-line -oqds option; a
delivery process is started which stops short of making any SMTP delivery. The benefit is that the

399 Access control lists (44)

hints database will be updated for the message being waiting for a specific host, and a later queue
run will be able to send all such messages on a single connection.

The control only applies to the current message, not to any subsequent ones that may be received
in the same SMTP connection.

control = submission/<options>
This control is permitted only for the MAIL, RCPT, and start of data ACLs (the latter is the one
defined by acl_smtp_predata). Setting it tells Exim that the current message is a submission from
a local MUA. In this case, Exim operates in “submission mode”, and applies certain fixups to the
message if necessary. For example, it adds a Date: header line if one is not present. This control is
not permitted in the acl_smtp_data ACL, because that is too late (the message has already been
created).

Chapter 48 describes the processing that Exim applies to messages. Section 48.1 covers the pro-
cessing that happens in submission mode; the available options for this control are described there.
The control applies only to the current message, not to any subsequent ones that may be received
in the same SMTP connection.

control = suppress_local_fixups
This control applies to locally submitted (non TCP/IP) messages, and is the complement of con-
trol = submission. It disables the fixups that are normally applied to locally-submitted
messages. Specifically:

• Any Sender: header line is left alone (in this respect, it is a dynamic version of local_sender_
retain).

• No Message-ID:, From:, or Date: header lines are added.

• There is no check that From: corresponds to the actual sender.

This control may be useful when a remotely-originated message is accepted, passed to some
scanning program, and then re-submitted for delivery. It can be used only in the acl_smtp_mail,
acl_smtp_rcpt, acl_smtp_predata, and acl_not_smtp_start ACLs, because it has to be set
before the message’s data is read.

Note: This control applies only to the current message, not to any others that are being submitted
at the same time using -bs or -bS.

control = utf8_downconvert
This control enables conversion of UTF-8 in message envelope addresses to a-label form. For
details see section 60.1.

control = wellknown
This control sets up a response data file for a WELLKNOWN SMTP command. It may only be
used in an ACL servicing that command. For details see section 44.2.8.

44.14 Summary of message fixup control

All four possibilities for message fixups can be specified:

• Locally submitted, fixups applied: the default.

• Locally submitted, no fixups applied: use control = suppress_local_fixups.

• Remotely submitted, no fixups applied: the default.

• Remotely submitted, fixups applied: use control = submission.

44.15 Adding header lines in ACLs

The add_header modifier can be used to add one or more extra header lines to an incoming message,
as in this example:

400 Access control lists (44)

warn dnslists = sbl.spamhaus.org : \
 dialup.mail-abuse.org
 add_header = X-blacklisted-at: $dnslist_domain

The add_header modifier is permitted in the MAIL, RCPT, PREDATA, DATA, MIME, DKIM, and
non-SMTP ACLs (in other words, those that are concerned with receiving a message). The message
must ultimately be accepted for add_header to have any significant effect. You can use add_header
with any ACL verb, including deny (though this is potentially useful only in a RCPT ACL).

Headers will not be added to the message if the modifier is used in DATA, MIME or DKIM ACLs for
a message delivered by cutthrough routing.

Leading and trailing newlines are removed from the data for the add_header modifier; if it then
contains one or more newlines that are not followed by a space or a tab, it is assumed to contain
multiple header lines. Each one is checked for valid syntax; X-ACL-Warn: is added to the front of
any line that is not a valid header line.

Added header lines are accumulated during the MAIL, RCPT, and predata ACLs. They are added to
the message before processing the DATA and MIME ACLs. However, if an identical header line is
requested more than once, only one copy is actually added to the message. Further header lines may
be accumulated during the DATA and MIME ACLs, after which they are added to the message, again
with duplicates suppressed. Thus, it is possible to add two identical header lines to an SMTP message,
but only if one is added before DATA and one after. In the case of non-SMTP messages, new headers
are accumulated during the non-SMTP ACLs, and are added to the message after all the ACLs have
run. If a message is rejected after DATA or by the non-SMTP ACL, all added header lines are
included in the entry that is written to the reject log.

Header lines are not visible in string expansions of message headers until they are added to the
message. It follows that header lines defined in the MAIL, RCPT, and predata ACLs are not visible
until the DATA ACL and MIME ACLs are run. Similarly, header lines that are added by the DATA or
MIME ACLs are not visible in those ACLs. Because of this restriction, you cannot use header lines as
a way of passing data between (for example) the MAIL and RCPT ACLs. If you want to do this, you
can use ACL variables, as described in section 44.10.

The list of headers yet to be added is given by the $headers_added variable.

The add_header modifier acts immediately as it is encountered during the processing of an ACL.
Notice the difference between these two cases:

accept add_header = ADDED: some text
 <some condition>

accept <some condition>
 add_header = ADDED: some text

In the first case, the header line is always added, whether or not the condition is true. In the second
case, the header line is added only if the condition is true. Multiple occurrences of add_header may
occur in the same ACL statement. All those that are encountered before a condition fails are
honoured.

For compatibility with previous versions of Exim, a message modifier for a warn verb acts in the
same way as add_header, except that it takes effect only if all the conditions are true, even if it
appears before some of them. Furthermore, only the last occurrence of message is honoured. This
usage of message is now deprecated. If both add_header and message are present on a warn verb,
both are processed according to their specifications.

By default, new header lines are added to a message at the end of the existing header lines. However,
you can specify that any particular header line should be added right at the start (before all the
Received: lines), immediately after the first block of Received: lines, or immediately before any line
that is not a Received: or Resent-something: header.

This is done by specifying “:at_start:”, “:after_received:”, or “:at_start_rfc:” (or, for completeness,
“:at_end:”) before the text of the header line, respectively. (Header text cannot start with a colon, as
there has to be a header name first.) For example:

401 Access control lists (44)

warn add_header = \
 :after_received:X-My-Header: something or other...

If more than one header line is supplied in a single add_header modifier, each one is treated indepen-
dently and can therefore be placed differently. If you add more than one line at the start, or after the
Received: block, they end up in reverse order.

Warning: This facility currently applies only to header lines that are added in an ACL. It does NOT
work for header lines that are added in a system filter or in a router or transport.

44.16 Removing header lines in ACLs

The remove_header modifier can be used to remove one or more header lines from an incoming
message, as in this example:

warn message = Remove internal headers
 remove_header = x-route-mail1 : x-route-mail2

The remove_header modifier is permitted in the MAIL, RCPT, PREDATA, DATA, MIME, DKIM,
and non-SMTP ACLs (in other words, those that are concerned with receiving a message). The
message must ultimately be accepted for remove_header to have any significant effect. You can use
remove_header with any ACL verb, including deny, though this is really not useful for any verb that
doesn’t result in a delivered message.

Headers will not be removed from the message if the modifier is used in DATA, MIME or DKIM
ACLs for a message delivered by cutthrough routing.

More than one header can be removed at the same time by using a colon separated list of header
specifiers. If a specifier does not start with a circumflex (^) then it is treated as a header name. The
header name matching is case insensitive. If it does, then it is treated as a (front-anchored) regular
expression applied to the whole header.

Note: The colon terminating a header name will need to be doubled if used in an RE, and there can
legitimately be whitepace before it.

Example:

remove_header = \N^(?i)Authentication-Results\s*::\s*example.org;\N

List expansion is not performed, so you cannot use hostlists to create a list of headers, however both
connection and message variable expansion are performed ($acl_c_* and $acl_m_*), illustrated in
this example:

warn hosts = +internal_hosts
 set acl_c_ihdrs = x-route-mail1 : x-route-mail2
warn message = Remove internal headers
 remove_header = $acl_c_ihdrs

Header specifiers for removal are accumulated during the MAIL, RCPT, and predata ACLs. Matching
header lines are removed from the message before processing the DATA and MIME ACLs. If multiple
header lines match, all are removed. There is no harm in attempting to remove the same header twice
nor in removing a non-existent header. Further header specifiers for removal may be accumulated
during the DATA and MIME ACLs, after which matching headers are removed if present. In the case
of non-SMTP messages, remove specifiers are accumulated during the non-SMTP ACLs, and are
acted on after all the ACLs have run. If a message is rejected after DATA or by the non-SMTP ACL,
there really is no effect because there is no logging of what headers would have been removed.

Header lines are not visible in string expansions until the DATA phase when it is received. Any header
lines removed in the MAIL, RCPT, and predata ACLs are not visible in the DATA ACL and MIME
ACLs. Similarly, header lines that are removed by the DATA or MIME ACLs are still visible in those
ACLs. Because of this restriction, you cannot use header lines as a way of controlling data passed
between (for example) the MAIL and RCPT ACLs. If you want to do this, you should instead use
ACL variables, as described in section 44.10.

402 Access control lists (44)

The remove_header modifier acts immediately as it is encountered during the processing of an ACL.
Notice the difference between these two cases:

accept remove_header = X-Internal
 <some condition>

accept <some condition>
 remove_header = X-Internal

In the first case, the header line is always removed, whether or not the condition is true. In the second
case, the header line is removed only if the condition is true. Multiple occurrences of remove_header
may occur in the same ACL statement. All those that are encountered before a condition fails are
honoured.

Warning: This facility currently applies only to header lines that are present during ACL processing.
It does NOT remove header lines that are added in a system filter or in a router or transport.

44.17 ACL conditions

Some of the conditions listed in this section are available only when Exim is compiled with the
content-scanning extension. They are included here briefly for completeness. More detailed descrip-
tions can be found in the discussion on content scanning in chapter 45.

Not all conditions are relevant in all circumstances. For example, testing senders and recipients does
not make sense in an ACL that is being run as the result of the arrival of an ETRN command, and
checks on message headers can be done only in the ACLs specified by acl_smtp_data and acl_not_
smtp. You can use the same condition (with different parameters) more than once in the same ACL
statement. This provides a way of specifying an “and” conjunction. The conditions are as follows:

acl = <name of acl or ACL string or file name >
The possible values of the argument are the same as for the acl_smtp_xxx options. The named or
inline ACL is run. If it returns “accept” the condition is true; if it returns “deny” the condition is
false. If it returns “defer”, the current ACL returns “defer” unless the condition is on a warn verb.
In that case, a “defer” return makes the condition false. This means that further processing of the
warn verb ceases, but processing of the ACL continues.

If the argument is a named ACL, up to nine space-separated optional values can be appended; they
appear within the called ACL in $acl_arg1 to $acl_arg9, and $acl_narg is set to the count of
values. Previous values of these variables are restored after the call returns. The name and values
are expanded separately. Note that spaces in complex expansions which are used as arguments will
act as argument separators.

If the nested acl returns “drop” and the outer condition denies access, the connection is dropped. If
it returns “discard”, the verb must be accept or discard, and the action is taken immediately – no
further conditions are tested.

ACLs may be nested up to 20 deep; the limit exists purely to catch runaway loops. This condition
allows you to use different ACLs in different circumstances. For example, different ACLs can be
used to handle RCPT commands for different local users or different local domains.

authenticated = <string list>
If the SMTP connection is not authenticated, the condition is false. Otherwise, the name of the
authenticator is tested against the list. To test for authentication by any authenticator, you can set

authenticated = *

condition = <string>
This feature allows you to make up custom conditions. If the result of expanding the string is an
empty string, the number zero, or one of the strings “no” or “false”, the condition is false. If the
result is any non-zero number, or one of the strings “yes” or “true”, the condition is true. For any
other value, some error is assumed to have occurred, and the ACL returns “defer”. However, if the
expansion is forced to fail, the condition is ignored. The effect is to treat it as true, whether it is
positive or negative.

403 Access control lists (44)

decode = <location>
This condition is available only when Exim is compiled with the content-scanning extension, and
it is allowed only in the ACL defined by acl_smtp_mime. It causes the current MIME part to be
decoded into a file. If all goes well, the condition is true. It is false only if there are problems such
as a syntax error or a memory shortage. For more details, see chapter 45.

dnslists = <list of domain names and other data>
This condition checks for entries in DNS black lists. These are also known as “RBL lists”, after
the original Realtime Blackhole List, but note that the use of the lists at mail-abuse.org now carries
a charge. There are too many different variants of this condition to describe briefly here. See
sections 44.18–44.18.10 for details.

domains = <domain list>
This condition is relevant only in a RCPT ACL. It checks that the domain of the recipient address
is in the domain list. If percent-hack processing is enabled, it is done before this test is done. If the
check succeeds with a lookup, the result of the lookup is placed in $domain_data until the next
domains test.

Note carefully (because many people seem to fall foul of this): you cannot use domains in a
DATA ACL.

encrypted = <string list>
If the SMTP connection is not encrypted, the condition is false. Otherwise, the name of the cipher
suite in use is tested against the list. To test for encryption without testing for any specific cipher
suite(s), set

encrypted = *

hosts = <host list>
This condition tests that the calling host matches the host list. If you have name lookups or
wildcarded host names and IP addresses in the same host list, you should normally put the IP
addresses first. For example, you could have:

accept hosts = 10.9.8.7 : dbm;/etc/friendly/hosts

The lookup in this example uses the host name for its key. This is implied by the lookup type
“dbm”. (For a host address lookup you would use “net-dbm” and it wouldn’t matter which way
round you had these two items.)

The reason for the problem with host names lies in the left-to-right way that Exim processes lists.
It can test IP addresses without doing any DNS lookups, but when it reaches an item that requires
a host name, it fails if it cannot find a host name to compare with the pattern. If the above list is
given in the opposite order, the accept statement fails for a host whose name cannot be found,
even if its IP address is 10.9.8.7.

If you really do want to do the name check first, and still recognize the IP address even if the name
lookup fails, you can rewrite the ACL like this:

accept hosts = dbm;/etc/friendly/hosts
accept hosts = 10.9.8.7

The default action on failing to find the host name is to assume that the host is not in the list, so the
first accept statement fails. The second statement can then check the IP address.

If a hosts condition is satisfied by means of a lookup, the result of the lookup is made available in
the $host_data variable. This allows you, for example, to set up a statement like this:

deny hosts = net-lsearch;/some/file
 message = $host_data

which gives a custom error message for each denied host.

local_parts = <local part list>
This condition is relevant only in a RCPT ACL. It checks that the local part of the recipient
address is in the list. If percent-hack processing is enabled, it is done before this test. If the check

404 Access control lists (44)

succeeds with a lookup, the result of the lookup is placed in $local_part_data, which remains set
until the next local_parts test.

malware = <option>
This condition is available only when Exim is compiled with the content-scanning extension and
only after a DATA command. It causes the incoming message to be scanned for viruses. For
details, see chapter 45.

mime_regex = <list of regular expressions>
This condition is available only when Exim is compiled with the content-scanning extension, and
it is allowed only in the ACL defined by acl_smtp_mime. It causes the current MIME part to be
scanned for a match with any of the regular expressions. For details, see chapter 45.

ratelimit = <parameters>
This condition can be used to limit the rate at which a user or host submits messages. Details are
given in section 44.20.

recipients = <address list>
This condition is relevant only in a RCPT ACL. It checks the entire recipient address against a list
of recipients.

regex = <list of regular expressions>
This condition is available only when Exim is compiled with the content-scanning extension, and
is available only in the DATA, MIME, and non-SMTP ACLs. It causes the incoming message to be
scanned for a match with any of the regular expressions. For details, see chapter 45.

seen = <parameters>
This condition can be used to test if a situation has been previously met, for example for
greylisting. Details are given in section 44.19.

sender_domains = <domain list>
This condition tests the domain of the sender of the message against the given domain list. Note:
The domain of the sender address is in $sender_address_domain. It is not put in $domain during
the testing of this condition. This is an exception to the general rule for testing domain lists. It is
done this way so that, if this condition is used in an ACL for a RCPT command, the recipient’s
domain (which is in $domain) can be used to influence the sender checking.

Warning: It is a bad idea to use this condition on its own as a control on relaying, because sender
addresses are easily, and commonly, forged.

senders = <address list>
This condition tests the sender of the message against the given list. To test for a bounce message,
which has an empty sender, set

senders = :

Warning: It is a bad idea to use this condition on its own as a control on relaying, because sender
addresses are easily, and commonly, forged.

spam = <username>
This condition is available only when Exim is compiled with the content-scanning extension. It
causes the incoming message to be scanned by SpamAssassin. For details, see chapter 45.

verify = certificate
This condition is true in an SMTP session if the session is encrypted, and a certificate was received
from the client, and the certificate was verified. The server requests a certificate only if the client
matches tls_verify_hosts or tls_try_verify_hosts (see chapter 43).

verify = csa
This condition checks whether the sending host (the client) is authorized to send email. Details of
how this works are given in section 44.26.

verify = header_names_ascii
This condition is relevant only in an ACL that is run after a message has been received. This
usually means an ACL specified by acl_smtp_data or acl_not_smtp. It checks all header names

405 Access control lists (44)

(not the content) to make sure there are no non-ASCII characters, also excluding control charac-
ters. The allowable characters are decimal ASCII values 33 through 126.

Exim itself will handle headers with non-ASCII characters, but it can cause problems for down-
stream applications, so this option will allow their detection and rejection in the DATA ACL’s.

verify = header_sender/<options>
This condition is relevant only in an ACL that is run after a message has been received, that is, in
an ACL specified by acl_smtp_data or acl_not_smtp. It checks that there is a verifiable address
in at least one of the Sender:, Reply-To:, or From: header lines. Such an address is loosely thought
of as a “sender” address (hence the name of the test). However, an address that appears in one of
these headers need not be an address that accepts bounce messages; only sender addresses in
envelopes are required to accept bounces. Therefore, if you use the callout option on this check,
you might want to arrange for a non-empty address in the MAIL command.

Details of address verification and the options are given later, starting at section 44.21 (callouts are
described in section 44.22). You can combine this condition with the senders condition to restrict
it to bounce messages only:

deny senders = :
 !verify = header_sender
 message = A valid sender header is required for bounces

verify = header_syntax
This condition is relevant only in an ACL that is run after a message has been received, that is, in
an ACL specified by acl_smtp_data or acl_not_smtp. It checks the syntax of all header lines that
can contain lists of addresses (Sender:, From:, Reply-To:, To:, Cc:, and Bcc:), returning true if
there are no problems. Unqualified addresses (local parts without domains) are permitted only in
locally generated messages and from hosts that match sender_unqualified_hosts or recipient_
unqualified_hosts, as appropriate.

Note that this condition is a syntax check only. However, a common spamming ploy used to be to
send syntactically invalid headers such as

To: @

and this condition can be used to reject such messages, though they are not as common as they
used to be.

verify = helo
This condition is true if a HELO or EHLO command has been received from the client host, and
its contents have been verified. If there has been no previous attempt to verify the HELO/EHLO
contents, it is carried out when this condition is encountered. See the description of the helo_
verify_hosts and helo_try_verify_hosts options for details of how to request verification indepen-
dently of this condition, and for detail of the verification.

For SMTP input that does not come over TCP/IP (the -bs command line option), this condition is
always true.

verify = not_blind/<options>
This condition checks that there are no blind (bcc) recipients in the message. Every envelope
recipient must appear either in a To: header line or in a Cc: header line for this condition to be
true. Local parts are checked case-sensitively; domains are checked case-insensitively. If Resent-
To: or Resent-Cc: header lines exist, they are also checked. This condition can be used only in a
DATA or non-SMTP ACL.

There is one possible option, case_insensitive. If this is present then local parts are
checked case-insensitively.

There are, of course, many legitimate messages that make use of blind (bcc) recipients. This check
should not be used on its own for blocking messages.

verify = recipient/<options>
This condition is relevant only after a RCPT command. It verifies the current recipient. Details of
address verification are given later, starting at section 44.21. After a recipient has been verified, the

406 Access control lists (44)

value of $address_data is the last value that was set while routing the address. This applies even if
the verification fails. When an address that is being verified is redirected to a single address,
verification continues with the new address, and in that case, the subsequent value of $address_
data is the value for the child address.

verify = reverse_host_lookup/<options>
This condition ensures that a verified host name has been looked up from the IP address of the
client host. (This may have happened already if the host name was needed for checking a host list,
or if the host matched host_lookup.) Verification ensures that the host name obtained from a
reverse DNS lookup, or one of its aliases, does, when it is itself looked up in the DNS, yield the
original IP address.

There is one possible option, defer_ok. If this is present and a DNS operation returns a tempor-
ary error, the verify condition succeeds.

If this condition is used for a locally generated message (that is, when there is no client host
involved), it always succeeds.

verify = sender/<options>
This condition is relevant only after a MAIL or RCPT command, or after a message has been
received (the acl_smtp_data or acl_not_smtp ACLs). If the message’s sender is empty (that is,
this is a bounce message), the condition is true. Otherwise, the sender address is verified.

If there is data in the $address_data variable at the end of routing, its value is placed in $sender_
address_data at the end of verification. This value can be used in subsequent conditions and
modifiers in the same ACL statement. It does not persist after the end of the current statement. If
you want to preserve the value for longer, you can save it in an ACL variable.

Details of verification are given later, starting at section 44.21. Exim caches the result of sender
verification, to avoid doing it more than once per message.

verify = sender=<address>/<options>
This is a variation of the previous option, in which a modified address is verified as a sender.

Note that ’/’ is legal in local-parts; if the address may have such (eg. is generated from the received
message) they must be protected from the options parsing by doubling:

verify = sender=${listquote{/}{${address:$h_sender:}}}

44.18 Using DNS lists

In its simplest form, the dnslists condition tests whether the calling host is on at least one of a number
of DNS lists by looking up the inverted IP address in one or more DNS domains. (Note that DNS list
domains are not mail domains, so the + syntax for named lists doesn’t work - it is used for special
options instead.) For example, if the calling host’s IP address is 192.168.62.43, and the ACL state-
ment is

deny dnslists = blackholes.mail-abuse.org : \
 dialups.mail-abuse.org

the following records are looked up:

43.62.168.192.blackholes.mail-abuse.org
43.62.168.192.dialups.mail-abuse.org

As soon as Exim finds an existing DNS record, processing of the list stops. Thus, multiple entries on
the list provide an “or” conjunction. If you want to test that a host is on more than one list (an “and”
conjunction), you can use two separate conditions:

deny dnslists = blackholes.mail-abuse.org
 dnslists = dialups.mail-abuse.org

If a DNS lookup times out or otherwise fails to give a decisive answer, Exim behaves as if the host
does not match the list item, that is, as if the DNS record does not exist. If there are further items in
the DNS list, they are processed.

407 Access control lists (44)

This is usually the required action when dnslists is used with deny (which is the most common
usage), because it prevents a DNS failure from blocking mail. However, you can change this behav-
iour by putting one of the following special items in the list:

 +include_unknown behave as if the item is on the list
 +exclude_unknown behave as if the item is not on the list (default)
 +defer_unknown give a temporary error

Each of these applies to any subsequent items on the list. For example:

deny dnslists = +defer_unknown : foo.bar.example

Testing the list of domains stops as soon as a match is found. If you want to warn for one list and
block for another, you can use two different statements:

deny dnslists = blackholes.mail-abuse.org
warn dnslists = dialups.mail-abuse.org
 message = X-Warn: sending host is on dialups list

DNS list lookups are cached by Exim for the duration of the SMTP session (but limited by the DNS
return TTL value), so a lookup based on the IP address is done at most once for any incoming
connection (assuming long-enough TTL). Exim does not share information between multiple
incoming connections (but your local name server cache should be active).

There are a number of DNS lists to choose from, some commercial, some free, or free for small
deployments. An overview can be found at
https://en.wikipedia.org/wiki/Comparison_of_DNS_blacklists.

44.18.1 Specifying the IP address for a DNS list lookup

By default, the IP address that is used in a DNS list lookup is the IP address of the calling host.
However, you can specify another IP address by listing it after the domain name, introduced by a
slash. For example:

deny dnslists = black.list.tld/192.168.1.2

This feature is not very helpful with explicit IP addresses; it is intended for use with IP addresses that
are looked up, for example, the IP addresses of the MX hosts or nameservers of an email sender
address. For an example, see section 44.18.3 below.

44.18.2 DNS lists keyed on domain names

There are some lists that are keyed on domain names rather than inverted IP addresses (see, e.g., the
domain based zones link at http://www.rfc-ignorant.org/). No reversing of components is used with
these lists. You can change the name that is looked up in a DNS list by listing it after the domain
name, introduced by a slash. For example,

deny dnslists = dsn.rfc-ignorant.org/$sender_address_domain
 message = Sender's domain is listed at $dnslist_domain

This particular example is useful only in ACLs that are obeyed after the RCPT or DATA commands,
when a sender address is available. If (for example) the message’s sender is user@tld.example the
name that is looked up by this example is

tld.example.dsn.rfc-ignorant.org

A single dnslists condition can contain entries for both names and IP addresses. For example:

deny dnslists = sbl.spamhaus.org : \
 dsn.rfc-ignorant.org/$sender_address_domain

The first item checks the sending host’s IP address; the second checks a domain name. The whole
condition is true if either of the DNS lookups succeeds.

408 Access control lists (44)

44.18.3 Multiple explicit keys for a DNS list

The syntax described above for looking up explicitly-defined values (either names or IP addresses) in
a DNS blacklist is a simplification. After the domain name for the DNS list, what follows the slash
can in fact be a list of items. As with all lists in Exim, the default separator is a colon. However,
because this is a sublist within the list of DNS blacklist domains, it is necessary either to double the
separators like this:

dnslists = black.list.tld/name.1::name.2

or to change the separator character, like this:

dnslists = black.list.tld/<;name.1;name.2

If an item in the list is an IP address, it is inverted before the DNS blacklist domain is appended. If it
is not an IP address, no inversion occurs. Consider this condition:

dnslists = black.list.tld/<;192.168.1.2;a.domain

The DNS lookups that occur are:

2.1.168.192.black.list.tld
a.domain.black.list.tld

Once a DNS record has been found (that matches a specific IP return address, if specified – see
section 44.18.6), no further lookups are done. If there is a temporary DNS error, the rest of the sublist
of domains or IP addresses is tried. A temporary error for the whole dnslists item occurs only if no
other DNS lookup in this sublist succeeds. In other words, a successful lookup for any of the items in
the sublist overrides a temporary error for a previous item.

The ability to supply a list of items after the slash is in some sense just a syntactic convenience. These
two examples have the same effect:

dnslists = black.list.tld/a.domain : black.list.tld/b.domain
dnslists = black.list.tld/a.domain::b.domain

However, when the data for the list is obtained from a lookup, the second form is usually much more
convenient. Consider this example:

deny dnslists = sbl.spamhaus.org/<|${lookup dnsdb {>|a=<|\
 ${lookup dnsdb {>|mxh=\
 $sender_address_domain} }} }
 message = The mail servers for the domain \
 $sender_address_domain \
 are listed at $dnslist_domain ($dnslist_value); \
 see $dnslist_text.

Note the use of >| in the dnsdb lookup to specify the separator for multiple DNS records. The inner
dnsdb lookup produces a list of MX hosts and the outer dnsdb lookup finds the IP addresses for these
hosts. The result of expanding the condition might be something like this:

dnslists = sbl.spamhaus.org/<|192.168.2.3|192.168.5.6|...

Thus, this example checks whether or not the IP addresses of the sender domain’s mail servers are on
the Spamhaus black list.

The key that was used for a successful DNS list lookup is put into the variable $dnslist_matched (see
section 44.18.5).

44.18.4 Data returned by DNS lists

DNS lists are constructed using address records in the DNS. The original RBL just used the address
127.0.0.1 on the right hand side of each record, but the RBL+ list and some other lists use a number
of values with different meanings. The values used on the RBL+ list are:

 127.1.0.1 RBL
 127.1.0.2 DUL

409 Access control lists (44)

 127.1.0.3 DUL and RBL
 127.1.0.4 RSS
 127.1.0.5 RSS and RBL
 127.1.0.6 RSS and DUL
 127.1.0.7 RSS and DUL and RBL

Section 44.18.6 below describes how you can distinguish between different values. Some DNS lists
may return more than one address record; see section 44.18.8 for details of how they are checked.

Values returned by a properly running DBSBL should be in the 127.0.0.0/8 range. If a DNSBL
operator loses control of the domain, lookups on it may start returning other addresses. Because of
this, Exim now ignores returned values outside the 127/8 region.

44.18.5 Variables set from DNS lists

When an entry is found in a DNS list, the variable $dnslist_domain contains the name of the overall
domain that matched (for example, spamhaus.example), $dnslist_matched contains the key
within that domain (for example, 192.168.5.3), and $dnslist_value contains the data from the
DNS record. When the key is an IP address, it is not reversed in $dnslist_matched (though it is, of
course, in the actual lookup). In simple cases, for example:

deny dnslists = spamhaus.example

the key is also available in another variable (in this case, $sender_host_address). In more complicated
cases, however, this is not true. For example, using a data lookup (as described in section 44.18.3)
might generate a dnslists lookup like this:

deny dnslists = spamhaus.example/<|192.168.1.2|192.168.6.7|...

If this condition succeeds, the value in $dnslist_matched might be 192.168.6.7 (for example).

If more than one address record is returned by the DNS lookup, all the IP addresses are included in
$dnslist_value, separated by commas and spaces. The variable $dnslist_text contains the contents of
any associated TXT record. For lists such as RBL+ the TXT record for a merged entry is often not
very meaningful. See section 44.18.9 for a way of obtaining more information.

You can use the DNS list variables in message or log_message modifiers – even if these appear
before the condition in the ACL, they are not expanded until after it has failed. For example:

deny hosts = !+local_networks
 message = $sender_host_address is listed \
 at $dnslist_domain
 dnslists = rbl-plus.mail-abuse.example

44.18.6 Additional matching conditions for DNS lists

You can add an equals sign and an IP address after a dnslists domain name in order to restrict its
action to DNS records with a matching right hand side. For example,

deny dnslists = rblplus.mail-abuse.org=127.0.0.2

rejects only those hosts that yield 127.0.0.2. Without this additional data, any address record is
considered to be a match. For the moment, we assume that the DNS lookup returns just one record.
Section 44.18.8 describes how multiple records are handled.

More than one IP address may be given for checking, using a comma as a separator. These are
alternatives – if any one of them matches, the dnslists condition is true. For example:

deny dnslists = a.b.c=127.0.0.2,127.0.0.3

If you want to specify a constraining address list and also specify names or IP addresses to be looked
up, the constraining address list must be specified first. For example:

deny dnslists = dsn.rfc-ignorant.org\
 =127.0.0.2/$sender_address_domain

410 Access control lists (44)

If the character & is used instead of =, the comparison for each listed IP address is done by a bitwise
“and” instead of by an equality test. In other words, the listed addresses are used as bit masks. The
comparison is true if all the bits in the mask are present in the address that is being tested. For
example:

dnslists = a.b.c&0.0.0.3

matches if the address is x.x.x.3, x.x.x.7, x.x.x.11, etc. If you want to test whether one bit or another bit
is present (as opposed to both being present), you must use multiple values. For example:

dnslists = a.b.c&0.0.0.1,0.0.0.2

matches if the final component of the address is an odd number or two times an odd number.

44.18.7 Negated DNS matching conditions

You can supply a negative list of IP addresses as part of a dnslists condition. Whereas

deny dnslists = a.b.c=127.0.0.2,127.0.0.3

means “deny if the host is in the black list at the domain a.b.c and the IP address yielded by the list is
either 127.0.0.2 or 127.0.0.3”,

deny dnslists = a.b.c!=127.0.0.2,127.0.0.3

means “deny if the host is in the black list at the domain a.b.c and the IP address yielded by the list is
not 127.0.0.2 and not 127.0.0.3”. In other words, the result of the test is inverted if an exclamation
mark appears before the = (or the &) sign.

Note: This kind of negation is not the same as negation in a domain, host, or address list (which is
why the syntax is different).

If you are using just one list, the negation syntax does not gain you much. The previous example is
precisely equivalent to

deny dnslists = a.b.c
 !dnslists = a.b.c=127.0.0.2,127.0.0.3

However, if you are using multiple lists, the negation syntax is clearer. Consider this example:

deny dnslists = sbl.spamhaus.org : \
 list.dsbl.org : \
 dnsbl.njabl.org!=127.0.0.3 : \
 relays.ordb.org

Using only positive lists, this would have to be:

deny dnslists = sbl.spamhaus.org : \
 list.dsbl.org
deny dnslists = dnsbl.njabl.org
 !dnslists = dnsbl.njabl.org=127.0.0.3
deny dnslists = relays.ordb.org

which is less clear, and harder to maintain.

Negation can also be used with a bitwise-and restriction. The dnslists condition with only be trus if a
result is returned by the lookup which, anded with the restriction, is all zeroes. For example:

deny dnslists = zen.spamhaus.org!&0.255.255.0

44.18.8 Handling multiple DNS records from a DNS list

A DNS lookup for a dnslists condition may return more than one DNS record, thereby providing
more than one IP address. When an item in a dnslists list is followed by = or & and a list of IP
addresses, in order to restrict the match to specific results from the DNS lookup, there are two ways in
which the checking can be handled. For example, consider the condition:

dnslists = a.b.c=127.0.0.1

411 Access control lists (44)

What happens if the DNS lookup for the incoming IP address yields both 127.0.0.1 and 127.0.0.2 by
means of two separate DNS records? Is the condition true because at least one given value was found,
or is it false because at least one of the found values was not listed? And how does this affect negated
conditions? Both possibilities are provided for with the help of additional separators == and =&.

• If = or & is used, the condition is true if any one of the looked up IP addresses matches one of the
listed addresses. For the example above, the condition is true because 127.0.0.1 matches.

• If == or =& is used, the condition is true only if every one of the looked up IP addresses matches
one of the listed addresses. If the condition is changed to:

dnslists = a.b.c==127.0.0.1

and the DNS lookup yields both 127.0.0.1 and 127.0.0.2, the condition is false because 127.0.0.2 is
not listed. You would need to have:

dnslists = a.b.c==127.0.0.1,127.0.0.2

for the condition to be true.

When ! is used to negate IP address matching, it inverts the result, giving the precise opposite of the
behaviour above. Thus:

• If != or !& is used, the condition is true if none of the looked up IP addresses matches one of the
listed addresses. Consider:

dnslists = a.b.c!&0.0.0.1

If the DNS lookup yields both 127.0.0.1 and 127.0.0.2, the condition is false because 127.0.0.1
matches.

• If !== or !=& is used, the condition is true if there is at least one looked up IP address that does
not match. Consider:

dnslists = a.b.c!=&0.0.0.1

If the DNS lookup yields both 127.0.0.1 and 127.0.0.2, the condition is true, because 127.0.0.2
does not match. You would need to have:

dnslists = a.b.c!=&0.0.0.1,0.0.0.2

for the condition to be false.

When the DNS lookup yields only a single IP address, there is no difference between = and == and
between & and =&.

44.18.9 Detailed information from merged DNS lists

When the facility for restricting the matching IP values in a DNS list is used, the text from the TXT
record that is set in $dnslist_text may not reflect the true reason for rejection. This happens when lists
are merged and the IP address in the A record is used to distinguish them; unfortunately there is only
one TXT record. One way round this is not to use merged lists, but that can be inefficient because it
requires multiple DNS lookups where one would do in the vast majority of cases when the host of
interest is not on any of the lists.

A less inefficient way of solving this problem is available. If two domain names, comma-separated,
are given, the second is used first to do an initial check, making use of any IP value restrictions that
are set. If there is a match, the first domain is used, without any IP value restrictions, to get the TXT
record. As a byproduct of this, there is also a check that the IP being tested is indeed on the first list.
The first domain is the one that is put in $dnslist_domain. For example:

deny dnslists = \
 sbl.spamhaus.org,sbl-xbl.spamhaus.org=127.0.0.2 : \
 dul.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.10
 message = \
 rejected because $sender_host_address is blacklisted \
 at $dnslist_domain\n$dnslist_text

412 Access control lists (44)

For the first blacklist item, this starts by doing a lookup in sbl-xbl.spamhaus.org and testing for a
127.0.0.2 return. If there is a match, it then looks in sbl.spamhaus.org, without checking the return
value, and as long as something is found, it looks for the corresponding TXT record. If there is no
match in sbl-xbl.spamhaus.org, nothing more is done. The second blacklist item is processed
similarly.

If you are interested in more than one merged list, the same list must be given several times, but
because the results of the DNS lookups are cached, the DNS calls themselves are not repeated. For
example:

deny dnslists = \
 http.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.2 : \
 socks.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.3 : \
 misc.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.4 : \
 dul.dnsbl.sorbs.net,dnsbl.sorbs.net=127.0.0.10

In this case there is one lookup in dnsbl.sorbs.net, and if none of the IP values matches (or if no
record is found), this is the only lookup that is done. Only if there is a match is one of the more
specific lists consulted.

44.18.10 DNS lists and IPv6

If Exim is asked to do a dnslist lookup for an IPv6 address, it inverts it nibble by nibble. For example,
if the calling host’s IP address is 3ffe:ffff:836f:0a00:000a:0800:200a:c031, Exim might look up

1.3.0.c.a.0.0.2.0.0.8.0.a.0.0.0.0.0.a.0.f.6.3.8.
 f.f.f.f.e.f.f.3.blackholes.mail-abuse.org

(split over two lines here to fit on the page). Unfortunately, some of the DNS lists contain wildcard
records, intended for IPv4, that interact badly with IPv6. For example, the DNS entry

*.3.some.list.example. A 127.0.0.1

is probably intended to put the entire 3.0.0.0/8 IPv4 network on the list. Unfortunately, it also matches
the entire 3::/4 IPv6 network.

You can exclude IPv6 addresses from DNS lookups by making use of a suitable condition condition,
as in this example:

deny condition = ${if isip4{$sender_host_address}}
 dnslists = some.list.example

If an explicit key is being used for a DNS lookup and it may be an IPv6 address you should specify
alternate list separators for both the outer (DNS list name) list and inner (lookup keys) list:

dnslists = <; dnsbl.example.com/<|$acl_m_addrslist

44.19 Previously seen user and hosts

The seen ACL condition can be used to test whether a situation has been previously met. It uses a
hints database to record a timestamp against a key. The syntax of the condition is:

seen = <optional flag><time interval> / <options>

For example,

defer¤seen = -5m / key=${sender_host_address}_$local_part@$domain

in a RCPT ACL will implement simple greylisting.

The parameters for the condition are a possible minus sign, then an interval, then, slash-separated, a
list of options. The interval is taken as an offset before the current time, and used for the test. If the
interval is preceded by a minus sign then the condition returns whether a record is found which is
before the test time. Otherwise, the condition returns whether one is found which is since the test
time.

413 Access control lists (44)

Options are read in order with later ones overriding earlier ones.

The default key is $sender_host_address. An explicit key can be set using a key=value option.

If a readonly option is given then no record create or update is done. If a write option is given then a
record create or update is always done. An update is done if the test is for “since”. If none of those
hold and there was no existing record, a record is created.

Creates and updates are marked with the current time.

Finally, a “before” test which succeeds, and for which the record is old enough, will be refreshed with
a timestamp of the test time. This can prevent tidying of the database from removing the entry. The
interval for this is, by default, 10 days. An explicit interval can be set using a refresh=value option.

Note that “seen” should be added to the list of hints databases for maintenance if this ACL condition
is used.

44.20 Rate limiting incoming messages

The ratelimit ACL condition can be used to measure and control the rate at which clients can send
email. This is more powerful than the smtp_ratelimit_* options, because those options control the
rate of commands in a single SMTP session only, whereas the ratelimit condition works across all
connections (concurrent and sequential) from the same client host. The syntax of the ratelimit con-
dition is:

ratelimit = <m> / <p> / <options> / <key>

If the average client sending rate is less than m messages per time period p then the condition is false;
otherwise it is true.

As a side-effect, the ratelimit condition sets the expansion variable $sender_rate to the client’s
computed rate, $sender_rate_limit to the configured value of m, and $sender_rate_period to the
configured value of p.

The parameter p is the smoothing time constant, in the form of an Exim time interval, for example,
8h for eight hours. A larger time constant means that it takes Exim longer to forget a client’s past
behaviour. The parameter m is the maximum number of messages that a client is permitted to send in
each time interval. It also specifies the number of messages permitted in a fast burst. By increasing
both m and p but keeping m/p constant, you can allow a client to send more messages in a burst
without changing its long-term sending rate limit. Conversely, if m and p are both small, messages
must be sent at an even rate.

There is a script in util/ratelimit.pl which extracts sending rates from log files, to assist with choosing
appropriate settings for m and p when deploying the ratelimit ACL condition. The script prints usage
instructions when it is run with no arguments.

The key is used to look up the data for calculating the client’s average sending rate. This data is stored
in Exim’s spool directory, alongside the retry and other hints databases. The default key is $sender_
host_address, which means Exim computes the sending rate of each client host IP address. By
changing the key you can change how Exim identifies clients for the purpose of ratelimiting. For
example, to limit the sending rate of each authenticated user, independent of the computer they are
sending from, set the key to $authenticated_id. You must ensure that the lookup key is meaningful;
for example, $authenticated_id is only meaningful if the client has authenticated (which you can
check with the authenticated ACL condition).

The lookup key does not have to identify clients: If you want to limit the rate at which a recipient
receives messages, you can use the key $local_part@$domain with the per_rcpt option (see
below) in a RCPT ACL.

Each ratelimit condition can have up to four options. A per_* option specifies what Exim measures
the rate of, for example, messages or recipients or bytes. You can adjust the measurement using the
unique= and/or count= options. You can also control when Exim updates the recorded rate using a
strict, leaky, or readonly option. The options are separated by a slash, like the other parameters.
They may appear in any order.

414 Access control lists (44)

Internally, Exim appends the smoothing constant p onto the lookup key with any options that alter the
meaning of the stored data. The limit m is not stored, so you can alter the configured maximum rate
and Exim will still remember clients’ past behaviour. If you change the per_* mode or add or remove
the unique= option, the lookup key changes so Exim will forget past behaviour. The lookup key is not
affected by changes to the update mode and the count= option.

44.20.1 Ratelimit options for what is being measured

per_conn
This option limits the client’s connection rate. It is not normally used in the acl_not_smtp, acl_
not_smtp_mime, or acl_not_smtp_start ACLs.

per_mail
This option limits the client’s rate of sending messages. This is the default if none of the per_*
options is specified. It can be used in acl_smtp_mail, acl_smtp_rcpt, acl_smtp_predata, acl_
smtp_mime, acl_smtp_data, or acl_not_smtp.

per_byte
This option limits the sender’s email bandwidth. It can be used in the same ACLs as the per_mail
option, though it is best to use this option in the acl_smtp_mime, acl_smtp_data or acl_not_
smtp ACLs; if it is used in an earlier ACL, Exim relies on the SIZE parameter given by the client
in its MAIL command, which may be inaccurate or completely missing. You can follow the limit
m in the configuration with K, M, or G to specify limits in kilobytes, megabytes, or gigabytes,
respectively.

per_rcpt
This option causes Exim to limit the rate at which recipients are accepted. It can be used in the
acl_smtp_rcpt, acl_smtp_predata, acl_smtp_mime, or acl_smtp_data ACLs. In acl_smtp_rcpt
the rate is updated one recipient at a time; in the other ACLs the rate is updated with the total
(accepted) recipient count in one go. Note that in either case the rate limiting engine will see a
message with many recipients as a large high-speed burst.

per_addr
This option is like the per_rcpt option, except it counts the number of different recipients that the
client has sent messages to in the last time period. That is, if the client repeatedly sends messages
to the same recipient, its measured rate is not increased. This option can only be used in acl_
smtp_rcpt.

per_cmd
This option causes Exim to recompute the rate every time the condition is processed. This can be
used to limit the rate of any SMTP command. If it is used in multiple ACLs it can limit the
aggregate rate of multiple different commands.

count
This option can be used to alter how much Exim adds to the client’s measured rate. A value is
required, after an equals sign. For example, the per_byte option is equivalent to
per_mail/count=$message_size. If there is no count= option, Exim increases the
measured rate by one (except for the per_rcpt option in ACLs other than acl_smtp_rcpt). The
count does not have to be an integer.

unique
This option is described in section 44.20.4 below.

44.20.2 Ratelimit update modes

You can specify one of three options with the ratelimit condition to control when its database is
updated. This section describes the readonly mode, and the next section describes the strict and
leaky modes.

If the ratelimit condition is used in readonly mode, Exim looks up a previously-computed rate to
check against the limit.

415 Access control lists (44)

For example, you can test the client’s sending rate and deny it access (when it is too fast) in the
connect ACL. If the client passes this check then it can go on to send a message, in which case its
recorded rate will be updated in the MAIL ACL. Subsequent connections from the same client will
check this new rate.

acl_check_connect:
 deny ratelimit = 100 / 5m / readonly
 log_message = RATE CHECK: $sender_rate/$sender_rate_period \
 (max $sender_rate_limit)
...
acl_check_mail:
 warn ratelimit = 100 / 5m / strict
 log_message = RATE UPDATE: $sender_rate/$sender_rate_period \
 (max $sender_rate_limit)

If Exim encounters multiple ratelimit conditions with the same key when processing a message then
it may increase the client’s measured rate more than it should. For example, this will happen if you
check the per_rcpt option in both acl_smtp_rcpt and acl_smtp_data. However it’s OK to check the
same ratelimit condition multiple times in the same ACL. You can avoid any multiple update prob-
lems by using the readonly option on later ratelimit checks.

The per_* options described above do not make sense in some ACLs. If you use a per_* option in an
ACL where it is not normally permitted then the update mode defaults to readonly and you cannot
specify the strict or leaky modes. In other ACLs the default update mode is leaky (see the next
section) so you must specify the readonly option explicitly.

44.20.3 Ratelimit options for handling fast clients

If a client’s average rate is greater than the maximum, the rate limiting engine can react in two
possible ways, depending on the presence of the strict or leaky update modes. This is independent of
the other counter-measures (such as rejecting the message) that may be specified by the rest of the
ACL.

The leaky (default) option means that the client’s recorded rate is not updated if it is above the limit.
The effect of this is that Exim measures the client’s average rate of successfully sent email, up to the
given limit. This is appropriate if the countermeasure when the condition is true consists of refusing
the message, and is generally the better choice if you have clients that retry automatically. If the
action when true is anything more complex then this option is likely not what is wanted.

The strict option means that the client’s recorded rate is always updated. The effect of this is that
Exim measures the client’s average rate of attempts to send email, which can be much higher than the
maximum it is actually allowed. If the client is over the limit it may be subjected to counter-measures
by the ACL. It must slow down and allow sufficient time to pass that its computed rate falls below the
maximum before it can send email again. The time (the number of smoothing periods) it must wait
and not attempt to send mail can be calculated with this formula:

ln(peakrate/maxrate)

44.20.4 Limiting the rate of different events

The ratelimit unique= option controls a mechanism for counting the rate of different events. For
example, the per_addr option uses this mechanism to count the number of different recipients that
the client has sent messages to in the last time period; it is equivalent to
per_rcpt/unique=$local_part@$domain. You could use this feature to measure the rate
that a client uses different sender addresses with the options
per_mail/unique=$sender_address.

For each ratelimit key Exim stores the set of unique= values that it has seen for that key. The whole
set is thrown away when it is older than the rate smoothing period p, so each different event is
counted at most once per period. In the leaky update mode, an event that causes the client to go over
the limit is not added to the set, in the same way that the client’s recorded rate is not updated in the
same situation.

416 Access control lists (44)

When you combine the unique= and readonly options, the specific unique= value is ignored, and
Exim just retrieves the client’s stored rate.

The unique= mechanism needs more space in the ratelimit database than the other ratelimit options
in order to store the event set. The number of unique values is potentially as large as the rate limit, so
the extra space required increases with larger limits.

The uniqueification is not perfect: there is a small probability that Exim will think a new event has
happened before. If the sender’s rate is less than the limit, Exim should be more than 99.9% correct.
However in strict mode the measured rate can go above the limit, in which case Exim may under-
count events by a significant margin. Fortunately, if the rate is high enough (2.7 times the limit) that
the false positive rate goes above 9%, then Exim will throw away the over-full event set before the
measured rate falls below the limit. Therefore the only harm should be that exceptionally high send-
ing rates are logged incorrectly; any countermeasures you configure will be as effective as intended.

44.20.5 Using rate limiting

Exim’s other ACL facilities are used to define what counter-measures are taken when the rate limit is
exceeded. This might be anything from logging a warning (for example, while measuring existing
sending rates in order to define policy), through time delays to slow down fast senders, up to rejecting
the message. For example:

Log all senders' rates
warn ratelimit = 0 / 1h / strict
 log_message = Sender rate $sender_rate / $sender_rate_period

Slow down fast senders; note the need to truncate $sender_rate
at the decimal point.
warn ratelimit = 100 / 1h / per_rcpt / strict
 delay = ${eval: ${sg{$sender_rate}{[.].*}{}} - \
 $sender_rate_limit }s

Keep authenticated users under control
deny authenticated = *
 ratelimit = 100 / 1d / strict / $authenticated_id

System-wide rate limit
defer ratelimit = 10 / 1s / $primary_hostname
 message = Sorry, too busy. Try again later.

Restrict incoming rate from each host, with a default
set using a macro and special cases looked up in a table.
defer ratelimit = ${lookup {$sender_host_address} \
 cdb {DB/ratelimits.cdb} \
 {$value} {RATELIMIT} }
 message = Sender rate exceeds $sender_rate_limit \
 messages per $sender_rate_period

Warning: If you have a busy server with a lot of ratelimit tests, especially with the per_rcpt option,
you may suffer from a performance bottleneck caused by locking on the ratelimit hints database.
Apart from making your ACLs less complicated, you can reduce the problem by using a RAM disk
for Exim’s hints directory (usually /var/spool/exim/db/). However this means that Exim will lose its
hints data after a reboot (including retry hints, the callout cache, and ratelimit data).

44.21 Address verification

Several of the verify conditions described in section 44.17 cause addresses to be verified. Section
44.24 discusses the reporting of sender verification failures. The verification conditions can be fol-
lowed by options that modify the verification process. The options are separated from the keyword
and from each other by slashes, and some of them contain parameters. For example:

417 Access control lists (44)

verify = sender/callout
verify = recipient/defer_ok/callout=10s,defer_ok

The first stage of address verification, which always happens, is to run the address through the routers,
in “verify mode”. Routers can detect the difference between verification and routing for delivery, and
their actions can be varied by a number of generic options such as verify and verify_only (see
chapter 15). If routing fails, verification fails. The available options are as follows:

• If the callout option is specified, successful routing to one or more remote hosts is followed by a
“callout” to those hosts as an additional check. Callouts and their sub-options are discussed in the
next section.

• If there is a defer error while doing verification routing, the ACL normally returns “defer”.
However, if you include defer_ok in the options, the condition is forced to be true instead. Note
that this is a main verification option as well as a suboption for callouts.

• The no_details option is covered in section 44.24, which discusses the reporting of sender address
verification failures.

• The success_on_redirect option causes verification always to succeed immediately after a success-
ful redirection. By default, if a redirection generates just one address, that address is also verified.
See further discussion in section 44.25.

• If the quota option is specified for recipient verify, successful routing to an appendfile transport is
followed by a call into the transport to evaluate the quota status for the recipient. No actual delivery
is done, but verification will succeed if the quota is sufficient for the message (if the sender gave a
message size) or not already exceeded (otherwise).

After an address verification failure, $acl_verify_message contains the error message that is
associated with the failure. It can be preserved by coding like this:

warn !verify = sender
 set acl_m0 = $acl_verify_message

If you are writing your own custom rejection message or log message when denying access, you can
use this variable to include information about the verification failure. This variable is cleared at the
end of processing the ACL verb.

In addition, $sender_verify_failure or $recipient_verify_failure (as appropriate) contains one of the
following words:

• qualify: The address was unqualified (no domain), and the message was neither local nor came
from an exempted host.

• route: Routing failed.

• mail: Routing succeeded, and a callout was attempted; rejection occurred at or before the MAIL
command (that is, on initial connection, HELO, or MAIL).

• recipient: The RCPT command in a callout was rejected.

• postmaster: The postmaster check in a callout was rejected.

• quota: The quota check for a local recipient did non pass.

The main use of these variables is expected to be to distinguish between rejections of MAIL and
rejections of RCPT in callouts.

The above variables may also be set after a successful address verification to:

• random: A random local-part callout succeeded

44.22 Callout verification

For non-local addresses, routing verifies the domain, but is unable to do any checking of the local
part. There are situations where some means of verifying the local part is desirable. One way this can
be done is to make an SMTP callback to a delivery host for the sender address or a callforward to a

418 Access control lists (44)

subsequent host for a recipient address, to see if the host accepts the address. We use the term callout
to cover both cases. Note that for a sender address, the callback is not to the client host that is trying
to deliver the message, but to one of the hosts that accepts incoming mail for the sender’s domain.

Exim does not do callouts by default. If you want them to happen, you must request them by setting
appropriate options on the verify condition, as described below. This facility should be used with
care, because it can add a lot of resource usage to the cost of verifying an address. However, Exim
does cache the results of callouts, which helps to reduce the cost. Details of caching are in section
44.22.2.

Recipient callouts are usually used only between hosts that are controlled by the same administration.
For example, a corporate gateway host could use callouts to check for valid recipients on an internal
mailserver. A successful callout does not guarantee that a real delivery to the address would succeed;
on the other hand, a failing callout does guarantee that a delivery would fail.

If the callout option is present on a condition that verifies an address, a second stage of verification
occurs if the address is successfully routed to one or more remote hosts. The usual case is routing by a
dnslookup or a manualroute router, where the router specifies the hosts. However, if a router that does
not set up hosts routes to an smtp transport with a hosts setting, the transport’s hosts are used. If an
smtp transport has hosts_override set, its hosts are always used, whether or not the router supplies a
host list. Callouts are only supported on smtp transports.

The port that is used is taken from the transport, if it is specified and is a remote transport. (For
routers that do verification only, no transport need be specified.) Otherwise, the default SMTP port is
used. If a remote transport specifies an outgoing interface, this is used; otherwise the interface is not
specified. Likewise, the text that is used for the HELO command is taken from the transport’s helo_
data option; if there is no transport, the value of $smtp_active_hostname is used.

For a sender callout check, Exim makes SMTP connections to the remote hosts, to test whether a
bounce message could be delivered to the sender address. The following SMTP commands are sent:

HELO <local host name>
MAIL FROM:<>
RCPT TO:<the address to be tested>
QUIT

LHLO is used instead of HELO if the transport’s protocol option is set to “lmtp”.

The callout may use EHLO, AUTH and/or STARTTLS given appropriate option settings.

A recipient callout check is similar. By default, it also uses an empty address for the sender. This
default is chosen because most hosts do not make use of the sender address when verifying a recipi-
ent. Using the same address means that a single cache entry can be used for each recipient. Some
sites, however, do make use of the sender address when verifying. These are catered for by the use_
sender and use_postmaster options, described in the next section.

If the response to the RCPT command is a 2xx code, the verification succeeds. If it is 5xx, the
verification fails. For any other condition, Exim tries the next host, if any. If there is a problem with
all the remote hosts, the ACL yields “defer”, unless the defer_ok parameter of the callout option is
given, in which case the condition is forced to succeed.

A callout may take a little time. For this reason, Exim normally flushes SMTP output before perform-
ing a callout in an ACL, to avoid unexpected timeouts in clients when the SMTP PIPELINING
extension is in use. The flushing can be disabled by using a control modifier to set no_callout_flush.

A recipient callout which gets a 2xx code will assign untainted values to the $domain_data and
$local_part_data variables, corresponding to the domain and local parts of the recipient address.

44.22.1 Additional parameters for callouts

The callout option can be followed by an equals sign and a number of optional parameters, separated
by commas. For example:

verify = recipient/callout=10s,defer_ok

419 Access control lists (44)

The old syntax, which had callout_defer_ok and check_postmaster as separate verify options, is
retained for backwards compatibility, but is now deprecated. The additional parameters for callout are
as follows:

<a time interval>
This specifies the timeout that applies for the callout attempt to each host. For example:

verify = sender/callout=5s

The default is 30 seconds. The timeout is used for each response from the remote host. It is also
used for the initial connection, unless overridden by the connect parameter.

connect = <time interval>
This parameter makes it possible to set a different (usually smaller) timeout for making the SMTP
connection. For example:

verify = sender/callout=5s,connect=1s

If not specified, this timeout defaults to the general timeout value.

defer_ok
When this parameter is present, failure to contact any host, or any other kind of temporary error, is
treated as success by the ACL. However, the cache is not updated in this circumstance.

fullpostmaster
This operates like the postmaster option (see below), but if the check for postmaster@domain
fails, it tries just postmaster, without a domain, in accordance with the specification in RFC 2821.
The RFC states that the unqualified address postmaster should be accepted.

mailfrom = <email address>
When verifying addresses in header lines using the header_sender verification option, Exim
behaves by default as if the addresses are envelope sender addresses from a message. Callout
verification therefore tests to see whether a bounce message could be delivered, by using an empty
address in the MAIL command. However, it is arguable that these addresses might never be used
as envelope senders, and could therefore justifiably reject bounce messages (empty senders). The
mailfrom callout parameter allows you to specify what address to use in the MAIL command. For
example:

require verify = header_sender/callout=mailfrom=abcd@x.y.z

This parameter is available only for the header_sender verification option.

maxwait = <time interval>
This parameter sets an overall timeout for performing a callout verification. For example:

verify = sender/callout=5s,maxwait=30s

This timeout defaults to four times the callout timeout for individual SMTP commands. The
overall timeout applies when there is more than one host that can be tried. The timeout is checked
before trying the next host. This prevents very long delays if there are a large number of hosts and
all are timing out (for example, when network connections are timing out).

no_cache
When this parameter is given, the callout cache is neither read nor updated.

postmaster
When this parameter is set, a successful callout check is followed by a similar check for the local
part postmaster at the same domain. If this address is rejected, the callout fails (but see
fullpostmaster above). The result of the postmaster check is recorded in a cache record; if it is a
failure, this is used to fail subsequent callouts for the domain without a connection being made,
until the cache record expires.

postmaster_mailfrom = <email address>
The postmaster check uses an empty sender in the MAIL command by default. You can use this
parameter to do a postmaster check using a different address. For example:

require verify = sender/callout=postmaster_mailfrom=abc@x.y.z

420 Access control lists (44)

If both postmaster and postmaster_mailfrom are present, the rightmost one overrides. The post-
master parameter is equivalent to this example:

require verify = sender/callout=postmaster_mailfrom=

Warning: The caching arrangements for postmaster checking do not take account of the sender
address. It is assumed that either the empty address or a fixed non-empty address will be used. All
that Exim remembers is that the postmaster check for the domain succeeded or failed.

random
When this parameter is set, before doing the normal callout check, Exim does a check for a
“random” local part at the same domain. The local part is not really random – it is defined by the
expansion of the option callout_random_local_part, which defaults to

$primary_hostname-$tod_epoch-testing

The idea here is to try to determine whether the remote host accepts all local parts without
checking. If it does, there is no point in doing callouts for specific local parts. If the “random”
check succeeds, the result is saved in a cache record, and used to force the current and subsequent
callout checks to succeed without a connection being made, until the cache record expires.

use_postmaster
This parameter applies to recipient callouts only. For example:

deny !verify = recipient/callout=use_postmaster

It causes a non-empty postmaster address to be used in the MAIL command when performing the
callout for the recipient, and also for a “random” check if that is configured. The local part of the
address is postmaster and the domain is the contents of $qualify_domain.

use_sender
This option applies to recipient callouts only. For example:

require verify = recipient/callout=use_sender

It causes the message’s actual sender address to be used in the MAIL command when performing
the callout, instead of an empty address. There is no need to use this option unless you know that
the called hosts make use of the sender when checking recipients. If used indiscriminately, it
reduces the usefulness of callout caching.

hold
This option applies to recipient callouts only. For example:

require verify = recipient/callout=use_sender,hold

It causes the connection to be held open and used for any further recipients and for eventual
delivery (should that be done quickly). Doing this saves on TCP and SMTP startup costs, and TLS
costs also when that is used for the connections. The advantage is only gained if there are no
callout cache hits (which could be enforced by the no_cache option), if the use_sender option is
used, if neither the random nor the use_postmaster option is used, and if no other callouts
intervene.

If you use any of the parameters that set a non-empty sender for the MAIL command (mailfrom,
postmaster_mailfrom, use_postmaster, or use_sender), you should think about possible loops.
Recipient checking is usually done between two hosts that are under the same management, and the
host that receives the callouts is not normally configured to do callouts itself. Therefore, it is normally
safe to use use_postmaster or use_sender in these circumstances.

However, if you use a non-empty sender address for a callout to an arbitrary host, there is the
likelihood that the remote host will itself initiate a callout check back to your host. As it is checking
what appears to be a message sender, it is likely to use an empty address in MAIL, thus avoiding a
callout loop. However, to be on the safe side it would be best to set up your own ACLs so that they do
not do sender verification checks when the recipient is the address you use for header sender or
postmaster callout checking.

421 Access control lists (44)

Another issue to think about when using non-empty senders for callouts is caching. When you set
mailfrom or use_sender, the cache record is keyed by the sender/recipient combination; thus, for any
given recipient, many more actual callouts are performed than when an empty sender or postmaster is
used.

44.22.2 Callout caching

Exim caches the results of callouts in order to reduce the amount of resources used, unless you
specify the no_cache parameter with the callout option. A hints database called “callout” is used for
the cache. Two different record types are used: one records the result of a callout check for a specific
address, and the other records information that applies to the entire domain (for example, that it
accepts the local part postmaster).

When an original callout fails, a detailed SMTP error message is given about the failure. However, for
subsequent failures that use the cache data, this message is not available.

The expiry times for negative and positive address cache records are independent, and can be set by
the global options callout_negative_expire (default 2h) and callout_positive_expire (default 24h),
respectively.

If a host gives a negative response to an SMTP connection, or rejects any commands up to and
including

MAIL FROM:<>

(but not including the MAIL command with a non-empty address), any callout attempt is bound to
fail. Exim remembers such failures in a domain cache record, which it uses to fail callouts for the
domain without making new connections, until the domain record times out. There are two separate
expiry times for domain cache records: callout_domain_negative_expire (default 3h) and callout_
domain_positive_expire (default 7d).

Domain records expire when the negative expiry time is reached if callouts cannot be made for the
domain, or if the postmaster check failed. Otherwise, they expire when the positive expiry time is
reached. This ensures that, for example, a host that stops accepting “random” local parts will eventu-
ally be noticed.

The callout caching mechanism is based on the domain of the address that is being tested. If the
domain routes to several hosts, it is assumed that their behaviour will be the same.

44.23 Quota caching

Exim caches the results of quota verification in order to reduce the amount of resources used. The
“callout” hints database is used.

The default cache periods are five minutes for a positive (good) result and one hour for a negative
result. To change the periods the quota option can be followed by an equals sign and a number of
optional paramemters, separated by commas. For example:

verify = recipient/quota=cachepos=1h,cacheneg=1d

Possible parameters are:

cachepos = <time interval>
Set the lifetime for a positive cache entry. A value of zero seconds is legitimate.

cacheneg = <time interval>
As above, for a negative entry.

no_cache
Set both positive and negative lifetimes to zero.

422 Access control lists (44)

44.24 Sender address verification reporting

See section 44.21 for a general discussion of verification. When sender verification fails in an ACL,
the details of the failure are given as additional output lines before the 550 response to the relevant
SMTP command (RCPT or DATA). For example, if sender callout is in use, you might see:

MAIL FROM:<xyz@abc.example>
250 OK
RCPT TO:<pqr@def.example>
550-Verification failed for <xyz@abc.example>
550-Called: 192.168.34.43
550-Sent: RCPT TO:<xyz@abc.example>
550-Response: 550 Unknown local part xyz in <xyz@abc.example>
550 Sender verification failed

If more than one RCPT command fails in the same way, the details are given only for the first of
them. However, some administrators do not want to send out this much information. You can suppress
the details by adding /no_details to the ACL statement that requests sender verification. For
example:

verify = sender/no_details

44.25 Redirection while verifying

A dilemma arises when a local address is redirected by aliasing or forwarding during verification:
should the generated addresses themselves be verified, or should the successful expansion of the
original address be enough to verify it? By default, Exim takes the following pragmatic approach:

• When an incoming address is redirected to just one child address, verification continues with the
child address, and if that fails to verify, the original verification also fails.

• When an incoming address is redirected to more than one child address, verification does not
continue. A success result is returned.

This seems the most reasonable behaviour for the common use of aliasing as a way of redirecting
different local parts to the same mailbox. It means, for example, that a pair of alias entries of the form

A.Wol: aw123
aw123: :fail: Gone away, no forwarding address

work as expected, with both local parts causing verification failure. When a redirection generates
more than one address, the behaviour is more like a mailing list, where the existence of the alias itself
is sufficient for verification to succeed.

It is possible, however, to change the default behaviour so that all successful redirections count as
successful verifications, however many new addresses are generated. This is specified by the success_
on_redirect verification option. For example:

require verify = recipient/success_on_redirect/callout=10s

In this example, verification succeeds if a router generates a new address, and the callout does not
occur, because no address was routed to a remote host.

When verification is being tested via the -bv option, the treatment of redirections is as just described,
unless the -v or any debugging option is also specified. In that case, full verification is done for every
generated address and a report is output for each of them.

44.26 Client SMTP authorization (CSA)

Client SMTP Authorization is a system that allows a site to advertise which machines are and are not
permitted to send email. This is done by placing special SRV records in the DNS; these are looked up
using the client’s HELO domain. At the time of writing, CSA is still an Internet Draft. Client SMTP
Authorization checks in Exim are performed by the ACL condition:

verify = csa

423 Access control lists (44)

This fails if the client is not authorized. If there is a DNS problem, or if no valid CSA SRV record is
found, or if the client is authorized, the condition succeeds. These three cases can be distinguished
using the expansion variable $csa_status, which can take one of the values “fail”, “defer”,
“unknown”, or “ok”. The condition does not itself defer because that would be likely to cause
problems for legitimate email.

The error messages produced by the CSA code include slightly more detail. If $csa_status is “defer”,
this may be because of problems looking up the CSA SRV record, or problems looking up the CSA
target address record. There are four reasons for $csa_status being “fail”:

• The client’s host name is explicitly not authorized.

• The client’s IP address does not match any of the CSA target IP addresses.

• The client’s host name is authorized but it has no valid target IP addresses (for example, the target’s
addresses are IPv6 and the client is using IPv4).

• The client’s host name has no CSA SRV record but a parent domain has asserted that all
subdomains must be explicitly authorized.

The csa verification condition can take an argument which is the domain to use for the DNS query.
The default is:

verify = csa/$sender_helo_name

This implementation includes an extension to CSA. If the query domain is an address literal such as
[192.0.2.95], or if it is a bare IP address, Exim searches for CSA SRV records in the reverse DNS as if
the HELO domain was (for example) 95.2.0.192.in-addr.arpa. Therefore it is meaningful to say:

verify = csa/$sender_host_address

In fact, this is the check that Exim performs if the client does not say HELO. This extension can be
turned off by setting the main configuration option dns_csa_use_reverse to be false.

If a CSA SRV record is not found for the domain itself, a search is performed through its parent
domains for a record which might be making assertions about subdomains. The maximum depth of
this search is limited using the main configuration option dns_csa_search_limit, which is 5 by
default. Exim does not look for CSA SRV records in a top level domain, so the default settings handle
HELO domains as long as seven (hostname.five.four.three.two.one.com). This encompasses the vast
majority of legitimate HELO domains.

The dnsdb lookup also has support for CSA. Although dnsdb also supports direct SRV lookups, this
is not sufficient because of the extra parent domain search behaviour of CSA, and (as with PTR
lookups) dnsdb also turns IP addresses into lookups in the reverse DNS space. The result of a
successful lookup such as:

${lookup dnsdb {csa=$sender_helo_name}}

has two space-separated fields: an authorization code and a target host name. The authorization code
can be “Y” for yes, “N” for no, “X” for explicit authorization required but absent, or “?” for
unknown.

44.27 Bounce address tag validation

Bounce address tag validation (BATV) is a scheme whereby the envelope senders of outgoing mess-
ages have a cryptographic, timestamped “tag” added to them. Genuine incoming bounce messages
should therefore always be addressed to recipients that have a valid tag. This scheme is a way of
detecting unwanted bounce messages caused by sender address forgeries (often called “collateral
spam”), because the recipients of such messages do not include valid tags.

There are two expansion items to help with the implementation of the BATV “prvs” (private signa-
ture) scheme in an Exim configuration. This scheme signs the original envelope sender address by
using a simple key to add a hash of the address and some time-based randomizing information. The
prvs expansion item creates a signed address, and the prvscheck expansion item checks one. The

424 Access control lists (44)

syntax of these expansion items is described in section 11.5. The validity period on signed addresses
is seven days.

As an example, suppose the secret per-address keys are stored in an MySQL database. A query to
look up the key for an address could be defined as a macro like this:

PRVSCHECK_SQL = ${lookup mysql{SELECT secret FROM batv_prvs \
 WHERE sender='${quote_mysql:$prvscheck_address}'\
 }{$value}}

Suppose also that the senders who make use of BATV are defined by an address list called batv_
senders. Then, in the ACL for RCPT commands, you could use this:

Bounces: drop unsigned addresses for BATV senders
deny senders = :
 recipients = +batv_senders
 message = This address does not send an unsigned reverse path

Bounces: In case of prvs-signed address, check signature.
deny senders = :
 condition = ${prvscheck {$local_part@$domain}\
 {PRVSCHECK_SQL}{1}}
 !condition = $prvscheck_result
 message = Invalid reverse path signature.

The first statement rejects recipients for bounce messages that are addressed to plain BATV sender
addresses, because it is known that BATV senders do not send out messages with plain sender
addresses. The second statement rejects recipients that are prvs-signed, but with invalid signatures
(either because the key is wrong, or the signature has timed out).

A non-prvs-signed address is not rejected by the second statement, because the prvscheck expansion
yields an empty string if its first argument is not a prvs-signed address, thus causing the condition
condition to be false. If the first argument is a syntactically valid prvs-signed address, the yield is the
third string (in this case “1”), whether or not the cryptographic and timeout checks succeed. The
$prvscheck_result variable contains the result of the checks (empty for failure, “1” for success).

There is one more issue you must consider when implementing prvs-signing: you have to ensure that
the routers accept prvs-signed addresses and deliver them correctly. The easiest way to handle this is
to use a redirect router to remove the signature with a configuration along these lines:

batv_redirect:
 driver = redirect
 data = ${prvscheck {$local_part@$domain}{PRVSCHECK_SQL}}

This works because, if the third argument of prvscheck is empty, the result of the expansion of a
prvs-signed address is the decoded value of the original address. This router should probably be the
first of your routers that handles local addresses.

To create BATV-signed addresses in the first place, a transport of this form can be used:

external_smtp_batv:
 driver = smtp
 return_path = ${prvs {$return_path} \
 {${lookup mysql{SELECT \
 secret FROM batv_prvs WHERE \
 sender='${quote_mysql:$sender_address}'} \
 {$value}fail}}}

If no key can be found for the existing return path, no signing takes place.

44.28 Using an ACL to control relaying

An MTA is said to relay a message if it receives it from some host and delivers it directly to another
host as a result of a remote address contained within it. Redirecting a local address via an alias or

425 Access control lists (44)

forward file and then passing the message on to another host is not relaying, but a redirection as a
result of the “percent hack” is.

Two kinds of relaying exist, which are termed “incoming” and “outgoing”. A host which is acting as a
gateway or an MX backup is concerned with incoming relaying from arbitrary hosts to a specific set
of domains. On the other hand, a host which is acting as a smart host for a number of clients is
concerned with outgoing relaying from those clients to the Internet at large. Often the same host is
fulfilling both functions, but in principle these two kinds of relaying are entirely independent. What is
not wanted is the transmission of mail from arbitrary remote hosts through your system to arbitrary
domains.

You can implement relay control by means of suitable statements in the ACL that runs for each RCPT
command. For convenience, it is often easiest to use Exim’s named list facility to define the domains
and hosts involved. For example, suppose you want to do the following:

• Deliver a number of domains to mailboxes on the local host (or process them locally in some other
way). Let’s say these are my.dom1.example and my.dom2.example.

• Relay mail for a number of other domains for which you are the secondary MX. These might be
friend1.example and friend2.example.

• Relay mail from the hosts on your local LAN, to whatever domains are involved. Suppose your
LAN is 192.168.45.0/24.

In the main part of the configuration, you put the following definitions:

domainlist local_domains = my.dom1.example : my.dom2.example
domainlist relay_to_domains = friend1.example : friend2.example
hostlist relay_from_hosts = 192.168.45.0/24

Now you can use these definitions in the ACL that is run for every RCPT command:

acl_check_rcpt:
 accept domains = +local_domains : +relay_to_domains
 accept hosts = +relay_from_hosts

The first statement accepts any RCPT command that contains an address in the local or relay
domains. For any other domain, control passes to the second statement, which accepts the command
only if it comes from one of the relay hosts. In practice, you will probably want to make your ACL
more sophisticated than this, for example, by including sender and recipient verification. The default
configuration includes a more comprehensive example, which is described in chapter 7.

44.29 Checking a relay configuration

You can check the relay characteristics of your configuration in the same way that you can test any
ACL behaviour for an incoming SMTP connection, by using the -bh option to run a fake SMTP
session with which you interact.

426 Access control lists (44)

45. Content scanning at ACL time

The extension of Exim to include content scanning at ACL time, formerly known as “exiscan”, was
originally implemented as a patch by Tom Kistner. The code was integrated into the main source for
Exim release 4.50, and Tom continues to maintain it. Most of the wording of this chapter is taken
from Tom’s specification.

It is also possible to scan the content of messages at other times. The local_scan() function (see
chapter 46) allows for content scanning after all the ACLs have run. A transport filter can be used to
scan messages at delivery time (see the transport_filter option, described in chapter 24).

If you want to include the ACL-time content-scanning features when you compile Exim, you need to
arrange for WITH_CONTENT_SCAN to be defined in your Local/Makefile. When you do that, the
Exim binary is built with:

• Two additional ACLs (acl_smtp_mime and acl_not_smtp_mime) that are run for all MIME parts
for SMTP and non-SMTP messages, respectively.

• Additional ACL conditions and modifiers: decode, malware, mime_regex, regex, and spam.
These can be used in the ACL that is run at the end of message reception (the acl_smtp_data
ACL).

• An additional control feature (“no_mbox_unspool”) that saves spooled copies of messages, or parts
of messages, for debugging purposes.

• Additional expansion variables that are set in the new ACL and by the new conditions.

• Two new main configuration options: av_scanner and spamd_address.

Content-scanning is continually evolving, and new features are still being added. While such features
are still unstable and liable to incompatible changes, they are made available in Exim by setting
options whose names begin EXPERIMENTAL_ in Local/Makefile. Such features are not documented
in this manual. You can find out about them by reading the file called doc/experimental.txt.

All the content-scanning facilities work on a MBOX copy of the message that is temporarily created
in a file called:

<spool_directory>/scan/<message_id>/<message_id>.eml

The .eml extension is a friendly hint to virus scanners that they can expect an MBOX-like structure
inside that file. The file is created when the first content scanning facility is called. Subsequent calls to
content scanning conditions open the same file again. The directory is recursively removed when the
acl_smtp_data ACL has finished running, unless

control = no_mbox_unspool

has been encountered. When the MIME ACL decodes files, they are put into the same directory by
default.

45.1 Scanning for viruses

The malware ACL condition lets you connect virus scanner software to Exim. It supports a “generic”
interface to scanners called via the shell, and specialized interfaces for “daemon” type virus scanners,
which are resident in memory and thus are much faster.

Since message data needs to have arrived, the condition may be only called in ACL defined by acl_
smtp_data, acl_smtp_data_prdr, acl_smtp_mime or acl_smtp_dkim

A timeout of 2 minutes is applied to a scanner call (by default); if it expires then a defer action is
taken.

You can set the av_scanner option in the main part of the configuration to specify which scanner to
use, together with any additional options that are needed. The basic syntax is as follows:

av_scanner = <scanner-type>:<option1>:<option2>:[...]

427 Content scanning at ACL time (45)

If you do not set av_scanner, it defaults to

av_scanner = sophie:/var/run/sophie

If the value of av_scanner starts with a dollar character, it is expanded before use. The usual list-
parsing of the content (see 6.20) applies. The following scanner types are supported in this release,
though individual ones can be included or not at build time:

avast
This is the scanner daemon of Avast. It has been tested with Avast Core Security (currently at
version 2.2.0). You can get a trial version at https://www.avast.com or for Linux at
https://www.avast.com/linux-server-antivirus. This scanner type takes one option, which can be
either a full path to a UNIX socket, or host and port specifiers separated by white space. The host
may be a name or an IP address; the port is either a single number or a pair of numbers with a dash
between. A list of options may follow. These options are interpreted on the Exim’s side of the
malware scanner, or are given on separate lines to the daemon as options before the main scan
command.

If pass_unscanned is set, any files the Avast scanner can’t scan (e.g. decompression bombs, or
invalid archives) are considered clean. Use with care.

For example:

av_scanner = avast:/var/run/avast/scan.sock:FLAGS -fullfiles:SENSITIVITY -pup
av_scanner = avast:/var/run/avast/scan.sock:pass_unscanned:FLAGS -fullfiles:SENSITIVITY -pup
av_scanner = avast:192.168.2.22 5036

If you omit the argument, the default path /var/run/avast/scan.sock is used. If you use a remote
host, you need to make Exim’s spool directory available to it, as the scanner is passed a file path,
not file contents. For information about available commands and their options you may use

$ socat UNIX:/var/run/avast/scan.sock STDIO:
 FLAGS
 SENSITIVITY
 PACK

If the scanner returns a temporary failure (e.g. license issues, or permission problems), the mess-
age is deferred and a paniclog entry is written. The usual defer_ok option is available.

aveserver
This is the scanner daemon of Kaspersky Version 5. You can get a trial version at
https://www.kaspersky.com/. This scanner type takes one option, which is the path to the
daemon’s UNIX socket. The default is shown in this example:

av_scanner = aveserver:/var/run/aveserver

clamd
This daemon-type scanner is GPL and free. You can get it at https://www.clamav.net/. Some
older versions of clamd do not seem to unpack MIME containers, so it used to be recommended to
unpack MIME attachments in the MIME ACL. This is no longer believed to be necessary.

The options are a list of server specifiers, which may be a UNIX socket specification, a TCP
socket specification, or a (global) option.

A socket specification consists of a space-separated list. For a Unix socket the first element is a full
path for the socket, for a TCP socket the first element is the IP address and the second a port
number, Any further elements are per-server (non-global) options. These per-server options are
supported:

retry=<timespec>¤Retry on connect fail

The retry option specifies a time after which a single retry for a failed connect is made. The
default is to not retry.

If a Unix socket file is specified, only one server is supported.

Examples:

428 Content scanning at ACL time (45)

av_scanner = clamd:/opt/clamd/socket
av_scanner = clamd:192.0.2.3 1234
av_scanner = clamd:192.0.2.3 1234:local
av_scanner = clamd:192.0.2.3 1234 retry=10s
av_scanner = clamd:192.0.2.3 1234 : 192.0.2.4 1234

If the value of av_scanner points to a UNIX socket file or contains the local option, then the
ClamAV interface will pass a filename containing the data to be scanned, which should normally
result in less I/O happening and be more efficient. Normally in the TCP case, the data is streamed
to ClamAV as Exim does not assume that there is a common filesystem with the remote host.

The final example shows that multiple TCP targets can be specified. Exim will randomly use one
for each incoming email (i.e. it load balances them). Note that only TCP targets may be used if
specifying a list of scanners; a UNIX socket cannot be mixed in with TCP targets. If one of the
servers becomes unavailable, Exim will try the remaining one(s) until it finds one that works.
When a clamd server becomes unreachable, Exim will log a message. Exim does not keep track of
scanner state between multiple messages, and the scanner selection is random, so the message will
get logged in the mainlog for each email that the down scanner gets chosen first (message wrapped
to be readable):

2013-10-09 14:30:39 1VTumd-0000Y8-BQ malware acl condition:
 clamd: connection to localhost, port 3310 failed
 (Connection refused)

If the option is unset, the default is /tmp/clamd. Thanks to David Saez for contributing the code for
this scanner.

cmdline
This is the keyword for the generic command line scanner interface. It can be used to attach virus
scanners that are invoked from the shell. This scanner type takes 3 mandatory options:

(1) The full path and name of the scanner binary, with all command line options, and a
placeholder (%s) for the directory to scan.

(2) A regular expression to match against the STDOUT and STDERR output of the virus scan-
ner. If the expression matches, a virus was found. You must make absolutely sure that this
expression matches on “virus found”. This is called the “trigger” expression.

(3) Another regular expression, containing exactly one pair of parentheses, to match the name of
the virus found in the scanners output. This is called the “name” expression.

For example, Sophos Sweep reports a virus on a line like this:

Virus 'W32/Magistr-B' found in file ./those.bat

For the trigger expression, we can match the phrase “found in file”. For the name expression, we
want to extract the W32/Magistr-B string, so we can match for the single quotes left and right of it.
Altogether, this makes the configuration setting:

av_scanner = cmdline:\
 /path/to/sweep -ss -all -rec -archive %s:\
 found in file:'(.+)'

drweb
The DrWeb daemon scanner (https://www.sald.ru/) interface takes one option, either a full path to
a UNIX socket, or host and port specifiers separated by white space. The host may be a name or an
IP address; the port is either a single number or a pair of numbers with a dash between. For
example:

av_scanner = drweb:/var/run/drwebd.sock
av_scanner = drweb:192.168.2.20 31337

If you omit the argument, the default path /usr/local/drweb/run/drwebd.sock is used. Thanks to
Alex Miller for contributing the code for this scanner.

429 Content scanning at ACL time (45)

f-protd
The f-protd scanner is accessed via HTTP over TCP. One argument is taken, being a space-
separated hostname and port number (or port-range). For example:

av_scanner = f-protd:localhost 10200-10204

If you omit the argument, the default values shown above are used.

f-prot6d
The f-prot6d scanner is accessed using the FPSCAND protocol over TCP. One argument is taken,
being a space-separated hostname and port number. For example:

av_scanner = f-prot6d:localhost 10200

If you omit the argument, the default values show above are used.

fsecure
The F-Secure daemon scanner (https://www.f-secure.com/) takes one argument which is the path
to a UNIX socket. For example:

av_scanner = fsecure:/path/to/.fsav

If no argument is given, the default is /var/run/.fsav. Thanks to Johan Thelmen for contributing the
code for this scanner.

kavdaemon
This is the scanner daemon of Kaspersky Version 4. This version of the Kaspersky scanner is
outdated. Please upgrade (see aveserver above). This scanner type takes one option, which is the
path to the daemon’s UNIX socket. For example:

av_scanner = kavdaemon:/opt/AVP/AvpCtl

The default path is /var/run/AvpCtl.

mksd
This was a daemon type scanner that is aimed mainly at Polish users, though some documentation
was available in English. The history can be shown at https://en.wikipedia.org/wiki/Mks_vir and
this appears to be a candidate for removal from Exim, unless we are informed of other virus
scanners which use the same protocol to integrate. The only option for this scanner type is the
maximum number of processes used simultaneously to scan the attachments, provided that mksd
has been run with at least the same number of child processes. For example:

av_scanner = mksd:2

You can safely omit this option (the default value is 1).

sock
This is a general-purpose way of talking to simple scanner daemons running on the local machine.
There are four options: an address (which may be an IP address and port, or the path of a Unix
socket), a commandline to send (may include a single %s which will be replaced with the path to
the mail file to be scanned), an RE to trigger on from the returned data, and an RE to extract
malware_name from the returned data. For example:

av_scanner = sock:127.0.0.1 6001:%s:(SPAM|VIRUS):(.*)$

Note that surrounding whitespace is stripped from each option, meaning there is no way to specify
a trailing newline. The socket specifier and both regular-expressions are required. Default for the
commandline is %s\n (note this does have a trailing newline); specify an empty element to get this.

sophie
Sophie is a daemon that uses Sophos’ libsavi library to scan for viruses. You can get Sophie at
http://sophie.sourceforge.net/. The only option for this scanner type is the path to the UNIX
socket that Sophie uses for client communication. For example:

av_scanner = sophie:/tmp/sophie

The default path is /var/run/sophie, so if you are using this, you can omit the option.

430 Content scanning at ACL time (45)

When av_scanner is correctly set, you can use the malware condition in the DATA ACL. Note: You
cannot use the malware condition in the MIME ACL.

The av_scanner option is expanded each time malware is called. This makes it possible to use
different scanners. See further below for an example. The malware condition caches its results, so
when you use it multiple times for the same message, the actual scanning process is only carried out
once. However, using expandable items in av_scanner disables this caching, in which case each use
of the malware condition causes a new scan of the message.

The malware condition takes a right-hand argument that is expanded before use and taken as a list,
slash-separated by default. The first element can then be one of

• “true”, “*”, or “1”, in which case the message is scanned for viruses. The condition succeeds if a
virus was found, and fail otherwise. This is the recommended usage.

• “false” or “0” or an empty string, in which case no scanning is done and the condition fails
immediately.

• A regular expression, in which case the message is scanned for viruses. The condition succeeds if a
virus is found and its name matches the regular expression. This allows you to take special actions
on certain types of virus. Note that “/” characters in the RE must be doubled due to the list-
processing, unless the separator is changed (in the usual way 6.21).

You can append a defer_ok element to the malware argument list to accept messages even if there
is a problem with the virus scanner. Otherwise, such a problem causes the ACL to defer.

You can append a tmo=<val> element to the malware argument list to specify a non-default
timeout. The default is two minutes. For example:

malware = * / defer_ok / tmo=10s

A timeout causes the ACL to defer.

When a connection is made to the scanner the expansion variable $callout_address is set to record the
actual address used.

When a virus is found, the condition sets up an expansion variable called $malware_name that
contains the name of the virus. You can use it in a message modifier that specifies the error returned
to the sender, and/or in logging data.

Beware the interaction of Exim’s message_size_limit with any size limits imposed by your anti-virus
scanner.

Here is a very simple scanning example:

deny malware = *
 message = This message contains malware ($malware_name)

The next example accepts messages when there is a problem with the scanner:

deny malware = */defer_ok
 message = This message contains malware ($malware_name)

The next example shows how to use an ACL variable to scan with both sophie and aveserver. It
assumes you have set:

av_scanner = $acl_m0

in the main Exim configuration.

deny set acl_m0 = sophie
 malware = *
 message = This message contains malware ($malware_name)

deny set acl_m0 = aveserver
 malware = *
 message = This message contains malware ($malware_name)

431 Content scanning at ACL time (45)

45.2 Scanning with SpamAssassin and Rspamd

The spam ACL condition calls SpamAssassin’s spamd daemon to get a spam score and a report for
the message. Support is also provided for Rspamd.

For more information about installation and configuration of SpamAssassin or Rspamd refer to their
respective websites at https://spamassassin.apache.org/ and https://www.rspamd.com/

SpamAssassin can be installed with CPAN by running:

perl -MCPAN -e 'install Mail::SpamAssassin'

SpamAssassin has its own set of configuration files. Please review its documentation to see how you
can tweak it. The default installation should work nicely, however.

By default, SpamAssassin listens on 127.0.0.1, TCP port 783 and if you intend to use an instance
running on the local host you do not need to set spamd_address. If you intend to use another host or
port for SpamAssassin, you must set the spamd_address option in the global part of the Exim
configuration as follows (example):

spamd_address = 192.168.99.45 783

The SpamAssassin protocol relies on a TCP half-close from the client. If your SpamAssassin client
side is running a Linux system with an iptables firewall, consider setting net.netfilter.nf_conntrack_
tcp_timeout_close_wait to at least the timeout, Exim uses when waiting for a response from the
SpamAssassin server (currently defaulting to 120s). With a lower value the Linux connection tracking
may consider your half-closed connection as dead too soon.

To use Rspamd (which by default listens on all local addresses on TCP port 11333) you should add
variant=rspamd after the address/port pair, for example:

spamd_address = 127.0.0.1 11333 variant=rspamd

As of version 2.60, SpamAssassin also supports communication over UNIX sockets. If you want to
us these, supply spamd_address with an absolute filename instead of an address/port pair:

spamd_address = /var/run/spamd_socket

You can have multiple spamd servers to improve scalability. These can reside on other hardware
reachable over the network. To specify multiple spamd servers, put multiple address/port pairs in the
spamd_address option, separated with colons (the separator can be changed in the usual way 6.21):

spamd_address = 192.168.2.10 783 : \
 192.168.2.11 783 : \
 192.168.2.12 783

Up to 32 spamd servers are supported. When a server fails to respond to the connection attempt, all
other servers are tried until one succeeds. If no server responds, the spam condition defers.

Unix and TCP socket specifications may be mixed in any order. Each element of the list is a list itself,
space-separated by default and changeable in the usual way (6.21); take care to not double the
separator.

For TCP socket specifications a host name or IP (v4 or v6, but subject to list-separator quoting rules)
address can be used, and the port can be one or a dash-separated pair. In the latter case, the range is
tried in strict order.

Elements after the first for Unix sockets, or second for TCP socket, are options. The supported
options are:

pri=<priority> Selection priority
weight=<value> Selection bias
time=<start>-<end> Use only between these times of day
retry=<timespec> Retry on connect fail
tmo=<timespec> Connection time limit
variant=rspamd Use Rspamd rather than SpamAssassin protocol

432 Content scanning at ACL time (45)

The pri option specifies a priority for the server within the list, higher values being tried first. The
default priority is 1.

The weight option specifies a selection bias. Within a priority set servers are queried in a random
fashion, weighted by this value. The default value for selection bias is 1.

Time specifications for the time option are <hour>.<minute>.<second> in the local time zone; each
element being one or more digits. Either the seconds or both minutes and seconds, plus the leading .
characters, may be omitted and will be taken as zero.

Timeout specifications for the retry and tmo options are the usual Exim time interval standard, e.g.
20s or 1m.

The tmo option specifies an overall timeout for communication. The default value is two minutes.

The retry option specifies a time after which a single retry for a failed connect is made. The default
is to not retry.

The spamd_address variable is expanded before use if it starts with a dollar sign. In this case, the
expansion may return a string that is used as the list so that multiple spamd servers can be the result
of an expansion.

When a connection is made to the server the expansion variable $callout_address is set to record the
actual address used.

45.3 Calling SpamAssassin from an Exim ACL

Here is a simple example of the use of the spam condition in a DATA ACL:

deny spam = joe
 message = This message was classified as SPAM

The right-hand side of the spam condition specifies a name. This is relevant if you have set up
multiple SpamAssassin profiles. If you do not want to scan using a specific profile, but rather use
the SpamAssassin system-wide default profile, you can scan for an unknown name, or simply use
“nobody”. Rspamd does not use this setting. However, you must put something on the right-hand
side.

The name allows you to use per-domain or per-user antispam profiles in principle, but this is not
straightforward in practice, because a message may have multiple recipients, not necessarily all in the
same domain. Because the spam condition has to be called from a DATA-time ACL in order to be
able to read the contents of the message, the variables $local_part and $domain are not set. Careful
enforcement of single-recipient messages (e.g. by responding with defer in the recipient ACL for all
recipients after the first), or the use of PRDR, are needed to use this feature.

The right-hand side of the spam condition is expanded before being used, so you can put lookups or
conditions there. When the right-hand side evaluates to “0” or “false”, no scanning is done and the
condition fails immediately.

Scanning with SpamAssassin uses a lot of resources. If you scan every message, large ones may cause
significant performance degradation. As most spam messages are quite small, it is recommended that
you do not scan the big ones. For example:

deny condition = ${if < {$message_size}{10K}}
 spam = nobody
 message = This message was classified as SPAM

The spam condition returns true if the threshold specified in the user’s SpamAssassin profile has been
matched or exceeded. If you want to use the spam condition for its side effects (see the variables
below), you can make it always return “true” by appending :true to the username.

When the spam condition is run, it sets up a number of expansion variables. Except for $spam_
report, these variables are saved with the received message so are available for use at delivery time.

433 Content scanning at ACL time (45)

$spam_score
The spam score of the message, for example, “3.4” or “30.5”. This is useful for inclusion in log or
reject messages.

$spam_score_int
The spam score of the message, multiplied by ten, as an integer value. For example “34” or “305”.
It may appear to disagree with $spam_score because $spam_score is rounded and $spam_score_
int is truncated. The integer value is useful for numeric comparisons in conditions.

$spam_bar
A string consisting of a number of “+” or “-” characters, representing the integer part of the spam
score value. A spam score of 4.4 would have a $spam_bar value of “++++”. This is useful for
inclusion in warning headers, since MUAs can match on such strings. The maximum length of the
spam bar is 50 characters.

$spam_report
A multiline text table, containing the full SpamAssassin report for the message. Useful for
inclusion in headers or reject messages. This variable is only usable in a DATA-time ACL. Beware
that SpamAssassin may return non-ASCII characters, especially when running in country-specific
locales, which are not legal unencoded in headers.

$spam_action
For SpamAssassin either ’reject’ or ’no action’ depending on the spam score versus threshold. For
Rspamd, the recommended action.

The spam condition caches its results unless expansion in spamd_address was used. If you call it
again with the same user name, it does not scan again, but rather returns the same values as before.

The spam condition returns DEFER if there is any error while running the message through
SpamAssassin or if the expansion of spamd_address failed. If you want to treat DEFER as FAIL (to
pass on to the next ACL statement block), append /defer_ok to the right-hand side of the spam
condition, like this:

deny spam = joe/defer_ok
 message = This message was classified as SPAM

This causes messages to be accepted even if there is a problem with spamd.

Here is a longer, commented example of the use of the spam condition:

put headers in all messages (no matter if spam or not)
warn spam = nobody:true
 add_header = X-Spam-Score: $spam_score ($spam_bar)
 add_header = X-Spam-Report: $spam_report

add second subject line with *SPAM* marker when message
is over threshold
warn spam = nobody
 add_header = Subject: *SPAM* $h_Subject:

reject spam at high scores (> 12)
deny spam = nobody:true
 condition = ${if >{$spam_score_int}{120}{1}{0}}
 message = This message scored $spam_score spam points.

45.4 Scanning MIME parts

The acl_smtp_mime global option specifies an ACL that is called once for each MIME part of an
SMTP message, including multipart types, in the sequence of their position in the message. Similarly,
the acl_not_smtp_mime option specifies an ACL that is used for the MIME parts of non-SMTP
messages. These options may both refer to the same ACL if you want the same processing in both
cases.

434 Content scanning at ACL time (45)

These ACLs are called (possibly many times) just before the acl_smtp_data ACL in the case of an
SMTP message, or just before the acl_not_smtp ACL in the case of a non-SMTP message. However,
a MIME ACL is called only if the message contains a Content-Type: header line. When a call to a
MIME ACL does not yield “accept”, ACL processing is aborted and the appropriate result code is
sent to the client. In the case of an SMTP message, the acl_smtp_data ACL is not called when this
happens.

You cannot use the malware or spam conditions in a MIME ACL; these can only be used in the
DATA or non-SMTP ACLs. However, you can use the regex condition to match against the raw
MIME part. You can also use the mime_regex condition to match against the decoded MIME part
(see section 45.5).

At the start of a MIME ACL, a number of variables are set from the header information for the
relevant MIME part. These are described below. The contents of the MIME part are not by default
decoded into a disk file except for MIME parts whose content-type is “message/rfc822”. If you want
to decode a MIME part into a disk file, you can use the decode condition. The general syntax is:

decode = [/<path>/]<filename>

The right hand side is expanded before use. After expansion, the value can be:

(1) “0” or “false”, in which case no decoding is done.

(2) The string “default”. In that case, the file is put in the temporary “default” directory
<spool_directory>/scan/<message_id>/ with a sequential filename consisting of the message id
and a sequence number. The full path and name is available in $mime_decoded_filename after
decoding.

(3) A full path name starting with a slash. If the full name is an existing directory, it is used as a
replacement for the default directory. The filename is then sequentially assigned. If the path does
not exist, it is used as the full path and filename.

(4) If the string does not start with a slash, it is used as the filename, and the default path is then
used.

The decode condition normally succeeds. It is only false for syntax errors or unusual circumstances
such as memory shortages.

The variable $mime_filename will have the suggested name for the file. Note however that this might
contain anything, and is very difficult to safely use as all or even part of the filename.

If you place files outside of the default path, they are not automatically unlinked.

For RFC822 attachments (these are messages attached to messages, with a content-type of
“message/rfc822”), the ACL is called again in the same manner as for the primary message, only that
the $mime_is_rfc822 expansion variable is set (see below). Attached messages are always decoded to
disk before being checked, and the files are unlinked once the check is done.

The MIME ACL supports the regex and mime_regex conditions. These can be used to match regular
expressions against raw and decoded MIME parts, respectively. They are described in section 45.5.

The following list describes all expansion variables that are available in the MIME ACL:

$mime_anomaly_level
$mime_anomaly_text

If there are problems decoding, these variables contain information on the detected issue.

$mime_boundary
If the current part is a multipart (see $mime_is_multipart below), it should have a boundary string,
which is stored in this variable. If the current part has no boundary parameter in the Content-Type:
header, this variable contains the empty string.

$mime_charset
This variable contains the character set identifier, if one was found in the Content-Type: header.
Examples for charset identifiers are:

435 Content scanning at ACL time (45)

us-ascii
gb2312 (Chinese)
iso-8859-1

Please note that this value is not normalized, so you should do matches case-insensitively.

$mime_content_description
This variable contains the normalized content of the Content-Description: header. It can contain a
human-readable description of the parts content. Some implementations repeat the filename for
attachments here, but they are usually only used for display purposes.

$mime_content_disposition
This variable contains the normalized content of the Content-Disposition: header. You can expect
strings like “attachment” or “inline” here.

$mime_content_id
This variable contains the normalized content of the Content-ID: header. This is a unique ID that
can be used to reference a part from another part.

$mime_content_size
This variable is set only after the decode modifier (see above) has been successfully run. It
contains the size of the decoded part in kilobytes. The size is always rounded up to full kilobytes,
so only a completely empty part has a $mime_content_size of zero.

$mime_content_transfer_encoding
This variable contains the normalized content of the Content-transfer-encoding: header. This is a
symbolic name for an encoding type. Typical values are “base64” and “quoted-printable”.

$mime_content_type
If the MIME part has a Content-Type: header, this variable contains its value, lowercased, and
without any options (like “name” or “charset”). Here are some examples of popular MIME types,
as they may appear in this variable:

text/plain
text/html
application/octet-stream
image/jpeg
audio/midi

If the MIME part has no Content-Type: header, this variable contains the empty string.

$mime_decoded_filename
This variable is set only after the decode modifier (see above) has been successfully run. It
contains the full path and filename of the file containing the decoded data.

$mime_filename
This is perhaps the most important of the MIME variables. It contains a proposed filename for an
attachment, if one was found in either the Content-Type: or Content-Disposition: headers. The
filename will be RFC2047 or RFC2231 decoded, but no additional sanity checks are done. If no
filename was found, this variable contains the empty string.

$mime_is_coverletter
This variable attempts to differentiate the “cover letter” of an e-mail from attached data. It can be
used to clamp down on flashy or unnecessarily encoded content in the cover letter, while not
restricting attachments at all.

The variable contains 1 (true) for a MIME part believed to be part of the cover letter, and 0 (false)
for an attachment. At present, the algorithm is as follows:

(1) The outermost MIME part of a message is always a cover letter.

(2) If a multipart/alternative or multipart/related MIME part is a cover letter, so are all MIME
subparts within that multipart.

(3) If any other multipart is a cover letter, the first subpart is a cover letter, and the rest are
attachments.

436 Content scanning at ACL time (45)

(4) All parts contained within an attachment multipart are attachments.

As an example, the following will ban “HTML mail” (including that sent with alternative plain
text), while allowing HTML files to be attached. HTML coverletter mail attached to non-HTML
coverletter mail will also be allowed:

deny !condition = $mime_is_rfc822
 condition = $mime_is_coverletter
 condition = ${if eq{$mime_content_type}{text/html}{1}{0}}
 message = HTML mail is not accepted here

$mime_is_multipart
This variable has the value 1 (true) when the current part has the main type “multipart”, for
example, “multipart/alternative” or “multipart/mixed”. Since multipart entities only serve as con-
tainers for other parts, you may not want to carry out specific actions on them.

$mime_is_rfc822
This variable has the value 1 (true) if the current part is not a part of the checked message itself,
but part of an attached message. Attached message decoding is fully recursive.

$mime_part_count
This variable is a counter that is raised for each processed MIME part. It starts at zero for the very
first part (which is usually a multipart). The counter is per-message, so it is reset when processing
RFC822 attachments (see $mime_is_rfc822). The counter stays set after acl_smtp_mime is com-
plete, so you can use it in the DATA ACL to determine the number of MIME parts of a message.
For non-MIME messages, this variable contains the value -1.

45.5 Scanning with regular expressions

You can specify your own custom regular expression matches on the full body of the message, or on
individual MIME parts.

The regex condition takes one or more regular expressions as arguments and matches them against
the full message (when called in the DATA ACL) or a raw MIME part (when called in the MIME
ACL). The regex condition matches linewise, with a maximum line length of 32K characters. That
means you cannot have multiline matches with the regex condition.

The mime_regex condition can be called only in the MIME ACL. It matches up to 32K of decoded
content (the whole content at once, not linewise). If the part has not been decoded with the decode
modifier earlier in the ACL, it is decoded automatically when mime_regex is executed (using default
path and filename values). If the decoded data is larger than 32K, only the first 32K characters are
checked.

The regular expressions are passed as a colon-separated list. To include a literal colon, you must
double it. Since the whole right-hand side string is expanded before being used, you must also escape
dollar signs and backslashes with more backslashes, or use the \N facility to disable expansion. Here
is a simple example that contains two regular expressions:

deny regex = [Mm]ortgage : URGENT BUSINESS PROPOSAL
 message = contains blacklisted regex ($regex_match_string)

The conditions returns true if any one of the regular expressions matches. The $regex_match_string
expansion variable is then set up and contains the matching regular expression. The expansion vari-
ables $regex1 $regex2 etc are set to any substrings captured by the regular expression.

Warning: With large messages, these conditions can be fairly CPU-intensive.

437 Content scanning at ACL time (45)

46. Adding a local scan function to Exim

In these days of email worms, viruses, and ever-increasing spam, some sites want to apply a lot of
checking to messages before accepting them.

The content scanning extension (chapter 45) has facilities for passing messages to external virus and
spam scanning software. You can also do a certain amount in Exim itself through string expansions
and the condition condition in the ACL that runs after the SMTP DATA command or the ACL for
non-SMTP messages (see chapter 44), but this has its limitations.

To allow for further customization to a site’s own requirements, there is the possibility of linking
Exim with a private message scanning function, written in C. If you want to run code that is written in
something other than C, you can of course use a little C stub to call it.

The local scan function is run once for every incoming message, at the point when Exim is just about
to accept the message. It can therefore be used to control non-SMTP messages from local processes
as well as messages arriving via SMTP.

Exim applies a timeout to calls of the local scan function, and there is an option called local_scan_
timeout for setting it. The default is 5 minutes. Zero means “no timeout”. Exim also sets up signal
handlers for SIGSEGV, SIGILL, SIGFPE, and SIGBUS before calling the local scan function, so that
the most common types of crash are caught. If the timeout is exceeded or one of those signals is
caught, the incoming message is rejected with a temporary error if it is an SMTP message. For a
non-SMTP message, the message is dropped and Exim ends with a non-zero code. The incident is
logged on the main and reject logs.

46.1 Building Exim to use a local scan function

To make use of the local scan function feature, you must tell Exim where your function is before
building Exim, by setting both HAVE_LOCAL_SCAN and LOCAL_SCAN_SOURCE in your
Local/Makefile. A recommended place to put it is in the Local directory, so you might set

HAVE_LOCAL_SCAN=yes
LOCAL_SCAN_SOURCE=Local/local_scan.c

for example. The function must be called local_scan(); the source file(s) for it should first #define
LOCAL_SCAN and then #include "local_scan.h". It is called by Exim after it has received a message,
when the success return code is about to be sent. This is after all the ACLs have been run. The return
code from your function controls whether the message is actually accepted or not. There is a com-
mented template function (that just accepts the message) in the file _src/local_scan.c_.

If you want to make use of Exim’s runtime configuration file to set options for your local_scan()
function, you must also set

LOCAL_SCAN_HAS_OPTIONS=yes

in Local/Makefile (see section 46.3 below).

46.2 API for local_scan()

You must include this line near the start of your code:

#define LOCAL_SCAN
#include "local_scan.h"

This header file defines a number of variables and other values, and the prototype for the function
itself. Exim is coded to use unsigned char values almost exclusively, and one of the things this header
defines is a shorthand for unsigned char called uschar. It also makes available the following
macro definitions, to simplify casting character strings and pointers to character strings:

#define CS (char *)
#define CCS (const char *)
#define CSS (char **)

438 Local scan function (46)

#define US (unsigned char *)
#define CUS (const unsigned char *)
#define USS (unsigned char **)

The function prototype for local_scan() is:

extern int local_scan(int fd, uschar **return_text);

The arguments are as follows:

• fd is a file descriptor for the file that contains the body of the message (the -D file). The file is open
for reading and writing, but updating it is not recommended. Warning: You must not close this file
descriptor.

The descriptor is positioned at character 26 of the file, which is the first character of the body itself,
because the first 26 characters (19 characters before Exim 4.97) are the message id followed by -D
and a newline. If you rewind the file, you should use the macro SPOOL_DATA_START_OFFSET
to reset to the start of the data, just in case this changes in some future version.

• return_text is an address which you can use to return a pointer to a text string at the end of the
function. The value it points to on entry is NULL.

The function must return an int value which is one of the following macros:

LOCAL_SCAN_ACCEPT
The message is accepted. If you pass back a string of text, it is saved with the message, and made
available in the variable $local_scan_data. No newlines are permitted (if there are any, they are
turned into spaces) and the maximum length of text is 1000 characters.

LOCAL_SCAN_ACCEPT_FREEZE
This behaves as LOCAL_SCAN_ACCEPT, except that the accepted message is queued without
immediate delivery, and is frozen.

LOCAL_SCAN_ACCEPT_QUEUE
This behaves as LOCAL_SCAN_ACCEPT, except that the accepted message is queued without
immediate delivery.

LOCAL_SCAN_REJECT
The message is rejected; the returned text is used as an error message which is passed back to the
sender and which is also logged. Newlines are permitted – they cause a multiline response for
SMTP rejections, but are converted to \n in log lines. If no message is given, “Administrative
prohibition” is used.

LOCAL_SCAN_TEMPREJECT
The message is temporarily rejected; the returned text is used as an error message as for LOCAL_
SCAN_REJECT. If no message is given, “Temporary local problem” is used.

LOCAL_SCAN_REJECT_NOLOGHDR
This behaves as LOCAL_SCAN_REJECT, except that the header of the rejected message is not
written to the reject log. It has the effect of unsetting the rejected_header log selector for just this
rejection. If rejected_header is already unset (see the discussion of the log_selection option in
section 53.15), this code is the same as LOCAL_SCAN_REJECT.

LOCAL_SCAN_TEMPREJECT_NOLOGHDR
This code is a variation of LOCAL_SCAN_TEMPREJECT in the same way that LOCAL_SCAN_
REJECT_NOLOGHDR is a variation of LOCAL_SCAN_REJECT.

If the message is not being received by interactive SMTP, rejections are reported by writing to stderr
or by sending an email, as configured by the -oe command line options.

46.3 Configuration options for local_scan()

It is possible to have option settings in the main configuration file that set values in static variables in
the local_scan() module. If you want to do this, you must have the line

LOCAL_SCAN_HAS_OPTIONS=yes

439 Local scan function (46)

in your Local/Makefile when you build Exim. (This line is in OS/Makefile-Default, commented out).
Then, in the local_scan() source file, you must define static variables to hold the option values, and a
table to define them.

The table must be a vector called local_scan_options, of type optionlist. Each entry is a triplet,
consisting of a name, an option type, and a pointer to the variable that holds the value. The entries
must appear in alphabetical order. Following local_scan_options you must also define a variable
called local_scan_options_count that contains the number of entries in the table. Here is a short
example, showing two kinds of option:

static int my_integer_option = 42;
static uschar *my_string_option = US"a default string";

optionlist local_scan_options[] = {
 { "my_integer", opt_int, &my_integer_option },
 { "my_string", opt_stringptr, &my_string_option }
};

int local_scan_options_count =
 sizeof(local_scan_options)/sizeof(optionlist);

The values of the variables can now be changed from Exim’s runtime configuration file by including a
local scan section as in this example:

begin local_scan
my_integer = 99
my_string = some string of text...

The available types of option data are as follows:

opt_bool
This specifies a boolean (true/false) option. The address should point to a variable of type BOOL,
which will be set to TRUE or FALSE, which are macros that are defined as “1” and “0”, respect-
ively. If you want to detect whether such a variable has been set at all, you can initialize it to
TRUE_UNSET. (BOOL variables are integers underneath, so can hold more than two values.)

opt_fixed
This specifies a fixed point number, such as is used for load averages. The address should point to
a variable of type int. The value is stored multiplied by 1000, so, for example, 1.4142 is trunc-
ated and stored as 1414.

opt_int
This specifies an integer; the address should point to a variable of type int. The value may be
specified in any of the integer formats accepted by Exim.

opt_mkint
This is the same as opt_int, except that when such a value is output in a -bP listing, if it is an exact
number of kilobytes or megabytes, it is printed with the suffix K or M.

opt_octint
This also specifies an integer, but the value is always interpreted as an octal integer, whether or not
it starts with the digit zero, and it is always output in octal.

opt_stringptr
This specifies a string value; the address must be a pointer to a variable that points to a string (for
example, of type uschar *).

opt_time
This specifies a time interval value. The address must point to a variable of type int. The value
that is placed there is a number of seconds.

If the -bP command line option is followed by local_scan, Exim prints out the values of all the
local_scan() options.

440 Local scan function (46)

46.4 Available Exim variables

The header local_scan.h gives you access to a number of C variables. These are the only ones that are
guaranteed to be maintained from release to release. Note, however, that you can obtain the value of
any Exim expansion variable, including $recipients, by calling expand_string(). The exported C
variables are as follows:

int body_linecount
This variable contains the number of lines in the message’s body. It is not valid if the spool_
wireformat option is used.

int body_zerocount
This variable contains the number of binary zero bytes in the message’s body. It is not valid if the
spool_wireformat option is used.

unsigned int debug_selector
This variable is set to zero when no debugging is taking place. Otherwise, it is a bitmap of
debugging selectors. Two bits are identified for use in local_scan(); they are defined as macros:

• The D_v bit is set when -v was present on the command line. This is a testing option that is not
privileged – any caller may set it. All the other selector bits can be set only by admin users.

• The D_local_scan bit is provided for use by local_scan(); it is set by the +local_scan
debug selector. It is not included in the default set of debugging bits.

Thus, to write to the debugging output only when +local_scan has been selected, you should
use code like this:

if ((debug_selector & D_local_scan) != 0)
 debug_printf("xxx", ...);

uschar *expand_string_message
After a failing call to expand_string() (returned value NULL), the variable expand_string_mess-
age contains the error message, zero-terminated.

header_line *header_list
A pointer to a chain of header lines. The header_line structure is discussed below.

header_line *header_last
A pointer to the last of the header lines.

const uschar *headers_charset
The value of the headers_charset configuration option.

BOOL host_checking
This variable is TRUE during a host checking session that is initiated by the -bh command line
option.

uschar *interface_address
The IP address of the interface that received the message, as a string. This is NULL for locally
submitted messages.

int interface_port
The port on which this message was received. When testing with the -bh command line option, the
value of this variable is -1 unless a port has been specified via the -oMi option.

uschar *message_id
This variable contains Exim’s message id for the incoming message (the value of $message_exim_
id) as a zero-terminated string.

uschar *received_protocol
The name of the protocol by which the message was received.

int recipients_count
The number of accepted recipients.

441 Local scan function (46)

recipient_item *recipients_list
The list of accepted recipients, held in a vector of length recipients_count. The recipient_item
structure is discussed below. You can add additional recipients by calling receive_add_recipient()
(see below). You can delete recipients by removing them from the vector and adjusting the value in
recipients_count. In particular, by setting recipients_count to zero you remove all recipients. If
you then return the value LOCAL_SCAN_ACCEPT, the message is accepted, but immediately
blackholed. To replace the recipients, you can set recipients_count to zero and then call
receive_add_recipient() as often as needed.

uschar *sender_address
The envelope sender address. For bounce messages this is the empty string.

uschar *sender_host_address
The IP address of the sending host, as a string. This is NULL for locally-submitted messages.

uschar *sender_host_authenticated
The name of the authentication mechanism that was used, or NULL if the message was not
received over an authenticated SMTP connection.

uschar *sender_host_name
The name of the sending host, if known.

int sender_host_port
The port on the sending host.

BOOL smtp_input
This variable is TRUE for all SMTP input, including BSMTP.

BOOL smtp_batched_input
This variable is TRUE for BSMTP input.

int store_pool
The contents of this variable control which pool of memory is used for new requests. See section
46.8 for details.

46.5 Structure of header lines

The header_line structure contains the members listed below. You can add additional header lines by
calling the header_add() function (see below). You can cause header lines to be ignored (deleted) by
setting their type to *.

struct header_line *next
A pointer to the next header line, or NULL for the last line.

int type
A code identifying certain headers that Exim recognizes. The codes are printing characters, and
are documented in chapter 57 of this manual. Notice in particular that any header line whose type
is * is not transmitted with the message. This flagging is used for header lines that have been
rewritten, or are to be removed (for example, Envelope-sender: header lines.) Effectively, * means
“deleted”.

int slen
The number of characters in the header line, including the terminating and any internal newlines.

uschar *text
A pointer to the text of the header. It always ends with a newline, followed by a zero byte. Internal
newlines are preserved.

46.6 Structure of recipient items

The recipient_item structure contains these members:

uschar *address
This is a pointer to the recipient address as it was received.

442 Local scan function (46)

int pno
This is used in later Exim processing when top level addresses are created by the one_time option.
It is not relevant at the time local_scan() is run and must always contain -1 at this stage.

uschar *errors_to
If this value is not NULL, bounce messages caused by failing to deliver to the recipient are sent to
the address it contains. In other words, it overrides the envelope sender for this one recipient.
(Compare the errors_to generic router option.) If a local_scan() function sets an errors_to field
to an unqualified address, Exim qualifies it using the domain from qualify_recipient. When
local_scan() is called, the errors_to field is NULL for all recipients.

46.7 Available Exim functions

The header local_scan.h gives you access to a number of Exim functions. These are the only ones that
are guaranteed to be maintained from release to release:

pid_t child_open(uschar **argv, uschar **envp, int newumask, int *infdptr, int *outfdptr,
 BOOL make_leader)

This function creates a child process that runs the command specified by argv. The environment
for the process is specified by envp, which can be NULL if no environment variables are to be
passed. A new umask is supplied for the process in newumask.

Pipes to the standard input and output of the new process are set up and returned to the caller via
the infdptr and outfdptr arguments. The standard error is cloned to the standard output. If there
are any file descriptors “in the way” in the new process, they are closed. If the final argument is
TRUE, the new process is made into a process group leader.

The function returns the pid of the new process, or -1 if things go wrong.

int child_close(pid_t pid, int timeout)
This function waits for a child process to terminate, or for a timeout (in seconds) to expire. A
timeout value of zero means wait as long as it takes. The return value is as follows:

• >= 0

The process terminated by a normal exit and the value is the process ending status.

• < 0 and > –256

The process was terminated by a signal and the value is the negation of the signal number.

• –256

The process timed out.

• –257

The was some other error in wait(); errno is still set.

pid_t child_open_exim(int *fd)
This function provide you with a means of submitting a new message to Exim. (Of course, you can
also call /usr/sbin/sendmail yourself if you want, but this packages it all up for you.) The function
creates a pipe, forks a subprocess that is running

exim -t -oem -oi -f <>

and returns to you (via the int * argument) a file descriptor for the pipe that is connected to the
standard input. The yield of the function is the PID of the subprocess. You can then write a
message to the file descriptor, with recipients in To:, Cc:, and/or Bcc: header lines.

When you have finished, call child_close() to wait for the process to finish and to collect its ending
status. A timeout value of zero is usually fine in this circumstance. Unless you have made a
mistake with the recipient addresses, you should get a return code of zero.

pid_t child_open_exim2(int *fd, uschar *sender, uschar *sender_authentication)
This function is a more sophisticated version of child_open(). The command that it runs is:

443 Local scan function (46)

exim -t -oem -oi -f sender -oMas sender_authentication

The third argument may be NULL, in which case the -oMas option is omitted.

void debug_printf(char *, ...)
This is Exim’s debugging function, with arguments as for (printf(). The output is written to the
standard error stream. If no debugging is selected, calls to debug_printf() have no effect. Normally,
you should make calls conditional on the local_scan debug selector by coding like this:

if ((debug_selector & D_local_scan) != 0)
 debug_printf("xxx", ...);

uschar *expand_string(uschar *string)
This is an interface to Exim’s string expansion code. The return value is the expanded string, or
NULL if there was an expansion failure. The C variable expand_string_message contains an
error message after an expansion failure. If expansion does not change the string, the return value
is the pointer to the input string. Otherwise, the return value points to a new block of memory that
was obtained by a call to store_get(). See section 46.8 below for a discussion of memory handling.

void header_add(int type, char *format, ...)
This function allows you to an add additional header line at the end of the existing ones. The first
argument is the type, and should normally be a space character. The second argument is a format
string and any number of substitution arguments as for sprintf(). You may include internal
newlines if you want, and you must ensure that the string ends with a newline.

void header_add_at_position(BOOL after, uschar *name, BOOL topnot, int type, char *format,
 ...)

This function adds a new header line at a specified point in the header chain. The header itself is
specified as for header_add().

If name is NULL, the new header is added at the end of the chain if after is true, or at the start if
after is false. If name is not NULL, the header lines are searched for the first non-deleted header
that matches the name. If one is found, the new header is added before it if after is false. If after is
true, the new header is added after the found header and any adjacent subsequent ones with the
same name (even if marked “deleted”). If no matching non-deleted header is found, the topnot
option controls where the header is added. If it is true, addition is at the top; otherwise at the
bottom. Thus, to add a header after all the Received: headers, or at the top if there are no Received:
headers, you could use

header_add_at_position(TRUE, US"Received", TRUE,
 ' ', "X-xxx: ...");

Normally, there is always at least one non-deleted Received: header, but there may not be if
received_header_text expands to an empty string.

void header_remove(int occurrence, uschar *name)
This function removes header lines. If occurrence is zero or negative, all occurrences of the
header are removed. If occurrence is greater than zero, that particular instance of the header is
removed. If no header(s) can be found that match the specification, the function does nothing.

BOOL header_testname(header_line *hdr, uschar *name, int length, BOOL notdel)
This function tests whether the given header has the given name. It is not just a string comparison,
because white space is permitted between the name and the colon. If the notdel argument is true,
a false return is forced for all “deleted” headers; otherwise they are not treated specially. For
example:

if (header_testname(h, US"X-Spam", 6, TRUE)) ...

uschar *lss_b64encode(uschar *cleartext, int length)
This function base64-encodes a string, which is passed by address and length. The text may
contain bytes of any value, including zero. The result is passed back in dynamic memory that is
obtained by calling store_get(). It is zero-terminated.

444 Local scan function (46)

int lss_b64decode(uschar *codetext, uschar **cleartext)
This function decodes a base64-encoded string. Its arguments are a zero-terminated base64-
encoded string and the address of a variable that is set to point to the result, which is in dynamic
memory. The length of the decoded string is the yield of the function. If the input is invalid base64
data, the yield is -1. A zero byte is added to the end of the output string to make it easy to interpret
as a C string (assuming it contains no zeros of its own). The added zero byte is not included in the
returned count.

int lss_match_domain(uschar *domain, uschar *list)
This function checks for a match in a domain list. Domains are always matched caselessly. The
return value is one of the following:

 OK match succeeded
 FAIL match failed
 DEFER match deferred

DEFER is usually caused by some kind of lookup defer, such as the inability to contact a database.

int lss_match_local_part(uschar *localpart, uschar *list, BOOL caseless)
This function checks for a match in a local part list. The third argument controls case-sensitivity.
The return values are as for lss_match_domain().

int lss_match_address(uschar *address, uschar *list, BOOL caseless)
This function checks for a match in an address list. The third argument controls the case-sensitivity
of the local part match. The domain is always matched caselessly. The return values are as for
lss_match_domain().

int lss_match_host(uschar *host_name, uschar *host_address, uschar *list)
This function checks for a match in a host list. The most common usage is expected to be

lss_match_host(sender_host_name, sender_host_address, ...)

An empty address field matches an empty item in the host list. If the host name is NULL, the name
corresponding to $sender_host_address is automatically looked up if a host name is required to
match an item in the list. The return values are as for lss_match_domain(), but in addition,
lss_match_host() returns ERROR in the case when it had to look up a host name, but the lookup
failed.

void log_write(unsigned int selector, int which, char *format, ...)
This function writes to Exim’s log files. The first argument should be zero (it is concerned with
log_selector). The second argument can be LOG_MAIN or LOG_REJECT or LOG_PANIC or the
inclusive “or” of any combination of them. It specifies to which log or logs the message is written.
The remaining arguments are a format and relevant insertion arguments. The string should not
contain any newlines, not even at the end.

void receive_add_recipient(uschar *address, int pno)
This function adds an additional recipient to the message. The first argument is the recipient
address. If it is unqualified (has no domain), it is qualified with the qualify_recipient domain. The
second argument must always be -1.

This function does not allow you to specify a private errors_to address (as described with the
structure of recipient_item above), because it pre-dates the addition of that field to the structure.
However, it is easy to add such a value afterwards. For example:

receive_add_recipient(US"monitor@mydom.example", -1);
recipients_list[recipients_count-1].errors_to =
 US"postmaster@mydom.example";

BOOL receive_remove_recipient(uschar *recipient)
This is a convenience function to remove a named recipient from the list of recipients. It returns
true if a recipient was removed, and false if no matching recipient could be found. The argument
must be a complete email address.

445 Local scan function (46)

uschar rfc2047_decode(uschar *string, BOOL lencheck, uschar *target, int zeroval, int *lenptr,
 uschar **error)

This function decodes strings that are encoded according to RFC 2047. Typically these are the
contents of header lines. First, each “encoded word” is decoded from the Q or B encoding into a
byte-string. Then, if provided with the name of a charset encoding, and if the iconv() function is
available, an attempt is made to translate the result to the named character set. If this fails, the
binary string is returned with an error message.

The first argument is the string to be decoded. If lencheck is TRUE, the maximum MIME word
length is enforced. The third argument is the target encoding, or NULL if no translation is wanted.

If a binary zero is encountered in the decoded string, it is replaced by the contents of the zeroval
argument. For use with Exim headers, the value must not be 0 because header lines are handled as
zero-terminated strings.

The function returns the result of processing the string, zero-terminated; if lenptr is not NULL, the
length of the result is set in the variable to which it points. When zeroval is 0, lenptr should not be
NULL.

If an error is encountered, the function returns NULL and uses the error argument to return an
error message. The variable pointed to by error is set to NULL if there is no error; it may be set
non-NULL even when the function returns a non-NULL value if decoding was successful, but
there was a problem with translation.

int smtp_fflush(void)
This function is used in conjunction with smtp_printf(), as described below.

void smtp_printf(char *,BOOL, ...)
The arguments of this function are almost like printf(); it writes to the SMTP output stream. You
should use this function only when there is an SMTP output stream, that is, when the incoming
message is being received via interactive SMTP. This is the case when smtp_input is TRUE and
smtp_batched_input is FALSE. If you want to test for an incoming message from another host
(as opposed to a local process that used the -bs command line option), you can test the value of
sender_host_address, which is non-NULL when a remote host is involved.

If an SMTP TLS connection is established, smtp_printf() uses the TLS output function, so it can
be used for all forms of SMTP connection.

The second argument is used to request that the data be buffered (when TRUE) or flushed (along
with any previously buffered, when FALSE). This is advisory only, but likely to save on system-
calls and packets sent when a sequence of calls to the function are made.

The argument was added in Exim version 4.90 - changing the API/ABI. Nobody noticed until 4.93
was imminent, at which point the ABI version number was incremented.

Strings that are written by smtp_printf() from within local_scan() must start with an appropriate
response code: 550 if you are going to return LOCAL_SCAN_REJECT, 451 if you are going to
return LOCAL_SCAN_TEMPREJECT, and 250 otherwise. Because you are writing the initial
lines of a multi-line response, the code must be followed by a hyphen to indicate that the line is not
the final response line. You must also ensure that the lines you write terminate with CRLF. For
example:

smtp_printf("550-this is some extra info\r\n");
return LOCAL_SCAN_REJECT;

Note that you can also create multi-line responses by including newlines in the data returned via
the return_text argument. The added value of using smtp_printf() is that, for instance, you could
introduce delays between multiple output lines.

The smtp_printf() function does not return any error indication, because it does not guarantee a
flush of pending output, and therefore does not test the state of the stream. (In the main code of
Exim, flushing and error detection is done when Exim is ready for the next SMTP input com-
mand.) If you want to flush the output and check for an error (for example, the dropping of a

446 Local scan function (46)

TCP/IP connection), you can call smtp_fflush(), which has no arguments. It flushes the output
stream, and returns a non-zero value if there is an error.

void *store_get(int,BOOL)
This function accesses Exim’s internal store (memory) manager. It gets a new chunk of memory
whose size is given by the first argument. The second argument should be given as TRUE if the
memory will be used for data possibly coming from an attacker (eg. the message content), FALSE
if it is locally-sourced. Exim bombs out if it ever runs out of memory. See the next section for a
discussion of memory handling.

void *store_get_perm(int,BOOL)
This function is like store_get(), but it always gets memory from the permanent pool. See the next
section for a discussion of memory handling.

uschar *string_copy(uschar *string)
See below.

uschar *string_copyn(uschar *string, int length)
See below.

uschar *string_sprintf(char *format, ...)
These three functions create strings using Exim’s dynamic memory facilities. The first makes a
copy of an entire string. The second copies up to a maximum number of characters, indicated by
the second argument. The third uses a format and insertion arguments to create a new string. In
each case, the result is a pointer to a new string in the current memory pool. See the next section
for more discussion.

46.8 More about Exim’s memory handling

No function is provided for freeing memory, because that is never needed. The dynamic memory that
Exim uses when receiving a message is automatically recycled if another message is received by the
same process (this applies only to incoming SMTP connections – other input methods can supply
only one message at a time). After receiving the last message, a reception process terminates.

Because it is recycled, the normal dynamic memory cannot be used for holding data that must be
preserved over a number of incoming messages on the same SMTP connection. However, Exim in
fact uses two pools of dynamic memory; the second one is not recycled, and can be used for this
purpose.

If you want to allocate memory that remains available for subsequent messages in the same SMTP
connection, you should set

store_pool = POOL_PERM

before calling the function that does the allocation. There is no need to restore the value if you do not
need to; however, if you do want to revert to the normal pool, you can either restore the previous
value of store_pool or set it explicitly to POOL_MAIN.

The pool setting applies to all functions that get dynamic memory, including expand_string(),
store_get(), and the string_xxx() functions. There is also a convenience function called
store_get_perm() that gets a block of memory from the permanent pool while preserving the value of
store_pool.

447 Local scan function (46)

47. System-wide message filtering

The previous chapters (on ACLs and the local scan function) describe checks that can be applied to
messages before they are accepted by a host. There is also a mechanism for checking messages once
they have been received, but before they are delivered. This is called the system filter.

The system filter operates in a similar manner to users’ filter files, but it is run just once per message
(however many recipients the message has). It should not normally be used as a substitute for routing,
because deliver commands in a system router provide new envelope recipient addresses. The system
filter must be an Exim filter. It cannot be a Sieve filter.

The system filter is run at the start of a delivery attempt, before any routing is done. If a message fails
to be completely delivered at the first attempt, the system filter is run again at the start of every retry.
If you want your filter to do something only once per message, you can make use of the first_
delivery condition in an if command in the filter to prevent it happening on retries.

Warning: Because the system filter runs just once, variables that are specific to individual recipient
addresses, such as $local_part and $domain, are not set, and the “personal” condition is not meaning-
ful. If you want to run a centrally-specified filter for each recipient address independently, you can do
so by setting up a suitable redirect router, as described in section 47.8 below.

47.1 Specifying a system filter

The name of the file that contains the system filter must be specified by setting system_filter. If you
want the filter to run under a uid and gid other than root, you must also set system_filter_user and
system_filter_group as appropriate. For example:

system_filter = /etc/mail/exim.filter
system_filter_user = exim

If a system filter generates any deliveries directly to files or pipes (via the save or pipe commands),
transports to handle these deliveries must be specified by setting system_filter_file_transport and
system_filter_pipe_transport, respectively. Similarly, system_filter_reply_transport must be set to
handle any messages generated by the reply command.

47.2 Testing a system filter

You can run simple tests of a system filter in the same way as for a user filter, but you should use -bF
rather than -bf, so that features that are permitted only in system filters are recognized.

If you want to test the combined effect of a system filter and a user filter, you can use both -bF and
-bf on the same command line.

47.3 Contents of a system filter

The language used to specify system filters is the same as for users’ filter files. It is described in the
separate end-user document Exim’s interface to mail filtering. However, there are some additional
features that are available only in system filters; these are described in subsequent sections. If they are
encountered in a user’s filter file or when testing with -bf, they cause errors.

There are two special conditions which, though available in users’ filter files, are designed for use in
system filters. The condition first_delivery is true only for the first attempt at delivering a message,
and manually_thawed is true only if the message has been frozen, and subsequently thawed by an
admin user. An explicit forced delivery counts as a manual thaw, but thawing as a result of the auto_
thaw setting does not.

Warning: If a system filter uses the first_delivery condition to specify an “unseen” (non-significant)
delivery, and that delivery does not succeed, it will not be tried again. If you want Exim to retry an
unseen delivery until it succeeds, you should arrange to set it up every time the filter runs.

448 System-wide message filtering (47)

When a system filter finishes running, the values of the variables $n0 – $n9 are copied into $sn0 –
$sn9 and are thereby made available to users’ filter files. Thus a system filter can, for example, set up
“scores” to which users’ filter files can refer.

47.4 Additional variable for system filters

The expansion variable $recipients, containing a list of all the recipients of the message (separated by
commas and white space), is available in system filters. It is not available in users’ filters for privacy
reasons.

47.5 Defer, freeze, and fail commands for system filters

There are three extra commands (defer, freeze and fail) which are always available in system filters,
but are not normally enabled in users’ filters. (See the allow_defer, allow_freeze and allow_fail
options for the redirect router.) These commands can optionally be followed by the word text and a
string containing an error message, for example:

fail text "this message looks like spam to me"

The keyword text is optional if the next character is a double quote.

The defer command defers delivery of the original recipients of the message. The fail command
causes all the original recipients to be failed, and a bounce message to be created. The freeze
command suspends all delivery attempts for the original recipients. In all cases, any new deliveries
that are specified by the filter are attempted as normal after the filter has run.

The freeze command is ignored if the message has been manually unfrozen and not manually frozen
since. This means that automatic freezing by a system filter can be used as a way of checking out
suspicious messages. If a message is found to be all right, manually unfreezing it allows it to be
delivered.

The text given with a fail command is used as part of the bounce message as well as being written to
the log. If the message is quite long, this can fill up a lot of log space when such failures are common.
To reduce the size of the log message, Exim interprets the text in a special way if it starts with the two
characters << and contains >> later. The text between these two strings is written to the log, and the
rest of the text is used in the bounce message. For example:

fail "<<filter test 1>>Your message is rejected \
 because it contains attachments that we are \
 not prepared to receive."

Take great care with the fail command when basing the decision to fail on the contents of the
message, because the bounce message will of course include the contents of the original message and
will therefore trigger the fail command again (causing a mail loop) unless steps are taken to prevent
this. Testing the error_message condition is one way to prevent this. You could use, for example

if $message_body contains "this is spam" and not error_message
then fail text "spam is not wanted here" endif

though of course that might let through unwanted bounce messages. The alternative is clever checking
of the body and/or headers to detect bounces generated by the filter.

The interpretation of a system filter file ceases after a defer, freeze, or fail command is obeyed.
However, any deliveries that were set up earlier in the filter file are honoured, so you can use a
sequence such as

mail ...
freeze

to send a specified message when the system filter is freezing (or deferring or failing) a message. The
normal deliveries for the message do not, of course, take place.

449 System-wide message filtering (47)

47.6 Adding and removing headers in a system filter

Two filter commands that are available only in system filters are:

headers add <string>
headers remove <string>

The argument for the headers add is a string that is expanded and then added to the end of the
message’s headers. It is the responsibility of the filter maintainer to make sure it conforms to RFC
2822 syntax. Leading white space is ignored, and if the string is otherwise empty, or if the expansion
is forced to fail, the command has no effect.

You can use “\n” within the string, followed by white space, to specify continued header lines. More
than one header may be added in one command by including “\n” within the string without any
following white space. For example:

headers add "X-header-1:\n \
 continuation of X-header-1 ...\n\
 X-header-2:"

Note that the header line continuation white space after the first newline must be placed before the
backslash that continues the input string, because white space after input continuations is ignored.

The argument for headers remove is a colon-separated list of header names. This command applies
only to those headers that are stored with the message; those that are added at delivery time (such as
Envelope-To: and Return-Path:) cannot be removed by this means. If there is more than one header
with the same name, they are all removed.

The headers command in a system filter makes an immediate change to the set of header lines that
was received with the message (with possible additions from ACL processing). Subsequent com-
mands in the system filter operate on the modified set, which also forms the basis for subsequent
message delivery. Unless further modified during routing or transporting, this set of headers is used
for all recipients of the message.

During routing and transporting, the variables that refer to the contents of header lines refer only to
those lines that are in this set. Thus, header lines that are added by a system filter are visible to users’
filter files and to all routers and transports. This contrasts with the manipulation of header lines by
routers and transports, which is not immediate, but which instead is saved up until the message is
actually being written (see section 48.6).

If the message is not delivered at the first attempt, header lines that were added by the system filter are
stored with the message, and so are still present at the next delivery attempt. Header lines that were
removed are still present, but marked “deleted” so that they are not transported with the message. For
this reason, it is usual to make the headers command conditional on first_delivery so that the set of
header lines is not modified more than once.

Because header modification in a system filter acts immediately, you have to use an indirect approach
if you want to modify the contents of a header line. For example:

headers add "Old-Subject: $h_subject:"
headers remove "Subject"
headers add "Subject: new subject (was: $h_old-subject:)"
headers remove "Old-Subject"

47.7 Setting an errors address in a system filter

In a system filter, if a deliver command is followed by

errors_to <some address>

in order to change the envelope sender (and hence the error reporting) for that delivery, any address
may be specified. (In a user filter, only the current user’s address can be set.) For example, if some
mail is being monitored, you might use

unseen deliver monitor@spying.example errors_to root@local.example

450 System-wide message filtering (47)

to take a copy which would not be sent back to the normal error reporting address if its delivery
failed.

47.8 Per-address filtering

In contrast to the system filter, which is run just once per message for each delivery attempt, it is also
possible to set up a system-wide filtering operation that runs once for each recipient address. In this
case, variables such as $local_part_data and $domain_data can be used, and indeed, the choice of
filter file could be made dependent on them. This is an example of a router which implements such a
filter:

central_filter:
 check_local_user
 driver = redirect
 domains = +local_domains
 file = /central/filters/$local_part_data
 no_verify
 allow_filter
 allow_freeze

The filter is run in a separate process under its own uid. Therefore, either check_local_user must be
set (as above), in which case the filter is run as the local user, or the user option must be used to
specify which user to use. If both are set, user overrides.

Care should be taken to ensure that none of the commands in the filter file specify a significant
delivery if the message is to go on to be delivered to its intended recipient. The router will not then
claim to have dealt with the address, so it will be passed on to subsequent routers to be delivered in
the normal way.

451 System-wide message filtering (47)

48. Message processing

Exim performs various transformations on the sender and recipient addresses of all messages that it
handles, and also on the messages’ header lines. Some of these are optional and configurable, while
others always take place. All of this processing, except rewriting as a result of routing, and the
addition or removal of header lines while delivering, happens when a message is received, before it is
placed on Exim’s queue.

Some of the automatic processing takes place by default only for “locally-originated” messages. This
adjective is used to describe messages that are not received over TCP/IP, but instead are passed to an
Exim process on its standard input. This includes the interactive “local SMTP” case that is set up by
the -bs command line option.

Note: Messages received over TCP/IP on the loopback interface (127.0.0.1 or ::1) are not considered
to be locally-originated. Exim does not treat the loopback interface specially in any way.

If you want the loopback interface to be treated specially, you must ensure that there are appropriate
entries in your ACLs.

48.1 Submission mode for non-local messages

Processing that happens automatically for locally-originated messages (unless suppress_local_fixups
is set) can also be requested for messages that are received over TCP/IP. The term “submission mode”
is used to describe this state. Submission mode is set by the modifier

control = submission

in a MAIL, RCPT, or pre-data ACL for an incoming message (see sections 44.12 and 44.13). This
makes Exim treat the message as a local submission, and is normally used when the source of the
message is known to be an MUA running on a client host (as opposed to an MTA). For example, to
set submission mode for messages originating on the IPv4 loopback interface, you could include the
following in the MAIL ACL:

warn hosts = 127.0.0.1
 control = submission

There are some options that can be used when setting submission mode. A slash is used to separate
options. For example:

control = submission/sender_retain

Specifying sender_retain has the effect of setting local_sender_retain true and local_from_check
false for the current incoming message. The first of these allows an existing Sender: header in the
message to remain, and the second suppresses the check to ensure that From: matches the
authenticated sender. With this setting, Exim still fixes up messages by adding Date: and Message-
ID: header lines if they are missing, but makes no attempt to check sender authenticity in header
lines.

When sender_retain is not set, a submission mode setting may specify a domain to be used when
generating a From: or Sender: header line. For example:

control = submission/domain=some.domain

The domain may be empty. How this value is used is described in sections 48.5.7 and 48.5.12. There
is also a name option that allows you to specify the user’s full name for inclusion in a created Sender:
or From: header line. For example:

accept authenticated = *
 control = submission/domain=wonderland.example/\
 name=${lookup {$authenticated_id} \
 lsearch {/etc/exim/namelist}}

452 Message processing (48)

Because the name may contain any characters, including slashes, the name option must be given last.
The remainder of the string is used as the name. For the example above, if /etc/exim/namelist
contains:

bigegg: Humpty Dumpty

then when the sender has authenticated as bigegg, the generated Sender: line would be:

Sender: Humpty Dumpty <bigegg@wonderland.example>

By default, submission mode forces the return path to the same address as is used to create the
Sender: header. However, if sender_retain is specified, the return path is also left unchanged.

Note: The changes caused by submission mode take effect after the predata ACL. This means that any
sender checks performed before the fix-ups use the untrusted sender address specified by the user, not
the trusted sender address specified by submission mode. Although this might be slightly unexpected,
it does mean that you can configure ACL checks to spot that a user is trying to spoof another’s
address.

48.2 Line endings

RFC 2821 specifies that CRLF (two characters: carriage-return, followed by linefeed) is the line
ending for messages transmitted over the Internet using SMTP over TCP/IP. However, within individ-
ual operating systems, different conventions are used. For example, Unix-like systems use just LF, but
others use CRLF or just CR.

Exim was designed for Unix-like systems, and internally, it stores messages using the system’s
convention of a single LF as a line terminator. When receiving a message, all line endings are
translated to this standard format. Originally, it was thought that programs that passed messages
directly to an MTA within an operating system would use that system’s convention. Experience has
shown that this is not the case; for example, there are Unix applications that use CRLF in this
circumstance. For this reason, and for compatibility with other MTAs, the way Exim handles line
endings for all messages is now as follows:

• CR is treated as a line ending; if it is immediately followed by LF, the LF is ignored.

• The sequence “CR, dot, CR” does not terminate an incoming SMTP message, nor a local message
in the state where a line containing only a dot is a terminator.

• If a bare CR is encountered within a header line, an extra space is added after the line terminator so
as not to end the header line. The reasoning behind this is that bare CRs in header lines are most
likely either to be mistakes, or people trying to play silly games.

• If the first header line received in a message ends with CRLF, a subsequent bare LF in a header line
is treated in the same way as a bare CR in a header line and a bare LF in a body line is replaced
with a space.

• If the first header line received in a message does not end with CRLF, a subsequent LF not
preceded by CR is treated as a line ending.

48.3 Unqualified addresses

By default, Exim expects every envelope address it receives from an external host to be fully quali-
fied. Unqualified addresses cause negative responses to SMTP commands. However, because SMTP
is used as a means of transporting messages from MUAs running on personal workstations, there is
sometimes a requirement to accept unqualified addresses from specific hosts or IP networks.

Exim has two options that separately control which hosts may send unqualified sender or recipient
addresses in SMTP commands, namely sender_unqualified_hosts and recipient_unqualified_hosts.
In both cases, if an unqualified address is accepted, it is qualified by adding the value of qualify_
domain or qualify_recipient, as appropriate.

Unqualified addresses in header lines are automatically qualified for messages that are locally orig-
inated, unless the -bnq option is given on the command line. For messages received over SMTP,

453 Message processing (48)

unqualified addresses in header lines are qualified only if unqualified addresses are permitted in
SMTP commands. In other words, such qualification is also controlled by sender_unqualified_hosts
and recipient_unqualified_hosts,

48.4 The UUCP From line

Messages that have come from UUCP (and some other applications) often begin with a line contain-
ing the envelope sender and a timestamp, following the word “From”. Examples of two common
formats are:

From a.oakley@berlin.mus Fri Jan 5 12:35 GMT 1996
From f.butler@berlin.mus Fri, 7 Jan 97 14:00:00 GMT

This line precedes the RFC 2822 header lines. For compatibility with Sendmail, Exim recognizes
such lines at the start of messages that are submitted to it via the command line (that is, on the
standard input). It does not recognize such lines in incoming SMTP messages, unless the sending
host matches ignore_fromline_hosts or the -bs option was used for a local message and ignore_
fromline_local is set. The recognition is controlled by a regular expression that is defined by the
uucp_from_pattern option, whose default value matches the two common cases shown above and
puts the address that follows “From” into $1.

When the caller of Exim for a non-SMTP message that contains a “From” line is a trusted user, the
message’s sender address is constructed by expanding the contents of uucp_sender_address, whose
default value is “$1”. This is then parsed as an RFC 2822 address. If there is no domain, the local part
is qualified with qualify_domain unless it is the empty string. However, if the command line -f
option is used, it overrides the “From” line.

If the caller of Exim is not trusted, the “From” line is recognized, but the sender address is not
changed. This is also the case for incoming SMTP messages that are permitted to contain “From”
lines.

Only one “From” line is recognized. If there is more than one, the second is treated as a data line that
starts the body of the message, as it is not valid as a header line. This also happens if a “From” line is
present in an incoming SMTP message from a source that is not permitted to send them.

48.5 Header lines

48.5.1 Resent- header lines

RFC 2822 makes provision for sets of header lines starting with the string Resent- to be added to a
message when it is resent by the original recipient to somebody else. These headers are Resent-Date:,
Resent-From:, Resent-Sender:, Resent-To:, Resent-Cc:, Resent-Bcc: and Resent-Message-ID:. The
RFC says:

Resent fields are strictly informational. They MUST NOT be used in the normal processing
of replies or other such automatic actions on messages.

This leaves things a bit vague as far as other processing actions such as address rewriting are con-
cerned. Exim treats Resent- header lines as follows:

• A Resent-From: line that just contains the login id of the submitting user is automatically rewritten
in the same way as From: (see below).

• If there’s a rewriting rule for a particular header line, it is also applied to Resent- header lines of
the same type. For example, a rule that rewrites From: also rewrites Resent-From:.

• For local messages, if Sender: is removed on input, Resent-Sender: is also removed.

• For a locally-submitted message, if there are any Resent- header lines but no Resent-Date:, Resent-
From:, or Resent-Message-Id:, they are added as necessary. It is the contents of Resent-Message-
Id: (rather than Message-Id:) which are included in log lines in this case.

454 Message processing (48)

• The logic for adding Sender: is duplicated for Resent-Sender: when any Resent- header lines are
present.

48.5.2 Auto-Submitted:

Whenever Exim generates an autoreply, a bounce, or a delay warning message, it includes the header
line:

Auto-Submitted: auto-replied

48.5.3 Bcc:

If Exim is called with the -t option, to take recipient addresses from a message’s header, it removes
any Bcc: header line that may exist (after extracting its addresses). If -t is not present on the command
line, any existing Bcc: is not removed.

48.5.4 Date:

If a locally-generated or submission-mode message has no Date: header line, Exim adds one, using
the current date and time, unless the suppress_local_fixups control has been specified.

48.5.5 Delivery-date:

Delivery-date: header lines are not part of the standard RFC 2822 header set. Exim can be configured
to add them to the final delivery of messages. (See the generic delivery_date_add transport option.)
They should not be present in messages in transit. If the delivery_date_remove configuration option
is set (the default), Exim removes Delivery-date: header lines from incoming messages.

48.5.6 Envelope-to:

Envelope-to: header lines are not part of the standard RFC 2822 header set. Exim can be configured to
add them to the final delivery of messages. (See the generic envelope_to_add transport option.) They
should not be present in messages in transit. If the envelope_to_remove configuration option is set
(the default), Exim removes Envelope-to: header lines from incoming messages.

48.5.7 From:

If a submission-mode message does not contain a From: header line, Exim adds one if either of the
following conditions is true:

• The envelope sender address is not empty (that is, this is not a bounce message). The added header
line copies the envelope sender address.

• The SMTP session is authenticated and $authenticated_id is not empty.

(1) If no domain is specified by the submission control, the local part is $authenticated_id and
the domain is $qualify_domain.

(2) If a non-empty domain is specified by the submission control, the local part is
$authenticated_id, and the domain is the specified domain.

(3) If an empty domain is specified by the submission control, $authenticated_id is assumed to
be the complete address.

A non-empty envelope sender takes precedence.

If a locally-generated incoming message does not contain a From: header line, and the suppress_
local_fixups control is not set, Exim adds one containing the sender’s address. The calling user’s
login name and full name are used to construct the address, as described in section 48.7. They are
obtained from the password data by calling getpwuid() (but see the unknown_login configuration
option). The address is qualified with qualify_domain.

455 Message processing (48)

For compatibility with Sendmail, if an incoming, non-SMTP message has a From: header line con-
taining just the unqualified login name of the calling user, this is replaced by an address containing
the user’s login name and full name as described in section 48.7.

48.5.8 Message-ID:

If a locally-generated or submission-mode incoming message does not contain a Message-ID: or
Resent-Message-ID: header line, and the suppress_local_fixups control is not set, Exim adds a
suitable header line to the message. If there are any Resent-: headers in the message, it creates
Resent-Message-ID:. The id is constructed from Exim’s internal message id, preceded by the letter E
to ensure it starts with a letter, and followed by @ and the primary host name. Additional information
can be included in this header line by setting the message_id_header_text and/or message_id_
header_domain options.

48.5.9 Received:

A Received: header line is added at the start of every message. The contents are defined by the
received_header_text configuration option, and Exim automatically adds a semicolon and a
timestamp to the configured string.

The Received: header is generated as soon as the message’s header lines have been received. At this
stage, the timestamp in the Received: header line is the time that the message started to be received.
This is the value that is seen by the DATA ACL and by the local_scan() function.

Once a message is accepted, the timestamp in the Received: header line is changed to the time of
acceptance, which is (apart from a small delay while the -H spool file is written) the earliest time at
which delivery could start.

48.5.10 References:

Messages created by the autoreply transport include a References: header line. This is constructed
according to the rules that are described in section 3.64 of RFC 2822 (which states that replies should
contain such a header line), and section 3.14 of RFC 3834 (which states that automatic responses are
not different in this respect). However, because some mail processing software does not cope well
with very long header lines, no more than 12 message IDs are copied from the References: header line
in the incoming message. If there are more than 12, the first one and then the final 11 are copied,
before adding the message ID of the incoming message.

48.5.11 Return-path:

Return-path: header lines are defined as something an MTA may insert when it does the final delivery
of messages. (See the generic return_path_add transport option.) Therefore, they should not be
present in messages in transit. If the return_path_remove configuration option is set (the default),
Exim removes Return-path: header lines from incoming messages.

48.5.12 Sender:

For a locally-originated message from an untrusted user, Exim may remove an existing Sender:
header line, and it may add a new one. You can modify these actions by setting the local_sender_
retain option true, the local_from_check option false, or by using the suppress_local_fixups control
setting.

When a local message is received from an untrusted user and local_from_check is true (the default),
and the suppress_local_fixups control has not been set, a check is made to see if the address given in
the From: header line is the correct (local) sender of the message. The address that is expected has the
login name as the local part and the value of qualify_domain as the domain. Prefixes and suffixes for
the local part can be permitted by setting local_from_prefix and local_from_suffix appropriately. If
From: does not contain the correct sender, a Sender: line is added to the message.

456 Message processing (48)

If you set local_from_check false, this checking does not occur. However, the removal of an existing
Sender: line still happens, unless you also set local_sender_retain to be true. It is not possible to set
both of these options true at the same time.

By default, no processing of Sender: header lines is done for messages received over TCP/IP or for
messages submitted by trusted users. However, when a message is received over TCP/IP in sub-
mission mode, and sender_retain is not specified on the submission control, the following processing
takes place:

First, any existing Sender: lines are removed. Then, if the SMTP session is authenticated, and
$authenticated_id is not empty, a sender address is created as follows:

• If no domain is specified by the submission control, the local part is $authenticated_id and the
domain is $qualify_domain.

• If a non-empty domain is specified by the submission control, the local part is $authenticated_id,
and the domain is the specified domain.

• If an empty domain is specified by the submission control, $authenticated_id is assumed to be the
complete address.

This address is compared with the address in the From: header line. If they are different, a Sender:
header line containing the created address is added. Prefixes and suffixes for the local part in From:
can be permitted by setting local_from_prefix and local_from_suffix appropriately.

Note: Whenever a Sender: header line is created, the return path for the message (the envelope sender
address) is changed to be the same address, except in the case of submission mode when sender_
retain is specified.

48.6 Adding and removing header lines in routers and transports

When a message is delivered, the addition and removal of header lines can be specified in a system
filter, or on any of the routers and transports that process the message. Section 47.6 contains details
about modifying headers in a system filter. Header lines can also be added in an ACL as a message is
received (see section 44.15).

In contrast to what happens in a system filter, header modifications that are specified on routers and
transports apply only to the particular recipient addresses that are being processed by those routers
and transports. These changes do not actually take place until a copy of the message is being trans-
ported. Therefore, they do not affect the basic set of header lines, and they do not affect the values of
the variables that refer to header lines.

Note: In particular, this means that any expansions in the configuration of the transport cannot refer
to the modified header lines, because such expansions all occur before the message is actually
transported.

For both routers and transports, the argument of a headers_add option must be in the form of one or
more RFC 2822 header lines, separated by newlines (coded as “\n”). For example:

headers_add = X-added-header: added by $primary_hostname\n\
 X-added-second: another added header line

Exim does not check the syntax of these added header lines.

Multiple headers_add options for a single router or transport can be specified; the values will append
to a single list of header lines. Each header-line is separately expanded.

The argument of a headers_remove option must consist of a colon-separated list of header names.
This is confusing, because header names themselves are often terminated by colons. In this case, the
colons are the list separators, not part of the names. For example:

headers_remove = return-receipt-to:acknowledge-to

Multiple headers_remove options for a single router or transport can be specified; the arguments will
append to a single header-names list. Each item is separately expanded. Note that colons in complex
expansions which are used to form all or part of a headers_remove list will act as list separators.

457 Message processing (48)

When headers_add or headers_remove is specified on a router, items are expanded at routing time,
and then associated with all addresses that are accepted by that router, and also with any new
addresses that it generates. If an address passes through several routers as a result of aliasing or
forwarding, the changes are cumulative.

However, this does not apply to multiple routers that result from the use of the unseen option. Any
header modifications that were specified by the “unseen” router or its predecessors apply only to the
“unseen” delivery.

Addresses that end up with different headers_add or headers_remove settings cannot be delivered
together in a batch, so a transport is always dealing with a set of addresses that have the same
header-processing requirements.

The transport starts by writing the original set of header lines that arrived with the message, possibly
modified by the system filter. As it writes out these lines, it consults the list of header names that were
attached to the recipient address(es) by headers_remove options in routers, and it also consults the
transport’s own headers_remove option. Header lines whose names are on either of these lists are not
written out. If there are multiple instances of any listed header, they are all skipped.

After the remaining original header lines have been written, new header lines that were specified by
routers’ headers_add options are written, in the order in which they were attached to the address.
These are followed by any header lines specified by the transport’s headers_add option.

This way of handling header line modifications in routers and transports has the following
consequences:

• The original set of header lines, possibly modified by the system filter, remains “visible”, in the
sense that the $header_xxx variables refer to it, at all times.

• Header lines that are added by a router’s headers_add option are not accessible by means of the
$header_xxx expansion syntax in subsequent routers or the transport.

• Conversely, header lines that are specified for removal by headers_remove in a router remain
visible to subsequent routers and the transport.

• Headers added to an address by headers_add in a router cannot be removed by a later router or by
a transport.

• An added header can refer to the contents of an original header that is to be removed, even it has
the same name as the added header. For example:

headers_remove = subject
headers_add = Subject: new subject (was: $h_subject:)

Warning: The headers_add and headers_remove options cannot be used for a redirect router that
has the one_time option set.

48.7 Constructed addresses

When Exim constructs a sender address for a locally-generated message, it uses the form

<user name> <login@qualify_domain>

For example:

Zaphod Beeblebrox <zaphod@end.univ.example>

The user name is obtained from the -F command line option if set, or otherwise by looking up the
calling user by getpwuid() and extracting the “gecos” field from the password entry. If the “gecos”
field contains an ampersand character, this is replaced by the login name with the first letter upper
cased, as is conventional in a number of operating systems. See the gecos_name option for a way to
tailor the handling of the “gecos” field. The unknown_username option can be used to specify user
names in cases when there is no password file entry.

In all cases, the user name is made to conform to RFC 2822 by quoting all or parts of it if necessary.
In addition, if it contains any non-printing characters, it is encoded as described in RFC 2047, which

458 Message processing (48)

defines a way of including non-ASCII characters in header lines. The value of the headers_charset
option specifies the name of the encoding that is used (the characters are assumed to be in this
encoding). The setting of print_topbitchars controls whether characters with the top bit set (that is,
with codes greater than 127) count as printing characters or not.

48.8 Case of local parts

RFC 2822 states that the case of letters in the local parts of addresses cannot be assumed to be
non-significant. Exim preserves the case of local parts of addresses, but by default it uses a lower-
cased form when it is routing, because on most Unix systems, usernames are in lower case and
case-insensitive routing is required. However, any particular router can be made to use the original
case for local parts by setting the caseful_local_part generic router option.

If you must have mixed-case user names on your system, the best way to proceed, assuming you want
case-independent handling of incoming email, is to set up your first router to convert incoming local
parts in your domains to the correct case by means of a file lookup. For example:

correct_case:
 driver = redirect
 domains = +local_domains
 data = ${lookup{$local_part}cdb\
 {/etc/usercased.cdb}{$value}fail}\
 @$domain

For this router, the local part is forced to lower case by the default action (caseful_local_part is not
set). The lower-cased local part is used to look up a new local part in the correct case. If you then set
caseful_local_part on any subsequent routers which process your domains, they will operate on local
parts with the correct case in a case-sensitive manner.

48.9 Dots in local parts

RFC 2822 forbids empty components in local parts. That is, an unquoted local part may not begin or
end with a dot, nor have two consecutive dots in the middle. However, it seems that many MTAs do
not enforce this, so Exim permits empty components for compatibility.

48.10 Rewriting addresses

Rewriting of sender and recipient addresses, and addresses in headers, can happen automatically, or as
the result of configuration options, as described in chapter 31. The headers that may be affected by
this are Bcc:, Cc:, From:, Reply-To:, Sender:, and To:.

Automatic rewriting includes qualification, as mentioned above. The other case in which it can
happen is when an incomplete non-local domain is given. The routing process may cause this to be
expanded into the full domain name. For example, a header such as

To: hare@teaparty

might get rewritten as

To: hare@teaparty.wonderland.fict.example

Rewriting as a result of routing is the one kind of message processing that does not happen at input
time, as it cannot be done until the address has been routed.

Strictly, one should not do any deliveries of a message until all its addresses have been routed, in case
any of the headers get changed as a result of routing. However, doing this in practice would hold up
many deliveries for unreasonable amounts of time, just because one address could not immediately be
routed. Exim therefore does not delay other deliveries when routing of one or more addresses is
deferred.

459 Message processing (48)

49. SMTP processing

Exim supports a number of different ways of using the SMTP protocol, and its LMTP variant, which
is an interactive protocol for transferring messages into a closed mail store application. This chapter
contains details of how SMTP is processed. For incoming mail, the following are available:

• SMTP over TCP/IP (Exim daemon or inetd);

• SMTP over the standard input and output (the -bs option);

• Batched SMTP on the standard input (the -bS option).

For mail delivery, the following are available:

• SMTP over TCP/IP (the smtp transport);

• LMTP over TCP/IP (the smtp transport with the protocol option set to “lmtp”);

• LMTP over a pipe to a process running in the local host (the lmtp transport);

• Batched SMTP to a file or pipe (the appendfile and pipe transports with the use_bsmtp option set).

Batched SMTP is the name for a process in which batches of messages are stored in or read from files
(or pipes), in a format in which SMTP commands are used to contain the envelope information.

49.1 Outgoing SMTP and LMTP over TCP/IP

Outgoing SMTP and LMTP over TCP/IP is implemented by the smtp transport. The protocol option
selects which protocol is to be used, but the actual processing is the same in both cases.

If, in response to its EHLO command, Exim is told that the SIZE extension is supported, it adds
SIZE=<n> to each subsequent MAIL command. The value of <n> is the message size plus the value
of the size_addition option (default 1024) to allow for additions to the message such as per-transport
header lines, or changes made in a transport filter. If size_addition is set negative, the use of SIZE is
suppressed.

If the remote server advertises support for PIPELINING, Exim uses the pipelining extension to SMTP
(RFC 2197) to reduce the number of TCP/IP packets required for the transaction.

If the remote server advertises support for the STARTTLS command, and Exim was built to support
TLS encryption, it tries to start a TLS session unless the server matches hosts_avoid_tls. See chapter
43 for more details. Either a match in that or hosts_verify_avoid_tls apply when the transport is
called for verification.

If the remote server advertises support for the AUTH command, Exim scans the authenticators con-
figuration for any suitable client settings, as described in chapter 33.

Responses from the remote host are supposed to be terminated by CR followed by LF. However, there
are known to be hosts that do not send CR characters, so in order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator.

If a message contains a number of different addresses, all those with the same characteristics (for
example, the same envelope sender) that resolve to the same set of hosts, in the same order, are sent in
a single SMTP transaction, even if they are for different domains, unless there are more than the
setting of the max_rcpts option in the smtp transport allows, in which case they are split into groups
containing no more than max_rcpts addresses each. If remote_max_parallel is greater than one,
such groups may be sent in parallel sessions. The order of hosts with identical MX values is not
significant when checking whether addresses can be batched in this way.

When the smtp transport suffers a temporary failure that is not message-related, Exim updates its
transport-specific database, which contains records indexed by host name that remember which mess-
ages are waiting for each particular host. It also updates the retry database with new retry times.

Exim’s retry hints are based on host name plus IP address, so if one address of a multi-homed host is
broken, it will soon be skipped most of the time. See the next section for more detail about error
handling.

460 SMTP processing (49)

When a message is successfully delivered over a TCP/IP SMTP connection, Exim looks in the hints
database for the transport to see if there are any queued messages waiting for the host to which it is
connected. If it finds one, it creates a new Exim process using the -MC option (which can only be
used by a process running as root or the Exim user) and passes the TCP/IP socket to it so that it can
deliver another message using the same socket. The new process does only those deliveries that are
routed to the connected host, and may in turn pass the socket on to a third process, and so on.

The connection_max_messages option of the smtp transport can be used to limit the number of
messages sent down a single TCP/IP connection.

The second and subsequent messages delivered down an existing connection are identified in the main
log by the addition of an asterisk after the closing square bracket of the IP address.

49.1.1 Errors in outgoing SMTP

Three different kinds of error are recognized for outgoing SMTP: host errors, message errors, and
recipient errors.

Host errors
A host error is not associated with a particular message or with a particular recipient of a message.
The host errors are:

• Connection refused or timed out,

• Any error response code on connection,

• Any error response code to EHLO or HELO,

• Loss of connection at any time, except after “.”,

• I/O errors at any time,

• Timeouts during the session, other than in response to MAIL, RCPT or the “.” at the end of the
data.

For a host error, a permanent error response on connection, or in response to EHLO, causes all
addresses routed to the host to be failed. Any other host error causes all addresses to be deferred,
and retry data to be created for the host. It is not tried again, for any message, until its retry time
arrives. If the current set of addresses are not all delivered in this run (to some alternative host), the
message is added to the list of those waiting for this host, so if it is still undelivered when a
subsequent successful delivery is made to the host, it will be sent down the same SMTP
connection.

Message errors
A message error is associated with a particular message when sent to a particular host, but not with
a particular recipient of the message. The message errors are:

• Any error response code to MAIL, DATA, or the “.” that terminates the data,

• Timeout after MAIL,

• Timeout or loss of connection after the “.” that terminates the data. A timeout after the DATA
command itself is treated as a host error, as is loss of connection at any other time.

For a message error, a permanent error response (5xx) causes all addresses to be failed, and a
delivery error report to be returned to the sender. A temporary error response (4xx), or one of the
timeouts, causes all addresses to be deferred. Retry data is not created for the host, but instead, a
retry record for the combination of host plus message id is created. The message is not added to
the list of those waiting for this host. This ensures that the failing message will not be sent to this
host again until the retry time arrives. However, other messages that are routed to the host are not
affected, so if it is some property of the message that is causing the error, it will not stop the
delivery of other mail.

If the remote host specified support for the SIZE parameter in its response to EHLO, Exim adds
SIZE=nnn to the MAIL command, so an over-large message will cause a message error because
the error arrives as a response to MAIL.

461 SMTP processing (49)

Recipient errors
A recipient error is associated with a particular recipient of a message. The recipient errors are:

• Any error response to RCPT,

• Timeout after RCPT.

For a recipient error, a permanent error response (5xx) causes the recipient address to be failed,
and a bounce message to be returned to the sender. A temporary error response (4xx) or a timeout
causes the failing address to be deferred, and routing retry data to be created for it. This is used to
delay processing of the address in subsequent queue runs, until its routing retry time arrives. This
applies to all messages, but because it operates only in queue runs, one attempt will be made to
deliver a new message to the failing address before the delay starts to operate. This ensures that, if
the failure is really related to the message rather than the recipient (“message too big for this
recipient” is a possible example), other messages have a chance of getting delivered. If a delivery
to the address does succeed, the retry information gets cleared, so all stuck messages get tried
again, and the retry clock is reset.

The message is not added to the list of those waiting for this host. Use of the host for other
messages is unaffected, and except in the case of a timeout, other recipients are processed indepen-
dently, and may be successfully delivered in the current SMTP session. After a timeout it is of
course impossible to proceed with the session, so all addresses get deferred. However, those other
than the one that failed do not suffer any subsequent retry delays. Therefore, if one recipient is
causing trouble, the others have a chance of getting through when a subsequent delivery attempt
occurs before the failing recipient’s retry time.

In all cases, if there are other hosts (or IP addresses) available for the current set of addresses (for
example, from multiple MX records), they are tried in this run for any undelivered addresses, subject
of course to their own retry data. In other words, recipient error retry data does not take effect until
the next delivery attempt.

Some hosts have been observed to give temporary error responses to every MAIL command at certain
times (“insufficient space” has been seen). It would be nice if such circumstances could be
recognized, and defer data for the host itself created, but this is not possible within the current Exim
design. What actually happens is that retry data for every (host, message) combination is created.

The reason that timeouts after MAIL and RCPT are treated specially is that these can sometimes arise
as a result of the remote host’s verification procedures. Exim makes this assumption, and treats them
as if a temporary error response had been received. A timeout after “.” is treated specially because it is
known that some broken implementations fail to recognize the end of the message if the last character
of the last line is a binary zero. Thus, it is helpful to treat this case as a message error.

Timeouts at other times are treated as host errors, assuming a problem with the host, or the connection
to it. If a timeout after MAIL, RCPT, or “.” is really a connection problem, the assumption is that at
the next try the timeout is likely to occur at some other point in the dialogue, causing it then to be
treated as a host error.

There is experimental evidence that some MTAs drop the connection after the terminating “.” if they
do not like the contents of the message for some reason, in contravention of the RFC, which indicates
that a 5xx response should be given. That is why Exim treats this case as a message rather than a host
error, in order not to delay other messages to the same host.

49.2 Incoming SMTP messages over TCP/IP

Incoming SMTP messages can be accepted in one of two ways: by running a listening daemon, or by
using inetd. In the latter case, the entry in /etc/inetd.conf should be like this:

smtp stream tcp nowait exim /opt/exim/bin/exim in.exim -bs

Exim distinguishes between this case and the case of a locally running user agent using the -bs option
by checking whether or not the standard input is a socket. When it is, either the port must be
privileged (less than 1024), or the caller must be root or the Exim user. If any other user passes a

462 SMTP processing (49)

socket with an unprivileged port number, Exim prints a message on the standard error stream and
exits with an error code.

By default, Exim does not make a log entry when a remote host connects or disconnects (either via
the daemon or inetd), unless the disconnection is unexpected. It can be made to write such log entries
by setting the smtp_connection log selector.

Commands from the remote host are supposed to be terminated by CR followed by LF. However,
there are known to be hosts that do not send CR characters. In order to be able to interwork with such
hosts, Exim treats LF on its own as a line terminator. Furthermore, because common code is used for
receiving messages from all sources, a CR on its own is also interpreted as a line terminator. However,
the sequence “CR, dot, CR” does not terminate incoming SMTP data.

One area that sometimes gives rise to problems concerns the EHLO or HELO commands. Some
clients send syntactically invalid versions of these commands, which Exim rejects by default. (This is
nothing to do with verifying the data that is sent, so helo_verify_hosts is not relevant.) You can tell
Exim not to apply a syntax check by setting helo_accept_junk_hosts to match the broken hosts that
send invalid commands.

The amount of disk space available is checked whenever SIZE is received on a MAIL command,
independently of whether message_size_limit or check_spool_space is configured, unless smtp_
check_spool_space is set false. A temporary error is given if there is not enough space. If check_
spool_space is set, the check is for that amount of space plus the value given with SIZE, that is, it
checks that the addition of the incoming message will not reduce the space below the threshold.

When a message is successfully received, Exim includes the local message id in its response to the
final “.” that terminates the data. If the remote host logs this text it can help with tracing what has
happened to a message.

The Exim daemon can limit the number of simultaneous incoming connections it is prepared to
handle (see the smtp_accept_max option). It can also limit the number of simultaneous incoming
connections from a single remote host (see the smtp_accept_max_per_host option). Additional
connection attempts are rejected using the SMTP temporary error code 421.

The Exim daemon does not rely on the SIGCHLD signal to detect when a subprocess has finished, as
this can get lost at busy times. Instead, it looks for completed subprocesses every time it wakes up.
Provided there are other things happening (new incoming calls, starts of queue runs), completed
processes will be noticed and tidied away. On very quiet systems you may sometimes see a “defunct”
Exim process hanging about. This is not a problem; it will be noticed when the daemon next wakes
up.

When running as a daemon, Exim can reserve some SMTP slots for specific hosts, and can also be set
up to reject SMTP calls from non-reserved hosts at times of high system load – for details see the
smtp_accept_reserve, smtp_load_reserve, and smtp_reserve_hosts options. The load check applies
in both the daemon and inetd cases.

Exim normally starts a delivery process for each message received, though this can be varied by
means of the -odq command line option and the queue_only, queue_only_file, and queue_only_
load options. The number of simultaneously running delivery processes started in this way from
SMTP input can be limited by the smtp_accept_queue and smtp_accept_queue_per_connection
options. When either limit is reached, subsequently received messages are just put on the input queue
without starting a delivery process.

The controls that involve counts of incoming SMTP calls (smtp_accept_max, smtp_accept_queue,
smtp_accept_reserve) are not available when Exim is started up from the inetd daemon, because in
that case each connection is handled by an entirely independent Exim process. Control by load
average is, however, available with inetd.

Exim can be configured to verify addresses in incoming SMTP commands as they are received. See
chapter 44 for details. It can also be configured to rewrite addresses at this time – before any syntax
checking is done. See section 31.6.3.

Exim can also be configured to limit the rate at which a client host submits MAIL and RCPT
commands in a single SMTP session. See the smtp_ratelimit_hosts option.

463 SMTP processing (49)

49.2.1 Unrecognized SMTP commands

If Exim receives more than smtp_max_unknown_commands unrecognized SMTP commands dur-
ing a single SMTP connection, it drops the connection after sending the error response to the last
command. The default value for smtp_max_unknown_commands is 3. This is a defence against
some kinds of abuse that subvert web servers into making connections to SMTP ports; in these
circumstances, a number of non-SMTP lines are sent first.

49.2.2 Syntax and protocol errors in SMTP commands

A syntax error is detected if an SMTP command is recognized, but there is something syntactically
wrong with its data, for example, a malformed email address in a RCPT command. Protocol errors
include invalid command sequencing such as RCPT before MAIL. If Exim receives more than smtp_
max_synprot_errors such commands during a single SMTP connection, it drops the connection after
sending the error response to the last command. The default value for smtp_max_synprot_errors is
3. This is a defence against broken clients that loop sending bad commands (yes, it has been seen).

49.2.3 Use of non-mail SMTP commands

The “non-mail” SMTP commands are those other than MAIL, RCPT, and DATA. Exim counts such
commands, and drops the connection if there are too many of them in a single SMTP session. This
action catches some denial-of-service attempts and things like repeated failing AUTHs, or a mad
client looping sending EHLO. The global option smtp_accept_max_nonmail defines what “too
many” means. Its default value is 10.

When a new message is expected, one occurrence of RSET is not counted. This allows a client to
send one RSET between messages (this is not necessary, but some clients do it). Exim also allows one
uncounted occurrence of HELO or EHLO, and one occurrence of STARTTLS between messages.
After starting up a TLS session, another EHLO is expected, and so it too is not counted.

The first occurrence of AUTH in a connection, or immediately following STARTTLS is also not
counted. Otherwise, all commands other than MAIL, RCPT, DATA, and QUIT are counted.

You can control which hosts are subject to the limit set by smtp_accept_max_nonmail by setting
smtp_accept_max_nonmail_hosts. The default value is *, which makes the limit apply to all hosts.
This option means that you can exclude any specific badly-behaved hosts that you have to live with.

49.2.4 The VRFY and EXPN commands

When Exim receives a VRFY or EXPN command on a TCP/IP connection, it runs the ACL specified
by acl_smtp_vrfy or acl_smtp_expn (as appropriate) in order to decide whether the command
should be accepted or not.

When no ACL is defined for VRFY, or if it rejects without setting an explicit response code, the
command is accepted (with a 252 SMTP response code) in order to support awkward clients that do a
VRFY before every RCPT. When VRFY is accepted, it runs exactly the same code as when Exim is
called with the -bv option, and returns 250/451/550 SMTP response codes.

If no ACL for EXPN is defined, the command is rejected. When EXPN is accepted, a single-level
expansion of the address is done. EXPN is treated as an “address test” (similar to the -bt option)
rather than a verification (the -bv option). If an unqualified local part is given as the argument to
EXPN, it is qualified with qualify_domain. Rejections of VRFY and EXPN commands are logged on
the main and reject logs, and VRFY verification failures are logged in the main log for consistency
with RCPT failures.

49.2.5 The ETRN command

RFC 1985 describes an ESMTP command called ETRN that is designed to overcome the security
problems of the TURN command (which has fallen into disuse). When Exim receives an ETRN
command on a TCP/IP connection, it runs the ACL specified by acl_smtp_etrn in order to decide
whether the command should be accepted or not. If no ACL is defined, the command is rejected.

464 SMTP processing (49)

The ETRN command is concerned with “releasing” messages that are awaiting delivery to certain
hosts. As Exim does not organize its message queue by host, the only form of ETRN that is supported
by default is the one where the text starts with the “#” prefix, in which case the remainder of the text
is specific to the SMTP server. A valid ETRN command causes a run of Exim with the -R option to
happen, with the remainder of the ETRN text as its argument. For example,

ETRN #brigadoon

runs the command

exim -R brigadoon

which causes a delivery attempt on all messages with undelivered addresses containing the text
“brigadoon”. When smtp_etrn_serialize is set (the default), Exim prevents the simultaneous
execution of more than one queue run for the same argument string as a result of an ETRN command.
This stops a misbehaving client from starting more than one queue runner at once.

Exim implements the serialization by means of a hints database in which a record is written whenever
a process is started by ETRN, and deleted when the process completes. However, Exim does not keep
the SMTP session waiting for the ETRN process to complete. Once ETRN is accepted, the client is
sent a “success” return code. Obviously there is scope for hints records to get left lying around if there
is a system or program crash. To guard against this, Exim ignores any records that are more than six
hours old.

For more control over what ETRN does, the smtp_etrn_command option can used. This specifies a
command that is run whenever ETRN is received, whatever the form of its argument. For example:

smtp_etrn_command = /etc/etrn_command $domain \
 $sender_host_address

The string is split up into arguments which are independently expanded. The expansion variable
$domain is set to the argument of the ETRN command, and no syntax checking is done on the
contents of this argument. Exim does not wait for the command to complete, so its status code is not
checked. Exim runs under its own uid and gid when receiving incoming SMTP, so it is not possible
for it to change them before running the command.

49.3 Incoming local SMTP

Some user agents use SMTP to pass messages to their local MTA using the standard input and output,
as opposed to passing the envelope on the command line and writing the message to the standard
input. This is supported by the -bs option. This form of SMTP is handled in the same way as
incoming messages over TCP/IP (including the use of ACLs), except that the envelope sender given
in a MAIL command is ignored unless the caller is trusted. In an ACL you can detect this form of
SMTP input by testing for an empty host identification. It is common to have this as the first line in
the ACL that runs for RCPT commands:

accept hosts = :

This accepts SMTP messages from local processes without doing any other tests.

49.4 Outgoing batched SMTP

Both the appendfile and pipe transports can be used for handling batched SMTP. Each has an option
called use_bsmtp which causes messages to be output in BSMTP format. No SMTP responses are
possible for this form of delivery. All it is doing is using SMTP commands as a way of transmitting
the envelope along with the message.

The message is written to the file or pipe preceded by the SMTP commands MAIL and RCPT, and
followed by a line containing a single dot. Lines in the message that start with a dot have an extra dot
added. The SMTP command HELO is not normally used. If it is required, the message_prefix option
can be used to specify it.

Because appendfile and pipe are both local transports, they accept only one recipient address at a time
by default. However, you can arrange for them to handle several addresses at once by setting the

465 SMTP processing (49)

batch_max option. When this is done for BSMTP, messages may contain multiple RCPT commands.
See chapter 25 for more details.

When one or more addresses are routed to a BSMTP transport by a router that sets up a host list, the
name of the first host on the list is available to the transport in the variable $host. Here is an example
of such a transport and router:

begin routers
route_append:
 driver = manualroute
 transport = smtp_appendfile
 route_list = domain.example batch.host.example

begin transports
smtp_appendfile:
 driver = appendfile
 directory = /var/bsmtp/$host
 batch_max = 1000
 use_bsmtp
 user = exim

This causes messages addressed to domain.example to be written in BSMTP format to
/var/bsmtp/batch.host.example, with only a single copy of each message (unless there are more than
1000 recipients).

49.5 Incoming batched SMTP

The -bS command line option causes Exim to accept one or more messages by reading SMTP on the
standard input, but to generate no responses. If the caller is trusted, the senders in the MAIL com-
mands are believed; otherwise the sender is always the caller of Exim. Unqualified senders and
receivers are not rejected (there seems little point) but instead just get qualified. HELO and EHLO act
as RSET; VRFY, EXPN, ETRN and HELP, act as NOOP; QUIT quits.

Minimal policy checking is done for BSMTP input. Only the non-SMTP ACL is run in the same way
as for non-SMTP local input.

If an error is detected while reading a message, including a missing “.” at the end, Exim gives up
immediately. It writes details of the error to the standard output in a stylized way that the calling
program should be able to make some use of automatically, for example:

554 Unexpected end of file
Transaction started in line 10
Error detected in line 14

It writes a more verbose version, for human consumption, to the standard error file, for example:

An error was detected while processing a file of BSMTP input.
The error message was:

501 '>' missing at end of address

The SMTP transaction started in line 10.
The error was detected in line 12.
The SMTP command at fault was:

rcpt to:<malformed@in.com.plete

1 previous message was successfully processed.
The rest of the batch was abandoned.

The return code from Exim is zero only if there were no errors. It is 1 if some messages were
accepted before an error was detected, and 2 if no messages were accepted.

466 SMTP processing (49)

50. Customizing bounce and warning messages

When a message fails to be delivered, or remains in the queue for more than a configured amount of
time, Exim sends a message to the original sender, or to an alternative configured address. The text of
these messages is built into the code of Exim, but it is possible to change it, either by adding a single
string, or by replacing each of the paragraphs by text supplied in a file.

The From: and To: header lines are automatically generated; you can cause a Reply-To: line to be
added by setting the errors_reply_to option. Exim also adds the line

Auto-Submitted: auto-generated

to all warning and bounce messages,

50.1 Customizing bounce messages

If bounce_message_text is set, its contents are included in the default message immediately after
“This message was created automatically by mail delivery software.” The string is not expanded. It is
not used if bounce_message_file is set.

When bounce_message_file is set, it must point to a template file for constructing error messages.
The file consists of a series of text items, separated by lines consisting of exactly four asterisks. If the
file cannot be opened, default text is used and a message is written to the main and panic logs. If any
text item in the file is empty, default text is used for that item.

Each item of text that is read from the file is expanded, and there are two expansion variables which
can be of use here: $bounce_recipient is set to the recipient of an error message while it is being
created, and $bounce_return_size_limit contains the value of the return_size_limit option, rounded
to a whole number.

The items must appear in the file in the following order:

• The first item is included in the headers, and should include at least a Subject: header. Exim does
not check the syntax of these headers.

• The second item forms the start of the error message. After it, Exim lists the failing addresses with
their error messages.

• The third item is used to introduce any text from pipe transports that is to be returned to the sender.
It is omitted if there is no such text.

• The fourth, fifth and sixth items will be ignored and may be empty. The fields exist for back-
compatibility

The default state (bounce_message_file unset) is equivalent to the following file, in which the sixth
item is empty. The Subject: and some other lines have been split in order to fit them on the page:

Subject: Mail delivery failed
 ${if eq{$sender_address}{$bounce_recipient}
 {: returning message to sender}}

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$bounce_recipient}
 {that you sent }{sent by

<$sender_address>

}}could not be delivered to all of its recipients.
This is a permanent error. The following address(es) failed:

The following text was generated during the delivery attempt(s):

467 Customizing messages (50)

------ This is a copy of the message, including all the headers.

------ The body of the message is $message_size characters long;
 only the first
------ $bounce_return_size_limit or so are included here.

50.2 Customizing warning messages

The option warn_message_file can be pointed at a template file for use when warnings about mess-
age delays are created. In this case there are only three text sections:

• The first item is included in the headers, and should include at least a Subject: header. Exim does
not check the syntax of these headers.

• The second item forms the start of the warning message. After it, Exim lists the delayed addresses.

• The third item then ends the message.

The default state is equivalent to the following file, except that some lines have been split here, in
order to fit them on the page:

Subject: Warning: message $message_exim_id delayed
 $warn_message_delay

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$warn_message_recipients}
{that you sent }{sent by

<$sender_address>

}}has not been delivered to all of its recipients after
more than $warn_message_delay in the queue on $primary_hostname.

The message identifier is: $message_exim_id
The subject of the message is: $h_subject
The date of the message is: $h_date

The following address(es) have not yet been delivered:

No action is required on your part. Delivery attempts will
continue for some time, and this warning may be repeated at
intervals if the message remains undelivered. Eventually the
mail delivery software will give up, and when that happens,
the message will be returned to you.

However, in the default state the subject and date lines are omitted if no appropriate headers exist.
During the expansion of this file, $warn_message_delay is set to the delay time in one of the forms
“<n> minutes” or “<n> hours”, and $warn_message_recipients contains a list of recipients for the
warning message. There may be more than one if there are multiple addresses with different errors_
to settings on the routers that handled them.

468 Customizing messages (50)

51. Some common configuration settings

This chapter discusses some configuration settings that seem to be fairly common. More examples
and discussion can be found in the Exim book.

51.1 Sending mail to a smart host

If you want to send all mail for non-local domains to a “smart host”, you should replace the default
dnslookup router with a router which does the routing explicitly:

send_to_smart_host:
 driver = manualroute
 route_list = !+local_domains smart.host.name
 transport = remote_smtp

You can use the smart host’s IP address instead of the name if you wish. If you are using Exim only to
submit messages to a smart host, and not for receiving incoming messages, you can arrange for it to
do the submission synchronously by setting the mua_wrapper option (see chapter 52).

51.2 Using Exim to handle mailing lists

Exim can be used to run simple mailing lists, but for large and/or complicated requirements, the use
of additional specialized mailing list software such as Majordomo or Mailman is recommended.

The redirect router can be used to handle mailing lists where each list is maintained in a separate file,
which can therefore be managed by an independent manager. The domains router option can be used
to run these lists in a separate domain from normal mail. For example:

lists:
 driver = redirect
 domains = lists.example
 file = ${lookup {$local_part} dsearch,ret=full {/usr/lists}}
 forbid_pipe
 forbid_file
 errors_to = ${quote_local_part:$local_part-request}@lists.example
 no_more

This router is skipped for domains other than lists.example. For addresses in that domain, it looks for
a file that matches the local part. If there is no such file, the router declines, but because no_more is
set, no subsequent routers are tried, and so the whole delivery fails.

The forbid_pipe and forbid_file options prevent a local part from being expanded into a filename or
a pipe delivery, which is usually inappropriate in a mailing list.

The errors_to option specifies that any delivery errors caused by addresses taken from a mailing list
are to be sent to the given address rather than the original sender of the message. However, before
acting on this, Exim verifies the error address, and ignores it if verification fails.

For example, using the configuration above, mail sent to dicts@lists.example is passed on to those
addresses contained in /usr/lists/dicts, with error reports directed to dicts-request@lists.example, pro-
vided that this address can be verified. There could be a file called /usr/lists/dicts-request containing
the address(es) of this particular list’s manager(s), but other approaches, such as setting up an earlier
router (possibly using the local_part_prefix or local_part_suffix options) to handle addresses of the
form owner-xxx or xxx-request, are also possible.

51.3 Syntax errors in mailing lists

If an entry in redirection data contains a syntax error, Exim normally defers delivery of the original
address. That means that a syntax error in a mailing list holds up all deliveries to the list. This may not
be appropriate when a list is being maintained automatically from data supplied by users, and the
addresses are not rigorously checked.

469 Some common configuration settings (51)

If the skip_syntax_errors option is set, the redirect router just skips entries that fail to parse, noting
the incident in the log. If in addition syntax_errors_to is set to a verifiable address, a message is sent
to it whenever a broken address is skipped. It is usually appropriate to set syntax_errors_to to the
same address as errors_to.

51.4 Re-expansion of mailing lists

Exim remembers every individual address to which a message has been delivered, in order to avoid
duplication, but it normally stores only the original recipient addresses with a message. If all the
deliveries to a mailing list cannot be done at the first attempt, the mailing list is re-expanded when the
delivery is next tried. This means that alterations to the list are taken into account at each delivery
attempt, so addresses that have been added to the list since the message arrived will therefore receive
a copy of the message, even though it pre-dates their subscription.

If this behaviour is felt to be undesirable, the one_time option can be set on the redirect router. If this
is done, any addresses generated by the router that fail to deliver at the first attempt are added to the
message as “top level” addresses, and the parent address that generated them is marked “delivered”.
Thus, expansion of the mailing list does not happen again at the subsequent delivery attempts. The
disadvantage of this is that if any of the failing addresses are incorrect, correcting them in the file has
no effect on pre-existing messages.

The original top-level address is remembered with each of the generated addresses, and is output in
any log messages. However, any intermediate parent addresses are not recorded. This makes a differ-
ence to the log only if the all_parents selector is set, but for mailing lists there is normally only one
level of expansion anyway.

51.5 Closed mailing lists

The examples so far have assumed open mailing lists, to which anybody may send mail. It is also
possible to set up closed lists, where mail is accepted from specified senders only. This is done by
making use of the generic senders option to restrict the router that handles the list.

The following example uses the same file as a list of recipients and as a list of permitted senders. It
requires three routers:

lists_request:
 driver = redirect
 domains = lists.example
 local_part_suffix = -request
 local_parts = ${lookup {$local_part} dsearch,filter=file {/usr/lists}}
 file = /usr/lists/${local_part_data}-request
 no_more

lists_post:
 driver = redirect
 domains = lists.example
 local_parts = ${lookup {$local_part} dsearch,filter=file,ret=full {/usr/lists}}
 senders = ${if exists {$local_part_data} {lsearch;$local_part_data}{*}}
 file = ${lookup {$local_part} dsearch,ret=full {/usr/lists}}
 forbid_pipe
 forbid_file
 errors_to = ${quote_local_part:$local_part-request}@lists.example
 no_more

lists_closed:
 driver = redirect
 domains = lists.example
 allow_fail
 data = :fail: $local_part@lists.example is a closed mailing list

470 Some common configuration settings (51)

All three routers have the same domains setting, so for any other domains, they are all skipped. The
first router runs only if the local part ends in -request. It handles messages to the list manager(s) by
means of an open mailing list.

The second router runs only if the senders precondition is satisfied. It checks for the existence of a
list that corresponds to the local part, and then checks that the sender is on the list by means of a
linear search. It is necessary to check for the existence of the file before trying to search it, because
otherwise Exim thinks there is a configuration error. If the file does not exist, the expansion of
senders is *, which matches all senders. This means that the router runs, but because there is no list,
declines, and no_more ensures that no further routers are run. The address fails with an “unrouteable
address” error.

The third router runs only if the second router is skipped, which happens when a mailing list exists,
but the sender is not on it. This router forcibly fails the address, giving a suitable error message.

51.6 Variable Envelope Return Paths (VERP)

Variable Envelope Return Paths – see https://cr.yp.to/proto/verp.txt – are a way of helping mailing
list administrators discover which subscription address is the cause of a particular delivery failure.
The idea is to encode the original recipient address in the outgoing envelope sender address, so that if
the message is forwarded by another host and then subsequently bounces, the original recipient can be
extracted from the recipient address of the bounce.

Envelope sender addresses can be modified by Exim using two different facilities: the errors_to
option on a router (as shown in previous mailing list examples), or the return_path option on a
transport. The second of these is effective only if the message is successfully delivered to another
host; it is not used for errors detected on the local host (see the description of return_path in chapter
24). Here is an example of the use of return_path to implement VERP on an smtp transport:

verp_smtp:
 driver = smtp
 max_rcpt = 1
 return_path = \
 ${if match {$return_path}{^(.+?)-request@your.dom.example\$}\
 {${quote_local_part:$1-request+$local_part=$domain}@your.dom.example}fail}

This has the effect of rewriting the return path (envelope sender) on outgoing SMTP messages, if the
local part of the original return path ends in “-request”, and the domain is your.dom.example. The
rewriting inserts the local part and domain of the recipient into the return path. Suppose, for example,
that a message whose return path has been set to somelist-request@your.dom.example is sent to
subscriber@other.dom.example. In the transport, the return path is rewritten as

somelist-request+subscriber=other.dom.example@your.dom.example

For this to work, you must tell Exim to send multiple copies of messages that have more than one
recipient, so that each copy has just one recipient. This is achieved by setting max_rcpt to 1. Without
this, a single copy of a message might be sent to several different recipients in the same domain, in
which case $local_part is not available in the transport, because it is not unique.

Unless your host is doing nothing but mailing list deliveries, you should probably use a separate
transport for the VERP deliveries, so as not to use extra resources in making one-per-recipient copies
for other deliveries. This can easily be done by expanding the transport option in the router:

dnslookup:
 driver = dnslookup
 domains = ! +local_domains
 transport = \
 ${if match {$return_path}{^(.+?)-request@your.dom.example\$}\
 {verp_smtp}{remote_smtp}}
 no_more

471 Some common configuration settings (51)

If you want to change the return path using errors_to in a router instead of using return_path in the
transport, you need to set errors_to on all routers that handle mailing list addresses. This will ensure
that all delivery errors, including those detected on the local host, are sent to the VERP address.

On a host that does no local deliveries and has no manual routing, only the dnslookup router needs to
be changed. A special transport is not needed for SMTP deliveries. Every mailing list recipient has its
own return path value, and so Exim must hand them to the transport one at a time. Here is an example
of a dnslookup router that implements VERP:

verp_dnslookup:
 driver = dnslookup
 domains = ! +local_domains
 transport = remote_smtp
 errors_to = \
 ${if match {$return_path}{^(.+?)-request@your.dom.example\$}}
 {${quote_local_part:$1-request+$local_part=$domain}@your.dom.example}fail}
 no_more

Before you start sending out messages with VERPed return paths, you must also configure Exim to
accept the bounce messages that come back to those paths. Typically this is done by setting a local_
part_suffix option for a router, and using this to route the messages to wherever you want to handle
them.

The overhead incurred in using VERP depends very much on the size of the message, the number of
recipient addresses that resolve to the same remote host, and the speed of the connection over which
the message is being sent. If a lot of addresses resolve to the same host and the connection is slow,
sending a separate copy of the message for each address may take substantially longer than sending a
single copy with many recipients (for which VERP cannot be used).

51.7 Virtual domains

The phrase virtual domain is unfortunately used with two rather different meanings:

• A domain for which there are no real mailboxes; all valid local parts are aliases for other email
addresses. Common examples are organizational top-level domains and “vanity” domains.

• One of a number of independent domains that are all handled by the same host, with mailboxes on
that host, but where the mailbox owners do not necessarily have login accounts on that host.

The first usage is probably more common, and does seem more “virtual” than the second. This kind
of domain can be handled in Exim with a straightforward aliasing router. One approach is to create a
separate alias file for each virtual domain. Exim can test for the existence of the alias file to determine
whether the domain exists. The dsearch lookup type is useful here, leading to a router of this form:

virtual:
 driver = redirect
 domains = dsearch;/etc/mail/virtual
 data = ${lookup{$local_part}lsearch{/etc/mail/virtual/$domain_data}}
 no_more

The domains option specifies that the router is to be skipped, unless there is a file in the
/etc/mail/virtual directory whose name is the same as the domain that is being processed. The dsearch
lookup used results in an untainted version of $domain being placed into the $domain_data variable.

When the router runs, it looks up the local part in the file to find a new address (or list of addresses).
The no_more setting ensures that if the lookup fails (leading to data being an empty string), Exim
gives up on the address without trying any subsequent routers.

This one router can handle all the virtual domains because the alias filenames follow a fixed pattern.
Permissions can be arranged so that appropriate people can edit the different alias files. A successful
aliasing operation results in a new envelope recipient address, which is then routed from scratch.

The other kind of “virtual” domain can also be handled in a straightforward way. One approach is to
create a file for each domain containing a list of valid local parts, and use it in a router like this:

472 Some common configuration settings (51)

my_domains:
 driver = accept
 domains = dsearch;/etc/mail/domains
 local_parts = lsearch;/etc/mail/domains/$domain
 transport = my_mailboxes

The address is accepted if there is a file for the domain, and the local part can be found in the file. The
domains option is used to check for the file’s existence because domains is tested before the local_
parts option (see section 3.12). You cannot use require_files, because that option is tested after
local_parts. The transport is as follows:

my_mailboxes:
 driver = appendfile
 file = /var/mail/$domain_data/$local_part_data
 user = mail

This uses a directory of mailboxes for each domain. The user setting is required, to specify which uid
is to be used for writing to the mailboxes.

The configuration shown here is just one example of how you might support this requirement. There
are many other ways this kind of configuration can be set up, for example, by using a database instead
of separate files to hold all the information about the domains.

51.8 Multiple user mailboxes

Heavy email users often want to operate with multiple mailboxes, into which incoming mail is
automatically sorted. A popular way of handling this is to allow users to use multiple sender
addresses, so that replies can easily be identified. Users are permitted to add prefixes or suffixes to
their local parts for this purpose. The wildcard facility of the generic router options local_part_prefix
and local_part_suffix can be used for this. For example, consider this router:

userforward:
 driver = redirect
 check_local_user
 file = $home/.forward
 local_part_suffix = -*
 local_part_suffix_optional
 allow_filter

It runs a user’s .forward file for all local parts of the form username-*. Within the filter file the user
can distinguish different cases by testing the variable $local_part_suffix. For example:

if $local_part_suffix contains -special then
save /home/$local_part_data/Mail/special
endif

If the filter file does not exist, or does not deal with such addresses, they fall through to subsequent
routers, and, assuming no subsequent use of the local_part_suffix option is made, they presumably
fail. Thus, users have control over which suffixes are valid.

Alternatively, a suffix can be used to trigger the use of a different .forward file – which is the way a
similar facility is implemented in another MTA:

userforward:
 driver = redirect
 check_local_user
 local_part_suffix = -*
 local_part_suffix_optional
 file = ${lookup {.forward$local_part_suffix} dsearch,ret=full {$home} {$value}fail}
 allow_filter

473 Some common configuration settings (51)

If there is no suffix, .forward is used; if the suffix is -special, for example, .forward-special is used.
Once again, if the appropriate file does not exist, or does not deal with the address, it is passed on to
subsequent routers, which could, if required, look for an unqualified .forward file to use as a default.

51.9 Simplified vacation processing

The traditional way of running the vacation program is for a user to set up a pipe command in a
.forward file (see section 22.6 for syntax details). This is prone to error by inexperienced users. There
are two features of Exim that can be used to make this process simpler for users:

• A local part prefix such as “vacation-” can be specified on a router which can cause the message to
be delivered directly to the vacation program, or alternatively can use Exim’s autoreply transport.
The contents of a user’s .forward file are then much simpler. For example:

spqr, vacation-spqr

• The require_files generic router option can be used to trigger a vacation delivery by checking for
the existence of a certain file in the user’s home directory. The unseen generic option should also
be used, to ensure that the original delivery also proceeds. In this case, all the user has to do is to
create a file called, say, .vacation, containing a vacation message.

Another advantage of both these methods is that they both work even when the use of arbitrary pipes
by users is locked out.

51.10 Taking copies of mail

Some installations have policies that require archive copies of all messages to be made. A single copy
of each message can easily be taken by an appropriate command in a system filter, which could, for
example, use a different file for each day’s messages.

There is also a shadow transport mechanism that can be used to take copies of messages that are
successfully delivered by local transports, one copy per delivery. This could be used, inter alia, to
implement automatic notification of delivery by sites that insist on doing such things.

51.11 Intermittently connected hosts

It has become quite common (because it is cheaper) for hosts to connect to the Internet periodically
rather than remain connected all the time. The normal arrangement is that mail for such hosts
accumulates on a system that is permanently connected.

Exim was designed for use on permanently connected hosts, and so it is not particularly well-suited to
use in an intermittently connected environment. Nevertheless there are some features that can be used.

51.12 Exim on the upstream server host

It is tempting to arrange for incoming mail for the intermittently connected host to remain in Exim’s
queue until the client connects. However, this approach does not scale very well. Two different kinds
of waiting message are being mixed up in the same queue – those that cannot be delivered because of
some temporary problem, and those that are waiting for their destination host to connect. This makes
it hard to manage the queue, as well as wasting resources, because each queue runner scans the entire
queue.

A better approach is to separate off those messages that are waiting for an intermittently connected
host. This can be done by delivering these messages into local files in batch SMTP, “mailstore”, or
other envelope-preserving format, from where they are transmitted by other software when their
destination connects. This makes it easy to collect all the mail for one host in a single directory, and to
apply local timeout rules on a per-message basis if required.

On a very small scale, leaving the mail on Exim’s queue can be made to work. If you are doing this,
you should configure Exim with a long retry period for the intermittent host. For example:

cheshire.wonderland.fict.example * F,5d,24h

474 Some common configuration settings (51)

This stops a lot of failed delivery attempts from occurring, but Exim remembers which messages it
has queued up for that host. Once the intermittent host comes online, forcing delivery of one message
(either by using the -M or -R options, or by using the ETRN SMTP command (see section 49.2.5)
causes all the queued up messages to be delivered, often down a single SMTP connection. While the
host remains connected, any new messages get delivered immediately.

If the connecting hosts do not have fixed IP addresses, that is, if a host is issued with a different IP
address each time it connects, Exim’s retry mechanisms on the holding host get confused, because the
IP address is normally used as part of the key string for holding retry information. This can be
avoided by unsetting retry_include_ip_address on the smtp transport. Since this has disadvantages
for permanently connected hosts, it is best to arrange a separate transport for the intermittently
connected ones.

51.13 Exim on the intermittently connected client host

The value of smtp_accept_queue_per_connection should probably be increased, or even set to zero
(that is, disabled) on the intermittently connected host, so that all incoming messages down a single
connection get delivered immediately.

Mail waiting to be sent from an intermittently connected host will probably not have been routed,
because without a connection DNS lookups are not possible. This means that if a normal queue run is
done at connection time, each message is likely to be sent in a separate SMTP session. This can be
avoided by starting the queue run with a command line option beginning with -qq instead of -q. In
this case, the queue is scanned twice. In the first pass, routing is done but no deliveries take place. The
second pass is a normal queue run; since all the messages have been previously routed, those destined
for the same host are likely to get sent as multiple deliveries in a single SMTP connection.

475 Some common configuration settings (51)

52. Using Exim as a non-queueing client

On a personal computer, it is a common requirement for all email to be sent to a “smart host”. There
are plenty of MUAs that can be configured to operate that way, for all the popular operating systems.
However, there are some MUAs for Unix-like systems that cannot be so configured: they submit
messages using the command line interface of /usr/sbin/sendmail. Furthermore, utility programs such
as cron submit messages this way.

If the personal computer runs continuously, there is no problem, because it can run a conventional
MTA that handles delivery to the smart host, and deal with any delays via its queueing mechanism.
However, if the computer does not run continuously or runs different operating systems at different
times, queueing email is not desirable.

There is therefore a requirement for something that can provide the /usr/sbin/sendmail interface but
deliver messages to a smart host without any queueing or retrying facilities. Furthermore, the delivery
to the smart host should be synchronous, so that if it fails, the sending MUA is immediately informed.
In other words, we want something that extends an MUA that submits to a local MTA via the
command line so that it behaves like one that submits to a remote smart host using TCP/SMTP.

There are a number of applications (for example, there is one called ssmtp) that do this job. However,
people have found them to be lacking in various ways. For instance, you might want to allow aliasing
and forwarding to be done before sending a message to the smart host.

Exim already had the necessary infrastructure for doing this job. Just a few tweaks were needed to
make it behave as required, though it is somewhat of an overkill to use a fully-featured MTA for this
purpose.

There is a Boolean global option called mua_wrapper, defaulting false. Setting mua_wrapper true
causes Exim to run in a special mode where it assumes that it is being used to “wrap” a command-line
MUA in the manner just described. As well as setting mua_wrapper, you also need to provide a
compatible router and transport configuration. Typically there will be just one router and one trans-
port, sending everything to a smart host.

When run in MUA wrapping mode, the behaviour of Exim changes in the following ways:

• A daemon cannot be run, nor will Exim accept incoming messages from inetd. In other words, the
only way to submit messages is via the command line.

• Each message is synchronously delivered as soon as it is received (-odi is assumed). All queueing
options (queue_only, queue_smtp_domains, control in an ACL, etc.) are quietly ignored. The
Exim reception process does not finish until the delivery attempt is complete. If the delivery is
successful, a zero return code is given.

• Address redirection is permitted, but the final routing for all addresses must be to the same remote
transport, and to the same list of hosts. Furthermore, the return address (envelope sender) must be
the same for all recipients, as must any added or deleted header lines. In other words, it must be
possible to deliver the message in a single SMTP transaction, however many recipients there are.

• If these conditions are not met, or if routing any address results in a failure or defer status, or if
Exim is unable to deliver all the recipients successfully to one of the smart hosts, delivery of the
entire message fails.

• Because no queueing is allowed, all failures are treated as permanent; there is no distinction
between 4xx and 5xx SMTP response codes from the smart host. Furthermore, because only a
single yes/no response can be given to the caller, it is not possible to deliver to some recipients and
not others. If there is an error (temporary or permanent) for any recipient, all are failed.

• If more than one smart host is listed, Exim will try another host after a connection failure or a
timeout, in the normal way. However, if this kind of failure happens for all the hosts, the delivery
fails.

476 Exim as a non-queueing client (52)

• When delivery fails, an error message is written to the standard error stream (as well as to Exim’s
log), and Exim exits to the caller with a return code value 1. The message is expunged from Exim’s
spool files. No bounce messages are ever generated.

• No retry data is maintained, and any retry rules are ignored.

• A number of Exim options are overridden: deliver_drop_privilege is forced true, max_rcpt in the
smtp transport is forced to “unlimited”, remote_max_parallel is forced to one, and fallback hosts
are ignored.

The overall effect is that Exim makes a single synchronous attempt to deliver the message, failing if
there is any kind of problem. Because no local deliveries are done and no daemon can be run, Exim
does not need root privilege. It should be possible to run it setuid to exim instead of setuid to root. See
section 56.3 for a general discussion about the advantages and disadvantages of running without root
privilege.

477 Exim as a non-queueing client (52)

53. Log files

Exim writes three different logs, referred to as the main log, the reject log, and the panic log:

• The main log records the arrival of each message and each delivery in a single line in each case.
The format is as compact as possible, in an attempt to keep down the size of log files. Two-
character flag sequences make it easy to pick out these lines. A number of other events are
recorded in the main log. Some of them are optional, in which case the log_selector option
controls whether they are included or not. A Perl script called eximstats, which does simple
analysis of main log files, is provided in the Exim distribution (see section 54.7).

• The reject log records information from messages that are rejected as a result of a configuration
option (that is, for policy reasons). The first line of each rejection is a copy of the line that is also
written to the main log. Then, if the message’s header has been read at the time the log is written,
its contents are written to this log. Only the original header lines are available; header lines added
by ACLs are not logged. You can use the reject log to check that your policy controls are working
correctly; on a busy host this may be easier than scanning the main log for rejection messages. You
can suppress the writing of the reject log by setting write_rejectlog false.

• When certain serious errors occur, Exim writes entries to its panic log. If the error is sufficiently
disastrous, Exim bombs out afterwards. Panic log entries are usually written to the main log as
well, but can get lost amid the mass of other entries. The panic log should be empty under normal
circumstances. It is therefore a good idea to check it (or to have a cron script check it) regularly, in
order to become aware of any problems. When Exim cannot open its panic log, it tries as a last
resort to write to the system log (syslog). This is opened with LOG_PID+LOG_CONS and the
facility code of LOG_MAIL. The message itself is written at priority LOG_CRIT.

Every log line starts with a timestamp, in the format shown in the following example. Note that many
of the examples shown in this chapter are line-wrapped. In the log file, this would be all on one line:

2001-09-16 16:09:47 SMTP connection from [127.0.0.1] closed
 by QUIT

By default, the timestamps are in the local timezone. There are two ways of changing this:

• You can set the timezone option to a different time zone; in particular, if you set

timezone = UTC

the timestamps will be in UTC (aka GMT).

• If you set log_timezone true, the time zone is added to the timestamp, for example:

2003-04-25 11:17:07 +0100 Start queue run: pid=12762

Exim does not include its process id in log lines by default, but you can request that it does so by
specifying the pid log selector (see section 53.15). When this is set, the process id is output, in
square brackets, immediately after the time and date.

53.1 Where the logs are written

The logs may be written to local files, or to syslog, or both. However, it should be noted that many
syslog implementations use UDP as a transport, and are therefore unreliable in the sense that mess-
ages are not guaranteed to arrive at the loghost, nor is the ordering of messages necessarily main-
tained. It has also been reported that on large log files (tens of megabytes) you may need to tweak
syslog to prevent it syncing the file with each write – on Linux this has been seen to make syslog take
90% plus of CPU time.

The destination for Exim’s logs is configured by setting LOG_FILE_PATH in Local/Makefile or by
setting log_file_path in the runtime configuration. This latter string is expanded, so it can contain, for
example, references to the host name:

log_file_path = /var/log/$primary_hostname/exim_%slog

478 Log files (53)

It is generally advisable, however, to set the string in Local/Makefile rather than at runtime, because
then the setting is available right from the start of Exim’s execution. Otherwise, if there’s something it
wants to log before it has read the configuration file (for example, an error in the configuration file) it
will not use the path you want, and may not be able to log at all.

The value of LOG_FILE_PATH or log_file_path is a colon-separated list, currently limited to at most
two items. This is one option where the facility for changing a list separator may not be used. The list
must always be colon-separated. If an item in the list is “syslog” then syslog is used; otherwise the
item must either be an absolute path, containing %s at the point where “main”, “reject”, or “panic” is
to be inserted, or be empty, implying the use of a default path.

When Exim encounters an empty item in the list, it searches the list defined by LOG_FILE_PATH,
and uses the first item it finds that is neither empty nor “syslog”. This means that an empty item in
log_file_path can be used to mean “use the path specified at build time”. If no such item exists, log
files are written in the log subdirectory of the spool directory. This is equivalent to the configuration
file setting:

log_file_path = $spool_directory/log/%slog

If you do not specify anything at build time or runtime, or if you unset the option at runtime (i.e.
log_file_path =), that is where the logs are written.

A log file path may also contain %D or %M if datestamped log filenames are in use – see section 53.3
below.

Here are some examples of possible Makefile settings:

LOG_FILE_PATH=syslog syslog only
LOG_FILE_PATH=:syslog syslog and default path
LOG_FILE_PATH=syslog : /usr/log/exim_%s syslog and specified path
LOG_FILE_PATH=/usr/log/exim_%s specified path only

If there are more than two paths in the list, the first is used and a panic error is logged.

53.2 Logging to local files that are periodically “cycled”

Some operating systems provide centralized and standardized methods for cycling log files. For those
that do not, a utility script called exicyclog is provided (see section 54.6). This renames and com-
presses the main and reject logs each time it is called. The maximum number of old logs to keep can
be set. It is suggested this script is run as a daily cron job.

An Exim delivery process opens the main log when it first needs to write to it, and it keeps the file
open in case subsequent entries are required – for example, if a number of different deliveries are
being done for the same message. However, remote SMTP deliveries can take a long time, and this
means that the file may be kept open long after it is renamed if exicyclog or something similar is
being used to rename log files on a regular basis. To ensure that a switch of log files is noticed as soon
as possible, Exim calls stat() on the main log’s name before reusing an open file, and if the file does
not exist, or its inode has changed, the old file is closed and Exim tries to open the main log from
scratch. Thus, an old log file may remain open for quite some time, but no Exim processes should
write to it once it has been renamed.

53.3 Datestamped log files

Instead of cycling the main and reject log files by renaming them periodically, some sites like to use
files whose names contain a datestamp, for example, mainlog-20031225. The datestamp is in the form
yyyymmdd or yyyymm. Exim has support for this way of working. It is enabled by setting the log_file_
path option to a path that includes %D or %M at the point where the datestamp is required. For
example:

log_file_path = /var/spool/exim/log/%slog-%D
log_file_path = /var/log/exim-%s-%D.log
log_file_path = /var/spool/exim/log/%D-%slog
log_file_path = /var/log/exim/%s.%M

479 Log files (53)

As before, %s is replaced by “main” or “reject”; the following are examples of names generated by
the above examples:

/var/spool/exim/log/mainlog-20021225
/var/log/exim-reject-20021225.log
/var/spool/exim/log/20021225-mainlog
/var/log/exim/main.200212

When this form of log file is specified, Exim automatically switches to new files at midnight. It does
not make any attempt to compress old logs; you will need to write your own script if you require this.
You should not run exicyclog with this form of logging.

The location of the panic log is also determined by log_file_path, but it is not datestamped, because
rotation of the panic log does not make sense. When generating the name of the panic log, %D or %M
are removed from the string. In addition, if it immediately follows a slash, a following non-
alphanumeric character is removed; otherwise a preceding non-alphanumeric character is removed.
Thus, the four examples above would give these panic log names:

/var/spool/exim/log/paniclog
/var/log/exim-panic.log
/var/spool/exim/log/paniclog
/var/log/exim/panic

53.4 Logging to syslog

The use of syslog does not change what Exim logs or the format of its messages, except in one
respect. If syslog_timestamp is set false, the timestamps on Exim’s log lines are omitted when these
lines are sent to syslog. Apart from that, the same strings are written to syslog as to log files. The
syslog “facility” is set to LOG_MAIL, and the program name to “exim” by default, but you can
change these by setting the syslog_facility and syslog_processname options, respectively. If Exim
was compiled with SYSLOG_LOG_PID set in Local/Makefile (this is the default in src/EDITME),
then, on systems that permit it (all except ULTRIX), the LOG_PID flag is set so that the syslog() call
adds the pid as well as the time and host name to each line. The three log streams are mapped onto
syslog priorities as follows:

• mainlog is mapped to LOG_INFO

• rejectlog is mapped to LOG_NOTICE

• paniclog is mapped to LOG_ALERT

Many log lines are written to both mainlog and rejectlog, and some are written to both mainlog and
paniclog, so there will be duplicates if these are routed by syslog to the same place. You can suppress
this duplication by setting syslog_duplication false.

Exim’s log lines can sometimes be very long, and some of its rejectlog entries contain multiple lines
when headers are included. To cope with both these cases, entries written to syslog are split into
separate syslog() calls at each internal newline, and also after a maximum of 870 data characters.
(This allows for a total syslog line length of 1024, when additions such as timestamps are added.) If
you are running a syslog replacement that can handle lines longer than the 1024 characters allowed by
RFC 3164, you should set

SYSLOG_LONG_LINES=yes

in Local/Makefile before building Exim. That stops Exim from splitting long lines, but it still splits at
internal newlines in reject log entries.

To make it easy to re-assemble split lines later, each component of a split entry starts with a string of
the form [<n>/<m>] or [<n>\<m>] where <n> is the component number and <m> is the total number
of components in the entry. The / delimiter is used when the line was split because it was too long; if
it was split because of an internal newline, the \ delimiter is used. For example, supposing the length
limit to be 50 instead of 870, the following would be the result of a typical rejection message to
mainlog (LOG_INFO), each line in addition being preceded by the time, host name, and pid as added
by syslog:

480 Log files (53)

[1/5] 2002-09-16 16:09:43 16RdAL-0006pc-00 rejected from
[2/5] [127.0.0.1] (ph10): syntax error in 'From' header
[3/5] when scanning for sender: missing or malformed lo
[4/5] cal part in "<>" (envelope sender is <ph10@cam.exa
[5/5] mple>)

The same error might cause the following lines to be written to “rejectlog” (LOG_NOTICE):

[1/18] 2002-09-16 16:09:43 16RdAL-0006pc-00 rejected fro
[2/18] m [127.0.0.1] (ph10): syntax error in 'From' head
[3/18] er when scanning for sender: missing or malformed
[4/18] local part in "<>" (envelope sender is <ph10@cam
[5\18] .example>)
[6\18] Recipients: ph10@some.domain.cam.example
[7\18] P Received: from [127.0.0.1] (ident=ph10)
[8\18] by xxxxx.cam.example with smtp (Exim 4.00)
[9\18] id 16RdAL-0006pc-00
[10/18] for ph10@cam.example; Mon, 16 Sep 2002 16:
[11\18] 09:43 +0100
[12\18] F From: <>
[13\18] Subject: this is a test header
[18\18] X-something: this is another header
[15/18] I Message-Id: <E16RdAL-0006pc-00@xxxxx.cam.examp
[16\18] le>
[17\18] B Bcc:
[18/18] Date: Mon, 16 Sep 2002 16:09:43 +0100

Log lines that are neither too long nor contain newlines are written to syslog without modification.

If only syslog is being used, the Exim monitor is unable to provide a log tail display, unless syslog is
routing mainlog to a file on the local host and the environment variable EXIMON_LOG_FILE_PATH
is set to tell the monitor where it is.

53.5 Log line flags

One line is written to the main log for each message received, and for each successful, unsuccessful,
and delayed delivery. These lines can readily be picked out by the distinctive two-character flags that
immediately follow the timestamp. The flags are:

 <= message arrival
 (= message fakereject
 => normal message delivery
 -> additional address in same delivery
 >> cutthrough message delivery
 *> delivery suppressed by -N
 ** delivery failed; address bounced
 == delivery deferred; temporary problem

53.6 Logging message reception

The format of the single-line entry in the main log that is written for every message received is shown
in the basic example below, which is split over several lines in order to fit it on the page:

2002-10-31 08:57:53 16ZCW1-0005MB-00 <= kryten@dwarf.fict.example
 H=mailer.fict.example [192.168.123.123] U=exim
 P=smtp S=5678 id=<incoming message id>

The address immediately following “<=” is the envelope sender address. A bounce message is shown
with the sender address “<>”, and if it is locally generated, this is followed by an item of the form

R=<message id>

481 Log files (53)

which is a reference to the message that caused the bounce to be sent.

For messages from other hosts, the H and U fields identify the remote host and record the RFC 1413
identity of the user that sent the message, if one was received. The number given in square brackets is
the IP address of the sending host. If there is a single, unparenthesized host name in the H field, as
above, it has been verified to correspond to the IP address (see the host_lookup option). If the name
is in parentheses, it was the name quoted by the remote host in the SMTP HELO or EHLO command,
and has not been verified. If verification yields a different name to that given for HELO or EHLO, the
verified name appears first, followed by the HELO or EHLO name in parentheses.

Misconfigured hosts (and mail forgers) sometimes put an IP address, with or without brackets, in the
HELO or EHLO command, leading to entries in the log containing text like these examples:

H=(10.21.32.43) [192.168.8.34]
H=([10.21.32.43]) [192.168.8.34]

This can be confusing. Only the final address in square brackets can be relied on.

For locally generated messages (that is, messages not received over TCP/IP), the H field is omitted,
and the U field contains the login name of the caller of Exim.

For all messages, the P field specifies the protocol used to receive the message. This is the value that
is stored in $received_protocol. In the case of incoming SMTP messages, the value indicates whether
or not any SMTP extensions (ESMTP), encryption, or authentication were used. If the SMTP session
was encrypted, there is an additional X field that records the cipher suite that was used.

The protocol is set to “esmtpsa” or “esmtpa” for messages received from hosts that have authenticated
themselves using the SMTP AUTH command. The first value is used when the SMTP connection
was encrypted (“secure”). In this case there is an additional item A= followed by the name of the
authenticator that was used. If an authenticated identification was set up by the authenticator’s
server_set_id option, this is logged too, separated by a colon from the authenticator name.

The id field records the existing message id, if present. The size of the received message is given by
the S field. When the message is delivered, headers may be removed or added, so that the size of
delivered copies of the message may not correspond with this value (and indeed may be different to
each other).

The log_selector option can be used to request the logging of additional data when a message is
received. See section 53.15 below.

53.7 Logging deliveries

The format of the single-line entry in the main log that is written for every delivery is shown in one of
the examples below, for local and remote deliveries, respectively. Each example has been split into
multiple lines in order to fit it on the page:

2002-10-31 08:59:13 16ZCW1-0005MB-00 => marv
 <marv@hitch.fict.example> R=localuser T=local_delivery
2002-10-31 09:00:10 16ZCW1-0005MB-00 =>
 monk@holistic.fict.example R=dnslookup T=remote_smtp
 H=holistic.fict.example [192.168.234.234]

For ordinary local deliveries, the original address is given in angle brackets after the final delivery
address, which might be a pipe or a file. If intermediate address(es) exist between the original and the
final address, the last of these is given in parentheses after the final address. The R and T fields record
the router and transport that were used to process the address.

If SMTP AUTH was used for the delivery there is an additional item A= followed by the name of the
authenticator that was used. If an authenticated identification was set up by the authenticator’s client_
set_id option, this is logged too, as a second colon-separated list item. Optionally (see the smtp_
mailauth log_selector) there may be a third list item.

If a shadow transport was run after a successful local delivery, the log line for the successful delivery
has an item added on the end, of the form

482 Log files (53)

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses afterwards.

When more than one address is included in a single delivery (for example, two SMTP RCPT com-
mands in one transaction) the second and subsequent addresses are flagged with -> instead of =>.
When two or more messages are delivered down a single SMTP connection, an asterisk follows the
remote IP address (and port if enabled) in the log lines for the second and subsequent messages.
When two or more messages are delivered down a single TLS connection, the DNS and some
TLS-related information logged for the first message delivered will not be present in the log lines for
the second and subsequent messages. TLS cipher information is still available.

When delivery is done in cutthrough mode it is flagged with >> and the log line precedes the
reception line, since cutthrough waits for a possible rejection from the destination in case it can reject
the sourced item.

The generation of a reply message by a filter file gets logged as a “delivery” to the addressee,
preceded by “>”.

The log_selector option can be used to request the logging of additional data when a message is
delivered. See section 53.15 below.

53.8 Discarded deliveries

When a message is discarded as a result of the command “seen finish” being obeyed in a filter file
which generates no deliveries, a log entry of the form

2002-12-10 00:50:49 16auJc-0001UB-00 => discarded
 <low.club@bridge.example> R=userforward

is written, to record why no deliveries are logged. When a message is discarded because it is aliased
to “:blackhole:” the log line is like this:

1999-03-02 09:44:33 10HmaX-0005vi-00 => :blackhole:
 <hole@nowhere.example> R=blackhole_router

53.9 Deferred deliveries

When a delivery is deferred, a line of the following form is logged:

2002-12-19 16:20:23 16aiQz-0002Q5-00 == marvin@endrest.example
 R=dnslookup T=smtp defer (146): Connection refused

In the case of remote deliveries, the error is the one that was given for the last IP address that was
tried. Details of individual SMTP failures are also written to the log, so the above line would be
preceded by something like

2002-12-19 16:20:23 16aiQz-0002Q5-00 Failed to connect to
 mail1.endrest.example [192.168.239.239]: Connection refused

When a deferred address is skipped because its retry time has not been reached, a message is written
to the log, but this can be suppressed by setting an appropriate value in log_selector.

53.10 Delivery failures

If a delivery fails because an address cannot be routed, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 ** jim@trek99.example
 <jim@trek99.example>: unknown mail domain

If a delivery fails at transport time, the router and transport are shown, and the response from the
remote host is included, as in this example:

2002-07-11 07:14:17 17SXDU-000189-00 ** ace400@pb.example
 R=dnslookup T=remote_smtp: SMTP error from remote mailer

483 Log files (53)

 after pipelined RCPT TO:<ace400@pb.example>: host
 pbmail3.py.example [192.168.63.111]: 553 5.3.0
 <ace400@pb.example>...Addressee unknown

The word “pipelined” indicates that the SMTP PIPELINING extension was being used. See hosts_
avoid_esmtp in the smtp transport for a way of disabling PIPELINING. The log lines for all forms of
delivery failure are flagged with **.

53.11 Fake deliveries

If a delivery does not actually take place because the -N option has been used to suppress it, a normal
delivery line is written to the log, except that “=>” is replaced by “*>”.

53.12 Completion

A line of the form

2002-10-31 09:00:11 16ZCW1-0005MB-00 Completed

is written to the main log when a message is about to be removed from the spool at the end of its
processing.

53.13 Summary of Fields in Log Lines

A summary of the field identifiers that are used in log lines is shown in the following table:

A authenticator name (and optional id and sender)
C SMTP confirmation on delivery
Ci connection identifier
 command list for “no mail in SMTP session”
CV certificate verification status
D duration of “no mail in SMTP session”
DKIM domain verified in incoming message
DN distinguished name from peer certificate
DS DNSSEC secured lookups
DT on =>, == and ** lines: time taken for, or to attempt, a delivery
F sender address (on delivery lines)
H host name and IP address
I local interface used
id message id (from header) for incoming message
K CHUNKING extension used
L on <= and => lines: PIPELINING extension used
M8S 8BITMIME status for incoming message
P on <= lines: protocol used
 on => and ** lines: return path
PRDR PRDR extension used
PRX on <= and => lines: proxy address
Q alternate queue name
QT on => lines: time spent on queue so far
 on “Completed” lines: time spent on queue
R on <= lines: reference for local bounce
 on => >> ** and == lines: router name
RT on <= lines: time taken for reception
S size of message in bytes
SNI server name indication from TLS client hello
ST shadow transport name
T on <= lines: message subject (topic)
TFO connection took advantage of TCP Fast Open
 on => ** and == lines: transport name

484 Log files (53)

U local user or RFC 1413 identity
X TLS cipher suite

53.14 Other log entries

Various other types of log entry are written from time to time. Most should be self-explanatory.
Among the more common are:

• retry time not reached An address previously suffered a temporary error during routing or local
delivery, and the time to retry has not yet arrived. This message is not written to an individual
message log file unless it happens during the first delivery attempt.

• retry time not reached for any host An address previously suffered temporary errors during remote
delivery, and the retry time has not yet arrived for any of the hosts to which it is routed.

• spool file locked An attempt to deliver a message cannot proceed because some other Exim
process is already working on the message. This can be quite common if queue running processes
are started at frequent intervals. The exiwhat utility script can be used to find out what Exim
processes are doing.

• error ignored There are several circumstances that give rise to this message:

(1) Exim failed to deliver a bounce message whose age was greater than ignore_bounce_errors_
after. The bounce was discarded.

(2) A filter file set up a delivery using the “noerror” option, and the delivery failed. The delivery
was discarded.

(3) A delivery set up by a router configured with

errors_to = <>

failed. The delivery was discarded.

• DKIM: d= Verbose results of a DKIM verification attempt, if enabled for logging and the message
has a DKIM signature header.

53.15 Reducing or increasing what is logged

By setting the log_selector global option, you can disable some of Exim’s default logging to the main
log, or you can request additional logging. The value of log_selector is made up of names preceded
by plus or minus characters. For example:

log_selector = +arguments -retry_defer

The list of optional log items is in the following table, with the default selection marked by asterisks:

 8bitmime received 8BITMIME status
 acl_warn_skipped * skipped warn statement in ACL
 address_rewrite address rewriting
 all_parents all parents in => lines
 arguments command line arguments
 connection_id connection identifier
 connection_reject * connection rejections
 delay_delivery * immediate delivery delayed
 deliver_time time taken to attempt delivery
 delivery_size add S=nnn to => lines
 dkim * DKIM verified domain on <= lines
 dkim_verbose separate full DKIM verification result line, per

signature; DKIM signing
 dnslist_defer * defers of DNS list (aka RBL) lookups
 dnssec DNSSEC secured lookups
 etrn * ETRN commands
 host_lookup_failed * as it says

485 Log files (53)

 ident_timeout timeout for ident connection
 incoming_interface local interface & port on <= and => lines
 incoming_port remote port on <= lines
 lost_incoming_connection * as it says (includes timeouts)
 millisec millisecond timestamps and RT,QT,DT,D times
 msg_id * on <= lines, Message-ID: header value
 msg_id_created on <= lines, Message-ID: header value when

one had to be added
 outgoing_interface local interface on => lines
 outgoing_port add remote port to => lines
 queue_run * start and end queue runs
 queue_time time on queue for one recipient
 queue_time_exclusive exclude recieve time from QT times
 queue_time_overall time on queue for whole message
 pid Exim process id
 pipelining PIPELINING use, on <= and => lines
 proxy proxy address on <= and => lines
 receive_time time taken to receive message
 received_recipients recipients on <= lines
 received_sender sender on <= lines
 rejected_header * header contents on reject log
 retry_defer * “retry time not reached”
 return_path_on_delivery put return path on => and ** lines
 sender_on_delivery add sender to => lines
 sender_verify_fail * sender verification failures
 size_reject * rejection because too big
 skip_delivery * delivery skipped in a queue run
 smtp_confirmation * SMTP confirmation on => lines
 smtp_connection incoming SMTP connections
 smtp_incomplete_transaction incomplete SMTP transactions
 smtp_mailauth AUTH argument to MAIL commands
 smtp_no_mail session with no MAIL commands
 smtp_protocol_error SMTP protocol errors
 smtp_syntax_error SMTP syntax errors
 subject contents of Subject: on <= lines
 tls_certificate_verified * certificate verification status
 tls_cipher * TLS cipher suite on <= and => lines
 tls_peerdn TLS peer DN on <= and => lines
 tls_resumption append * to cipher field
 tls_sni TLS SNI on <= lines
 unknown_in_list lookup failed in list match
 all all of the above

See also the slow_lookup_log main configuration option, section 14.4

More details on each of these items follows:

• 8bitmime: This causes Exim to log any 8BITMIME status of received messages, which may help
in tracking down interoperability issues with ancient MTAs that are not 8bit clean. This is added to
the “<=” line, tagged with M8S= and a value of 0, 7 or 8, corresponding to "not given", 7BIT and
8BITMIME respectively.

• acl_warn_skipped: When an ACL warn statement is skipped because one of its conditions cannot
be evaluated, a log line to this effect is written if this log selector is set.

• address_rewrite: This applies both to global rewrites and per-transport rewrites, but not to rewrites
in filters run as an unprivileged user (because such users cannot access the log).

• all_parents: Normally only the original and final addresses are logged on delivery lines; with this
selector, intermediate parents are given in parentheses between them.

486 Log files (53)

• arguments: This causes Exim to write the arguments with which it was called to the main log,
preceded by the current working directory. This is a debugging feature, added to make it easier to
find out how certain MUAs call /usr/sbin/sendmail. The logging does not happen if Exim has given
up root privilege because it was called with the -C or -D options. Arguments that are empty or that
contain white space are quoted. Non-printing characters are shown as escape sequences. This
facility cannot log unrecognized arguments, because the arguments are checked before the con-
figuration file is read. The only way to log such cases is to interpose a script such as util/logargs.sh
between the caller and Exim.

• connection_identifier: An identifier for the accepted connection is added to connection start and
end lines and to message accept lines. The identifier is tagged by Ci=. The value is PID-based, so
will reset on reboot and will wrap.

• connection_reject: A log entry is written whenever an incoming SMTP connection is rejected, for
whatever reason.

• delay_delivery: A log entry is written whenever a delivery process is not started for an incoming
message because the load is too high or too many messages were received on one connection.
Logging does not occur if no delivery process is started because queue_only is set or -odq was
used.

• deliver_time: For each delivery, the amount of real time it has taken to perform the actual delivery
is logged as DT=<time>, for example, DT=1s. If millisecond logging is enabled, short times will
be shown with greater precision, eg. DT=0.304s.

• delivery_size: For each delivery, the size of message delivered is added to the “=>” line, tagged
with S=.

• dkim: For message acceptance log lines, when an DKIM signature in the header verifies success-
fully a tag of DKIM is added, with one of the verified domains.

• dkim_verbose: A log entry is written for each attempted DKIM verification.

Also, on message delivery lines signing information (domain and selector) is added, tagged with
DKIM=.

• dnslist_defer: A log entry is written if an attempt to look up a host in a DNS black list suffers a
temporary error.

• dnssec: For message acceptance and (attempted) delivery log lines, when dns lookups gave secure
results a tag of DS is added. For acceptance this covers the reverse and forward lookups for host
name verification. It does not cover helo-name verification. For delivery this covers the SRV, MX,
A and/or AAAA lookups.

• etrn: Every valid ETRN command that is received is logged, before the ACL is run to determine
whether or not it is actually accepted. An invalid ETRN command, or one received within a
message transaction is not logged by this selector (see smtp_syntax_error and smtp_protocol_
error).

• host_lookup_failed: When a lookup of a host’s IP addresses fails to find any addresses, or when a
lookup of an IP address fails to find a host name, a log line is written. This logging does not apply
to direct DNS lookups when routing email addresses, but it does apply to “byname” lookups.

• ident_timeout: A log line is written whenever an attempt to connect to a client’s ident port times
out.

• incoming_interface: The interface on which a message was received is added to the “<=” line as
an IP address in square brackets, tagged by I= and followed by a colon and the port number. The
local interface and port are also added to other SMTP log lines, for example, “SMTP connection
from”, to rejection lines, and (despite the name) to outgoing “=>”, “->”, “==” and “**” lines. The
latter can be disabled by turning off the outgoing_interface option.

• proxy: The internal (closest to the system running Exim) IP address of the proxy, tagged by PRX=,
on the “<=” line for a message accepted on a proxied connection or the “=>” line for a message
delivered on a proxied connection. See 59.1 for more information.

487 Log files (53)

• incoming_port: The remote port number from which a message was received is added to log
entries and Received: header lines, following the IP address in square brackets, and separated from
it by a colon. This is implemented by changing the value that is put in the $sender_fullhost and
$sender_rcvhost variables. Recording the remote port number has become more important with the
widening use of NAT (see RFC 2505).

• lost_incoming_connection: A log line is written when an incoming SMTP connection is un-
expectedly dropped.

• millisec: Timestamps have a period and three decimal places of finer granularity appended to the
seconds value.

• msg_id: The value of the Message-ID: header.

• msg_id_created: The value of the Message-ID: header, when one had to be created. This will be
either because the message is a bounce, or was submitted locally (submission mode) without one.
The field identifier will have an asterix appended: “id*=”.

• outgoing_interface: If incoming_interface is turned on, then the interface on which a message
was sent is added to delivery lines as an I= tag followed by IP address in square brackets. You can
disable this by turning off the outgoing_interface option.

• outgoing_port: The remote port number is added to delivery log lines (those containing => tags)
following the IP address. The local port is also added if incoming_interface and outgoing_
interface are both enabled. This option is not included in the default setting, because for most
ordinary configurations, the remote port number is always 25 (the SMTP port), and the local port is
a random ephemeral port.

• pid: The current process id is added to every log line, in square brackets, immediately after the
time and date.

• pipelining: A field is added to delivery and accept log lines when the ESMTP PIPELINING
extension was used. The field is a single "L".

On accept lines, where PIPELINING was offered but not used by the client, the field has a minus
appended.

If Exim is built without the DISABLE_PIPE_CONNECT build option accept "L" fields have a
period appended if the feature was offered but not used, or an asterisk appended if used. Delivery
"L" fields have an asterisk appended if used.

• queue_run: The start and end of every queue run are logged.

• queue_time: The amount of time the message has been in the queue on the local host is logged as
QT=<time> on delivery (=>) lines, for example, QT=3m45s. If millisecond logging is enabled,
short times will be shown with greater precision, eg. QT=1.578s.

• queue_time_overall: The amount of time the message has been in the queue on the local host is
logged as QT=<time> on “Completed” lines, for example, QT=3m45s.

• receive_time: For each message, the amount of real time it has taken to perform the reception is
logged as RT=<time>, for example, RT=1s. If millisecond logging is enabled, short times will be
shown with greater precision, eg. RT=0.204s.

• received_recipients: The recipients of a message are listed in the main log as soon as the message
is received. The list appears at the end of the log line that is written when a message is received,
preceded by the word “for”. The addresses are listed after they have been qualified, but before any
rewriting has taken place. Recipients that were discarded by an ACL for MAIL or RCPT do not
appear in the list.

• received_sender: The unrewritten original sender of a message is added to the end of the log line
that records the message’s arrival, after the word “from” (before the recipients if received_recipi-
ents is also set).

488 Log files (53)

• rejected_header: If a message’s header has been received at the time a rejection is written to the
reject log, the complete header is added to the log. Header logging can be turned off individually
for messages that are rejected by the local_scan() function (see section 46.2).

• retry_defer: A log line is written if a delivery is deferred because a retry time has not yet been
reached. However, this “retry time not reached” message is always omitted from individual mess-
age logs after the first delivery attempt.

• return_path_on_delivery: The return path that is being transmitted with the message is included
in delivery and bounce lines, using the tag P=. This is omitted if no delivery actually happens, for
example, if routing fails, or if delivery is to /dev/null or to :blackhole:.

• sender_on_delivery: The message’s sender address is added to every delivery and bounce line,
tagged by F= (for “from”). This is the original sender that was received with the message; it is not
necessarily the same as the outgoing return path.

• sender_verify_fail: If this selector is unset, the separate log line that gives details of a sender
verification failure is not written. Log lines for the rejection of SMTP commands contain just
“sender verify failed”, so some detail is lost.

• size_reject: A log line is written whenever a message is rejected because it is too big.

• skip_delivery: A log line is written whenever a message is skipped during a queue run because it
another process is already delivering it or because it is frozen. The message that is written is either
“spool file is locked” or “message is frozen”.

• smtp_confirmation: The response to the final “.” in the SMTP or LMTP dialogue for outgoing
messages is added to delivery log lines in the form C=<text>. A number of MTAs (including Exim)
return an identifying string in this response.

• smtp_connection: A log line is written whenever an incoming SMTP connection is established or
closed, unless the connection is from a host that matches hosts_connection_nolog. (In contrast,
lost_incoming_connection applies only when the closure is unexpected.) This applies to connec-
tions from local processes that use -bs as well as to TCP/IP connections. If a connection is dropped
in the middle of a message, a log line is always written, whether or not this selector is set, but
otherwise nothing is written at the start and end of connections unless this selector is enabled.

For TCP/IP connections to an Exim daemon, the current number of connections is included in the
log message for each new connection, but note that the count is reset if the daemon is restarted.
Also, because connections are closed (and the closure is logged) in subprocesses, the count may
not include connections that have been closed but whose termination the daemon has not yet
noticed. Thus, while it is possible to match up the opening and closing of connections in the log,
the value of the logged counts may not be entirely accurate.

• smtp_incomplete_transaction: When a mail transaction is aborted by RSET, QUIT, loss of con-
nection, or otherwise, the incident is logged, and the message sender plus any accepted recipients
are included in the log line. This can provide evidence of dictionary attacks.

• smtp_no_mail: A line is written to the main log whenever an accepted SMTP connection termin-
ates without having issued a MAIL command. This includes both the case when the connection is
dropped, and the case when QUIT is used. It does not include cases where the connection is
rejected right at the start (by an ACL, or because there are too many connections, or whatever).
These cases already have their own log lines.

The log line that is written contains the identity of the client in the usual way, followed by D= and
a time, which records the duration of the connection. If the connection was authenticated, this fact
is logged exactly as it is for an incoming message, with an A= item. If the connection was
encrypted, CV=, DN=, and X= items may appear as they do for an incoming message, controlled
by the same logging options.

Finally, if any SMTP commands were issued during the connection, a C= item is added to the line,
listing the commands that were used. For example,

C=EHLO,QUIT

489 Log files (53)

shows that the client issued QUIT straight after EHLO. If there were fewer than 20 commands,
they are all listed. If there were more than 20 commands, the last 20 are listed, preceded by “...”.
However, with the default setting of 10 for smtp_accept_max_nonmail, the connection will in any
case have been aborted before 20 non-mail commands are processed.

• smtp_mailauth: A third subfield with the authenticated sender, colon-separated, is appended to the
A= item for a message arrival or delivery log line, if an AUTH argument to the SMTP MAIL
command (see 33.2) was accepted or used.

• smtp_protocol_error: A log line is written for every SMTP protocol error encountered. Exim does
not have perfect detection of all protocol errors because of transmission delays and the use of
pipelining. If PIPELINING has been advertised to a client, an Exim server assumes that the client
will use it, and therefore it does not count “expected” errors (for example, RCPT received after
rejecting MAIL) as protocol errors.

• smtp_syntax_error: A log line is written for every SMTP syntax error encountered. An
unrecognized command is treated as a syntax error. For an external connection, the host identity is
given; for an internal connection using -bs the sender identification (normally the calling user) is
given.

• subject: The subject of the message is added to the arrival log line, preceded by “T=” (T for
“topic”, since S is already used for “size”). Any MIME “words” in the subject are decoded. The
print_topbitchars option specifies whether characters with values greater than 127 should be
logged unchanged, or whether they should be rendered as escape sequences.

• tls_certificate_verified: An extra item is added to <= and => log lines when TLS is in use. The
item is CV=yes if the peer’s certificate was verified using a CA trust anchor, CV=dane if using a
DNS trust anchor, and CV=no if not.

• tls_cipher: When a message is sent or received over an encrypted connection, the cipher suite used
is added to the log line, preceded by X=.

• tls_peerdn: When a message is sent or received over an encrypted connection, and a certificate is
supplied by the remote host, the peer DN is added to the log line, preceded by DN=.

• tls_resumption: When a message is sent or received over an encrypted connection and the TLS
session resumed one used on a previous TCP connection, an asterisk is appended to the X= cipher
field in the log line.

• tls_sni: When a message is received over an encrypted connection, and the remote host provided
the Server Name Indication extension, the SNI is added to the log line, preceded by SNI=.

• unknown_in_list: This setting causes a log entry to be written when the result of a list match is
failure because a DNS lookup failed, or because a bad IP address was in the list.

53.16 Message log

In addition to the general log files, Exim writes a log file for each message that it handles. The names
of these per-message logs are the message ids, and they are kept in the msglog sub-directory of the
spool directory. Each message log contains copies of the log lines that apply to the message. This
makes it easier to inspect the status of an individual message without having to search the main log. A
message log is deleted when processing of the message is complete, unless preserve_message_logs is
set, but this should be used only with great care because they can fill up your disk very quickly.

On a heavily loaded system, it may be desirable to disable the use of per-message logs, in order to
reduce disk I/O. This can be done by setting the message_logs option false.

490 Log files (53)

54. Exim utilities

A number of utility scripts and programs are supplied with Exim and are described in this chapter.
There is also the Exim Monitor, which is covered in the next chapter. The utilities described here are:

 54.1 exiwhat list what Exim processes are doing
 54.2 exiqgrep grep the queue
 54.3 exiqsumm summarize the queue
 54.4 exigrep search the main log
 54.5 exipick select messages on various criteria
 54.6 exicyclog cycle (rotate) log files
 54.7 eximstats extract statistics from the log
 54.8 exim_checkaccess check address acceptance from given IP
 54.9 exim_dbmbuild build a DBM file
 54.10 exinext extract retry information
 54.12 exim_dumpdb dump a hints database
 54.13 exim_tidydb clean up a hints database
 54.14 exim_fixdb patch a hints database
 54.15 exim_lock lock a mailbox file
 54.16 exim_msgdate Message Ids for humans (exim_msgdate)

Another utility that might be of use to sites with many MTAs is Tom Kistner’s exilog. It provides log
visualizations across multiple Exim servers. See https://duncanthrax.net/exilog/ for details.

54.1 Finding out what Exim processes are doing (exiwhat)

On operating systems that can restart a system call after receiving a signal (most modern OS), an
Exim process responds to the SIGUSR1 signal by writing a line describing what it is doing to the file
exim-process.info in the Exim spool directory. The exiwhat script sends the signal to all Exim pro-
cesses it can find, having first emptied the file. It then waits for one second to allow the Exim
processes to react before displaying the results. In order to run exiwhat successfully you have to have
sufficient privilege to send the signal to the Exim processes, so it is normally run as root.

Warning: This is not an efficient process. It is intended for occasional use by system administrators.
It is not sensible, for example, to set up a script that sends SIGUSR1 signals to Exim processes at
short intervals.

Unfortunately, the ps command that exiwhat uses to find Exim processes varies in different operating
systems. Not only are different options used, but the format of the output is different. For this reason,
there are some system configuration options that configure exactly how exiwhat works. If it doesn’t
seem to be working for you, check the following compile-time options:

 EXIWHAT_PS_CMD the command for running ps
 EXIWHAT_PS_ARG the argument for ps
 EXIWHAT_EGREP_ARG the argument for egrep to select from ps output
 EXIWHAT_KILL_ARG the argument for the kill command

An example of typical output from exiwhat is

164 daemon: -q1h, listening on port 25
10483 running queue: waiting for 0tAycK-0002ij-00 (10492)
10492 delivering 0tAycK-0002ij-00 to mail.ref.example
 [10.19.42.42] (editor@ref.example)
10592 handling incoming call from [192.168.243.242]
10628 accepting a local non-SMTP message

The first number in the output line is the process number. The third line has been split here, in order to
fit it on the page.

491 Exim utilities (54)

54.2 Selective queue listing (exiqgrep)

This utility is a Perl script contributed by Matt Hubbard. It runs

exim -bpu

or (in case -a switch is specified)

exim -bp

to obtain a queue listing, and then greps the output to select messages that match given criteria. The
following selection options are available:

-f <regex>
Match the sender address using a case-insensitive search. The field that is tested is enclosed in
angle brackets, so you can test for bounce messages with

exiqgrep -f '^<>$'

-r <regex>
Match a recipient address using a case-insensitive search. The field that is tested is not enclosed in
angle brackets.

-s <regex>
Match against the size field.

-y <seconds>
Match messages that are younger than the given time.

-o <seconds>
Match messages that are older than the given time.

-z
Match only frozen messages.

-x
Match only non-frozen messages.

-G <queuename>
Match only messages in the given queue. Without this, the default queue is searched.

The following options control the format of the output:

-c
Display only the count of matching messages.

-l
Long format – display the full message information as output by Exim. This is the default.

-i
Display message ids only.

-b
Brief format – one line per message.

-R
Display messages in reverse order.

-a
Include delivered recipients in queue listing.

The following options give alternates for configuration:

-C <config file>
is used to specify an alternate exim.conf which might contain alternate exim configuration the
queue management might be using.

-E <path>
can be used to specify a path for the exim binary, overriding the built-in one.

492 Exim utilities (54)

There is one more option, -h, which outputs a list of options. At least one selection option, or either
the -c or -h option, must be given.

54.3 Summarizing the queue (exiqsumm)

The exiqsumm utility is a Perl script which reads the output of exim -bp and produces a summary
of the messages in the queue. Thus, you use it by running a command such as

exim -bp | exiqsumm

The output consists of one line for each domain that has messages waiting for it, as in the following
example:

3 2322 74m 66m msn.com.example

Each line lists the number of pending deliveries for a domain, their total volume, and the length of
time that the oldest and the newest messages have been waiting. Note that the number of pending
deliveries is greater than the number of messages when messages have more than one recipient.

A summary line is output at the end. By default the output is sorted on the domain name, but
exiqsumm has the options -a and -c, which cause the output to be sorted by oldest message and by
count of messages, respectively. There are also three options that split the messages for each domain
into two or more subcounts: -b separates bounce messages, -f separates frozen messages, and -s
separates messages according to their sender.

The output of exim -bp contains the original addresses in the message, so this also applies to the
output from exiqsumm. No domains from addresses generated by aliasing or forwarding are included
(unless the one_time option of the redirect router has been used to convert them into “top level”
addresses).

54.4 Extracting specific information from the log (exigrep)

The exigrep utility is a Perl script that searches one or more main log files for entries that match a
given pattern. When it finds a match, it extracts all the log entries for the relevant message, not just
those that match the pattern. Thus, exigrep can extract complete log entries for a given message, or all
mail for a given user, or for a given host, for example. The input files can be in Exim log format or
syslog format. If a matching log line is not associated with a specific message, it is included in
exigrep’s output without any additional lines. The usage is:

exigrep [-t<n>] [-I] [-l] [-M] [-v] <pattern> [<log file>] ...

If no log filenames are given on the command line, the standard input is read.

The -t argument specifies a number of seconds. It adds an additional condition for message selection.
Messages that are complete are shown only if they spent more than <n> seconds in the queue.

By default, exigrep does case-insensitive matching. The -I option makes it case-sensitive. This may
give a performance improvement when searching large log files. Without -I, the Perl pattern matches
use Perl’s /i option; with -I they do not. In both cases it is possible to change the case sensitivity
within the pattern by using (?i) or (?-i).

The -l option means “literal”, that is, treat all characters in the pattern as standing for themselves.
Otherwise the pattern must be a Perl regular expression.

The -v option inverts the matching condition. That is, a line is selected if it does not match the pattern.

The -M options means “related messages”. exigrep will show messages that are generated as a
result/response to a message that exigrep matched normally.

Example of -M: user_a sends a message to user_b, which generates a bounce back to user_b. If
exigrep is used to search for “user_a”, only the first message will be displayed. But if exigrep is used
to search for “user_b”, the first and the second (bounce) message will be displayed. Using -M with
exigrep when searching for “user_a” will show both messages since the bounce is “related” to or a
“result” of the first message that was found by the search term.

493 Exim utilities (54)

If the location of a zcat command is known from the definition of ZCAT_COMMAND in
Local/Makefile, exigrep automatically passes any file whose name ends in COMPRESS_SUFFIX
through zcat as it searches it. If the ZCAT_COMMAND is not executable, exigrep tries to use
autodetection of some well known compression extensions.

54.5 Selecting messages by various criteria (exipick)

John Jetmore’s exipick utility is included in the Exim distribution. It lists messages from the queue
according to a variety of criteria. For details of exipick’s facilities, run exipick with the --help option.

54.6 Cycling log files (exicyclog)

The exicyclog script can be used to cycle (rotate) mainlog and rejectlog files. This is not necessary if
only syslog is being used, or if you are using log files with datestamps in their names (see section
53.3). Some operating systems have their own standard mechanisms for log cycling, and these can be
used instead of exicyclog if preferred. There are two command line options for exicyclog:

• -k <count> specifies the number of log files to keep, overriding the default that is set when Exim is
built. The default default is 10.

• -l <path> specifies the log file path, in the same format as Exim’s log_file_path option (for
example, /var/log/exim_%slog), again overriding the script’s default, which is to find the
setting from Exim’s configuration.

Each time exicyclog is run the filenames get “shuffled down” by one. If the main log filename is
mainlog (the default) then when exicyclog is run mainlog becomes mainlog.01, the previous
mainlog.01 becomes mainlog.02 and so on, up to the limit that is set in the script or by the -k option.
Log files whose numbers exceed the limit are discarded. Reject logs are handled similarly.

If the limit is greater than 99, the script uses 3-digit numbers such as mainlog.001, mainlog.002, etc.
If you change from a number less than 99 to one that is greater, or vice versa, you will have to fix the
names of any existing log files.

If no mainlog file exists, the script does nothing. Files that “drop off” the end are deleted. All files
with numbers greater than 01 are compressed, using a compression command which is configured by
the COMPRESS_COMMAND setting in Local/Makefile. It is usual to run exicyclog daily from a root
crontab entry of the form

1 0 * * * su exim -c /usr/exim/bin/exicyclog

assuming you have used the name “exim” for the Exim user. You can run exicyclog as root if you
wish, but there is no need.

54.7 Mail statistics (eximstats)

A Perl script called eximstats is provided for extracting statistical information from log files. The
output is either plain text, or HTML.

The eximstats script has been hacked about quite a bit over time. The latest version is the result of
some extensive revision by Steve Campbell. A lot of information is given by default, but there are
options for suppressing various parts of it. Following any options, the arguments to the script are a list
of files, which should be main log files. For example:

eximstats -nr /var/spool/exim/log/mainlog.01

By default, eximstats extracts information about the number and volume of messages received from or
delivered to various hosts. The information is sorted both by message count and by volume, and the
top fifty hosts in each category are listed on the standard output. Similar information, based on email
addresses or domains instead of hosts can be requested by means of various options. For messages
delivered and received locally, similar statistics are also produced per user.

The output also includes total counts and statistics about delivery errors, and histograms showing the
number of messages received and deliveries made in each hour of the day. A delivery with more than

494 Exim utilities (54)

one address in its envelope (for example, an SMTP transaction with more than one RCPT command)
is counted as a single delivery by eximstats.

Though normally more deliveries than receipts are reported (as messages may have multiple recipi-
ents), it is possible for eximstats to report more messages received than delivered, even though the
queue is empty at the start and end of the period in question. If an incoming message contains no
valid recipients, no deliveries are recorded for it. A bounce message is handled as an entirely separate
message.

eximstats always outputs a grand total summary giving the volume and number of messages received
and deliveries made, and the number of hosts involved in each case. It also outputs the number of
messages that were delayed (that is, not completely delivered at the first attempt), and the number that
had at least one address that failed.

The remainder of the output is in sections that can be independently disabled or modified by various
options. It consists of a summary of deliveries by transport, histograms of messages received and
delivered per time interval (default per hour), information about the time messages spent in the queue,
a list of relayed messages, lists of the top fifty sending hosts, local senders, destination hosts, and
destination local users by count and by volume, and a list of delivery errors that occurred.

The relay information lists messages that were actually relayed, that is, they came from a remote host
and were directly delivered to some other remote host, without being processed (for example, for
aliasing or forwarding) locally.

There are quite a few options for eximstats to control exactly what it outputs. These are documented
in the Perl script itself, and can be extracted by running the command perldoc on the script. For
example:

perldoc /usr/exim/bin/eximstats

54.8 Checking access policy (exim_checkaccess)

The -bh command line argument allows you to run a fake SMTP session with debugging output, in
order to check what Exim is doing when it is applying policy controls to incoming SMTP mail.
However, not everybody is sufficiently familiar with the SMTP protocol to be able to make full use of
-bh, and sometimes you just want to answer the question “Does this address have access?” without
bothering with any further details.

The exim_checkaccess utility is a “packaged” version of -bh. It takes two arguments, an IP address
and an email address:

exim_checkaccess 10.9.8.7 A.User@a.domain.example

The utility runs a call to Exim with the -bh option, to test whether the given email address would be
accepted in a RCPT command in a TCP/IP connection from the host with the given IP address. The
output of the utility is either the word “accepted”, or the SMTP error response, for example:

Rejected:
550 Relay not permitted

When running this test, the utility uses <> as the envelope sender address for the MAIL command,
but you can change this by providing additional options. These are passed directly to the Exim
command. For example, to specify that the test is to be run with the sender address
himself@there.example you can use:

exim_checkaccess 10.9.8.7 A.User@a.domain.example \
 -f himself@there.example

Note that these additional Exim command line items must be given after the two mandatory
arguments.

Because the exim_checkaccess uses -bh, it does not perform callouts while running its checks. You
can run checks that include callouts by using -bhc, but this is not yet available in a “packaged” form.

495 Exim utilities (54)

54.9 Making DBM files (exim_dbmbuild)

The exim_dbmbuild program reads an input file containing keys and data in the format used by the
lsearch lookup (see section 9.3). It writes a DBM file using the lower-cased alias names as keys and
the remainder of the information as data. The lower-casing can be prevented by calling the program
with the -nolc option.

A terminating zero is included as part of the key string. This is expected by the dbm lookup type.
However, if the option -nozero is given, exim_dbmbuild creates files without terminating zeroes in
either the key strings or the data strings. The dbmnz lookup type can be used with such files.

The program requires two arguments: the name of the input file (which can be a single hyphen to
indicate the standard input), and the name of the output file. It creates the output under a temporary
name, and then renames it if all went well.

If the native DB interface is in use (USE_DB is set in a compile-time configuration file – this is
common in free versions of Unix) the two filenames must be different, because in this mode the
Berkeley DB functions create a single output file using exactly the name given. For example,

exim_dbmbuild /etc/aliases /etc/aliases.db

reads the system alias file and creates a DBM version of it in /etc/aliases.db.

In systems that use the ndbm routines (mostly proprietary versions of Unix), two files are used, with
the suffixes .dir and .pag. In this environment, the suffixes are added to the second argument of
exim_dbmbuild, so it can be the same as the first. This is also the case when the Berkeley functions
are used in compatibility mode (though this is not recommended), because in that case it adds a .db
suffix to the filename.

If a duplicate key is encountered, the program outputs a warning, and when it finishes, its return code
is 1 rather than zero, unless the -noduperr option is used. By default, only the first of a set of
duplicates is used – this makes it compatible with lsearch lookups. There is an option -lastdup which
causes it to use the data for the last duplicate instead. There is also an option -nowarn, which stops it
listing duplicate keys to stderr. For other errors, where it doesn’t actually make a new file, the return
code is 2.

54.10 Finding individual retry times (exinext)

A utility called exinext (mostly a Perl script) provides the ability to fish specific information out of the
retry database. Given a mail domain (or a complete address), it looks up the hosts for that domain,
and outputs any retry information for the hosts or for the domain. At present, the retry information is
obtained by running exim_dumpdb (see below) and post-processing the output. For example:

$ exinext piglet@milne.fict.example
kanga.milne.example:192.168.8.1 error 146: Connection refused
 first failed: 21-Feb-1996 14:57:34
 last tried: 21-Feb-1996 14:57:34
 next try at: 21-Feb-1996 15:02:34
roo.milne.example:192.168.8.3 error 146: Connection refused
 first failed: 20-Jan-1996 13:12:08
 last tried: 21-Feb-1996 11:42:03
 next try at: 21-Feb-1996 19:42:03
 past final cutoff time

You can also give exinext a local part, without a domain, and it will give any retry information for that
local part in your default domain. A message id can be used to obtain retry information pertaining to a
specific message. This exists only when an attempt to deliver a message to a remote host suffers a
message-specific error (see section 49.1.1). exinext is not particularly efficient, but then it is not
expected to be run very often.

The exinext utility calls Exim to find out information such as the location of the spool directory. The
utility has -C and -D options, which are passed on to the exim commands. The first specifies an
alternate Exim configuration file, and the second sets macros for use within the configuration file.

496 Exim utilities (54)

These features are mainly to help in testing, but might also be useful in environments where more
than one configuration file is in use.

54.11 Hints database maintenance

Three utility programs are provided for maintaining the DBM files that Exim uses to contain its
delivery hint information. Each program requires two arguments. The first specifies the name of
Exim’s spool directory, and the second is the name of the database it is to operate on. These are as
follows:

• retry: the database of retry information

• wait-<transport name>: databases of information about messages waiting for remote hosts

• callout: the callout cache

• ratelimit: the data for implementing the ratelimit ACL condition

• tls: TLS session resumption data

• misc: other hints data

The misc database is used for

• Serializing ETRN runs (when smtp_etrn_serialize is set)

• Serializing delivery to a specific host (when serialize_hosts is set in an smtp transport)

• Limiting the concurrency of specific transports (when max_parallel is set in a transport)

• Recording EHLO-time facilities advertised by hosts

54.12 exim_dumpdb

The entire contents of a database are written to the standard output by the exim_dumpdb program,
taking as arguments the spool and database names. An option -z may be given to request times in
UTC; otherwise times are in the local timezone. An option -k may be given to dump only the record
keys. For example, to dump the retry database:

exim_dumpdb /var/spool/exim retry

For the retry database two lines of output are produced for each entry:

T:mail.ref.example:192.168.242.242 146 77 Connection refused
31-Oct-1995 12:00:12 02-Nov-1995 12:21:39 02-Nov-1995 20:21:39 *

The first item on the first line is the key of the record. It starts with one of the letters R, or T,
depending on whether it refers to a routing or transport retry. For a local delivery, the next part is the
local address; for a remote delivery it is the name of the remote host, followed by its failing IP
address (unless retry_include_ip_address is set false on the smtp transport). If the remote port is not
the standard one (port 25), it is added to the IP address. Then there follows an error code, an
additional error code, and a textual description of the error.

The three times on the second line are the time of first failure, the time of the last delivery attempt,
and the computed time for the next attempt. The line ends with an asterisk if the cutoff time for the
last retry rule has been exceeded.

Each output line from exim_dumpdb for the wait-xxx databases consists of a host name followed by a
list of ids for messages that are or were waiting to be delivered to that host. If there are a very large
number for any one host, continuation records, with a sequence number added to the host name, may
be seen. The data in these records is often out of date, because a message may be routed to several
alternative hosts, and Exim makes no effort to keep cross-references.

497 Exim utilities (54)

54.13 exim_tidydb

The exim_tidydb utility program is used to tidy up the contents of a hints database. If run with no
options, it removes all records that are more than 30 days old. The age is calculated from the date and
time that the record was last updated. Note that, in the case of the retry database, it is not the time
since the first delivery failure. Information about a host that has been down for more than 30 days will
remain in the database, provided that the record is updated sufficiently often.

The cutoff date can be altered by means of the -t option, which must be followed by a time. For
example, to remove all records older than a week from the retry database:

exim_tidydb -t 7d /var/spool/exim retry

Both the wait-xxx and retry databases contain items that involve message ids. In the former these
appear as data in records keyed by host – they were messages that were waiting for that host – and in
the latter they are the keys for retry information for messages that have suffered certain types of error.
When exim_tidydb is run, a check is made to ensure that message ids in database records are those of
messages that are still on the queue. Message ids for messages that no longer exist are removed from
wait-xxx records, and if this leaves any records empty, they are deleted. For the retry database, records
whose keys are non-existent message ids are removed. The exim_tidydb utility outputs comments on
the standard output whenever it removes information from the database.

Certain records are automatically removed by Exim when they are no longer needed, but others are
not. For example, if all the MX hosts for a domain are down, a retry record is created for each one. If
the primary MX host comes back first, its record is removed when Exim successfully delivers to it,
but the records for the others remain because Exim has not tried to use those hosts.

It is important, therefore, to run exim_tidydb periodically on all the hints databases. You should do
this at a quiet time of day, because it requires a database to be locked (and therefore inaccessible to
Exim) while it does its work. Removing records from a DBM file does not normally make the file
smaller, but all the common DBM libraries are able to re-use the space that is released. After an initial
phase of increasing in size, the databases normally reach a point at which they no longer get any
bigger, as long as they are regularly tidied.

Warning: If you never run exim_tidydb, the space used by the hints databases is likely to keep on
increasing.

54.14 exim_fixdb

The exim_fixdb program is a utility for interactively modifying databases. Its main use is for testing
Exim, but it might also be occasionally useful for getting round problems in a live system. Its
interface is somewhat crude. On entry, it prompts for input with a right angle-bracket. A key of a
database record can then be entered, and the data for that record is displayed.

If “d” is typed at the next prompt, the entire record is deleted. For all except the retry database, that is
the only operation that can be carried out. For the retry database, each field is output preceded by a
number, and data for individual fields can be changed by typing the field number followed by new
data, for example:

> 4 951102:1000

resets the time of the next delivery attempt. Time values are given as a sequence of digit pairs for
year, month, day, hour, and minute. Colons can be used as optional separators.

Both displayed and input times are in the local timezone by default. If an option -z is used on the
command line, displayed times are in UTC.

54.15 Mailbox maintenance (exim_lock)

The exim_lock utility locks a mailbox file using the same algorithm as Exim. For a discussion of
locking issues, see section 26.3. Exim_lock can be used to prevent any modification of a mailbox by
Exim or a user agent while investigating a problem. The utility requires the name of the file as its first
argument. If the locking is successful, the second argument is run as a command (using C’s system()

498 Exim utilities (54)

function); if there is no second argument, the value of the SHELL environment variable is used; if this
is unset or empty, /bin/sh is run. When the command finishes, the mailbox is unlocked and the utility
ends. The following options are available:

-fcntl
Use fcntl() locking on the open mailbox.

-flock
Use flock() locking on the open mailbox, provided the operating system supports it.

-interval
This must be followed by a number, which is a number of seconds; it sets the interval to sleep
between retries (default 3).

-lockfile
Create a lock file before opening the mailbox.

-mbx
Lock the mailbox using MBX rules.

-q
Suppress verification output.

-retries
This must be followed by a number; it sets the number of times to try to get the lock (default 10).

-restore_time
This option causes exim_lock to restore the modified and read times to the locked file before
exiting. This allows you to access a locked mailbox (for example, to take a backup copy) without
disturbing the times that the user subsequently sees.

-timeout
This must be followed by a number, which is a number of seconds; it sets a timeout to be used
with a blocking fcntl() lock. If it is not set (the default), a non-blocking call is used.

-v
Generate verbose output.

If none of -fcntl, -flock, -lockfile or -mbx are given, the default is to create a lock file and also to use
fcntl() locking on the mailbox, which is the same as Exim’s default. The use of -flock or -fcntl
requires that the file be writeable; the use of -lockfile requires that the directory containing the file be
writeable. Locking by lock file does not last forever; Exim assumes that a lock file is expired if it is
more than 30 minutes old.

The -mbx option can be used with either or both of -fcntl or -flock. It assumes -fcntl by default.
MBX locking causes a shared lock to be taken out on the open mailbox, and an exclusive lock on the
file /tmp/.n.m where n and m are the device number and inode number of the mailbox file. When the
locking is released, if an exclusive lock can be obtained for the mailbox, the file in /tmp is deleted.

The default output contains verification of the locking that takes place. The -v option causes some
additional information to be given. The -q option suppresses all output except error messages.

A command such as

exim_lock /var/spool/mail/spqr

runs an interactive shell while the file is locked, whereas

exim_lock -q /var/spool/mail/spqr <<End
<some commands>
End

runs a specific non-interactive sequence of commands while the file is locked, suppressing all verifi-
cation output. A single command can be run by a command such as

exim_lock -q /var/spool/mail/spqr \
 "cp /var/spool/mail/spqr /some/where"

499 Exim utilities (54)

Note that if a command is supplied, it must be entirely contained within the second argument – hence
the quotes.

54.16 Message Ids for humans (exim_msgdate)

The exim_msgdate utility is written by Andrew Aitchison and included in the Exim distribution. This
Perl script converts an Exim Mesage ID back into a human readable form. For details of
exim_msgdate’s options, run exim_msgdate with the --help option.

Section 3.4 (Message identification) describes Exim Mesage IDs.

500 Exim utilities (54)

55. The Exim monitor

The Exim monitor is an application which displays in an X window information about the state of
Exim’s queue and what Exim is doing. An admin user can perform certain operations on messages
from this GUI interface; however all such facilities are also available from the command line, and
indeed, the monitor itself makes use of the command line to perform any actions requested.

55.1 Running the monitor

The monitor is started by running the script called eximon. This is a shell script that sets up a number
of environment variables, and then runs the binary called eximon.bin. The default appearance of the
monitor window can be changed by editing the Local/eximon.conf file created by editing
exim_monitor/EDITME. Comments in that file describe what the various parameters are for.

The parameters that get built into the eximon script can be overridden for a particular invocation by
setting up environment variables of the same names, preceded by EXIMON_. For example, a shell
command such as

EXIMON_LOG_DEPTH=400 eximon

(in a Bourne-compatible shell) runs eximon with an overriding setting of the LOG_DEPTH parameter.
If EXIMON_LOG_FILE_PATH is set in the environment, it overrides the Exim log file configuration.
This makes it possible to have eximon tailing log data that is written to syslog, provided that
MAIL.INFO syslog messages are routed to a file on the local host.

X resources can be used to change the appearance of the window in the normal way. For example, a
resource setting of the form

Eximon*background: gray94

changes the colour of the background to light grey rather than white. The stripcharts are drawn with
both the data lines and the reference lines in black. This means that the reference lines are not visible
when on top of the data. However, their colour can be changed by setting a resource called
“highlight” (an odd name, but that’s what the Athena stripchart widget uses). For example, if your X
server is running Unix, you could set up lighter reference lines in the stripcharts by obeying

xrdb -merge <<End
Eximon*highlight: gray
End

In order to see the contents of messages in the queue, and to operate on them, eximon must either be
run as root or by an admin user.

The command-line parameters of eximon are passed to eximon.bin and may contain X11 resource
parameters interpreted by the X11 library. In addition, if the first parameter starts with the string
"gdb" then it is removed and the binary is invoked under gdb (the parameter is used as the gdb
command-name, so versioned variants of gdb can be invoked).

The monitor’s window is divided into three parts. The first contains one or more stripcharts and two
action buttons, the second contains a “tail” of the main log file, and the third is a display of the queue
of messages awaiting delivery, with two more action buttons. The following sections describe these
different parts of the display.

55.2 The stripcharts

The first stripchart is always a count of messages in the queue. Its name can be configured by setting
QUEUE_STRIPCHART_NAME in the Local/eximon.conf file. The remaining stripcharts are defined
in the configuration script by regular expression matches on log file entries, making it possible to
display, for example, counts of messages delivered to certain hosts or using certain transports. The
supplied defaults display counts of received and delivered messages, and of local and SMTP deliver-
ies. The default period between stripchart updates is one minute; this can be adjusted by a parameter
in the Local/eximon.conf file.

501 The Exim monitor (55)

The stripchart displays rescale themselves automatically as the value they are displaying changes.
There are always 10 horizontal lines in each chart; the title string indicates the value of each division
when it is greater than one. For example, “x2” means that each division represents a value of 2.

It is also possible to have a stripchart which shows the percentage fullness of a particular disk
partition, which is useful when local deliveries are confined to a single partition.

This relies on the availability of the statvfs() function or equivalent in the operating system. Most, but
not all versions of Unix that support Exim have this. For this particular stripchart, the top of the chart
always represents 100%, and the scale is given as “x10%”. This chart is configured by setting SIZE_
STRIPCHART and (optionally) SIZE_STRIPCHART_NAME in the Local/eximon.conf file.

55.3 Main action buttons

Below the stripcharts there is an action button for quitting the monitor. Next to this is another button
marked “Size”. They are placed here so that shrinking the window to its default minimum size leaves
just the queue count stripchart and these two buttons visible. Pressing the “Size” button causes the
window to expand to its maximum size, unless it is already at the maximum, in which case it is
reduced to its minimum.

When expanding to the maximum, if the window cannot be fully seen where it currently is, it is
moved back to where it was the last time it was at full size. When it is expanding from its minimum
size, the old position is remembered, and next time it is reduced to the minimum it is moved back
there.

The idea is that you can keep a reduced window just showing one or two stripcharts at a convenient
place on your screen, easily expand it to show the full window when required, and just as easily put it
back to what it was. The idea is copied from what the twm window manager does for its f.fullzoom
action. The minimum size of the window can be changed by setting the MIN_HEIGHT and MIN_
WIDTH values in Local/eximon.conf.

Normally, the monitor starts up with the window at its full size, but it can be built so that it starts up
with the window at its smallest size, by setting START_SMALL=yes in Local/eximon.conf.

55.4 The log display

The second section of the window is an area in which a display of the tail of the main log is
maintained. To save space on the screen, the timestamp on each log line is shortened by removing the
date and, if log_timezone is set, the timezone. The log tail is not available when the only destination
for logging data is syslog, unless the syslog lines are routed to a local file whose name is passed to
eximon via the EXIMON_LOG_FILE_PATH environment variable.

The log sub-window has a scroll bar at its lefthand side which can be used to move back to look at
earlier text, and the up and down arrow keys also have a scrolling effect. The amount of log that is
kept depends on the setting of LOG_BUFFER in Local/eximon.conf, which specifies the amount of
memory to use. When this is full, the earlier 50% of data is discarded – this is much more efficient
than throwing it away line by line. The sub-window also has a horizontal scroll bar for accessing the
ends of long log lines. This is the only means of horizontal scrolling; the right and left arrow keys are
not available. Text can be cut from this part of the window using the mouse in the normal way. The
size of this subwindow is controlled by parameters in the configuration file Local/eximon.conf.

Searches of the text in the log window can be carried out by means of the ^R and ^S keystrokes,
which default to a reverse and a forward search, respectively. The search covers only the text that is
displayed in the window. It cannot go further back up the log.

The point from which the search starts is indicated by a caret marker. This is normally at the end of
the text in the window, but can be positioned explicitly by pointing and clicking with the left mouse
button, and is moved automatically by a successful search. If new text arrives in the window when it
is scrolled back, the caret remains where it is, but if the window is not scrolled back, the caret is
moved to the end of the new text.

502 The Exim monitor (55)

Pressing ^R or ^S pops up a window into which the search text can be typed. There are buttons for
selecting forward or reverse searching, for carrying out the search, and for cancelling. If the “Search”
button is pressed, the search happens and the window remains so that further searches can be done. If
the “Return” key is pressed, a single search is done and the window is closed. If ^C is typed the
search is cancelled.

The searching facility is implemented using the facilities of the Athena text widget. By default this
pops up a window containing both “search” and “replace” options. In order to suppress the unwanted
“replace” portion for eximon, a modified version of the TextPop widget is distributed with Exim.
However, the linkers in BSDI and HP-UX seem unable to handle an externally provided version of
TextPop when the remaining parts of the text widget come from the standard libraries. The compile-
time option EXIMON_TEXTPOP can be unset to cut out the modified TextPop, making it possible to
build Eximon on these systems, at the expense of having unwanted items in the search popup window.

55.5 The queue display

The bottom section of the monitor window contains a list of all messages that are in the queue, which
includes those currently being received or delivered, as well as those awaiting delivery. The size of
this subwindow is controlled by parameters in the configuration file Local/eximon.conf, and the
frequency at which it is updated is controlled by another parameter in the same file – the default is 5
minutes, since queue scans can be quite expensive. However, there is an “Update” action button just
above the display which can be used to force an update of the queue display at any time.

When a host is down for some time, a lot of pending mail can build up for it, and this can make it
hard to deal with other messages in the queue. To help with this situation there is a button next to
“Update” called “Hide”. If pressed, a dialogue box called “Hide addresses ending with” is put up. If
you type anything in here and press “Return”, the text is added to a chain of such texts, and if every
undelivered address in a message matches at least one of the texts, the message is not displayed.

If there is an address that does not match any of the texts, all the addresses are displayed as normal.
The matching happens on the ends of addresses so, for example, cam.ac.uk specifies all addresses in
Cambridge, while xxx@foo.com.example specifies just one specific address. When any hiding has
been set up, a button called “Unhide” is displayed. If pressed, it cancels all hiding. Also, to ensure
that hidden messages do not get forgotten, a hide request is automatically cancelled after one hour.

While the dialogue box is displayed, you can’t press any buttons or do anything else to the monitor
window. For this reason, if you want to cut text from the queue display to use in the dialogue box, you
have to do the cutting before pressing the “Hide” button.

The queue display contains, for each unhidden queued message, the length of time it has been in the
queue, the size of the message, the message id, the message sender, and the first undelivered recipient,
all on one line. If it is a bounce message, the sender is shown as “<>”. If there is more than one
recipient to which the message has not yet been delivered, subsequent ones are listed on additional
lines, up to a maximum configured number, following which an ellipsis is displayed. Recipients that
have already received the message are not shown.

If a message is frozen, an asterisk is displayed at the left-hand side.

The queue display has a vertical scroll bar, and can also be scrolled by means of the arrow keys. Text
can be cut from it using the mouse in the normal way. The text searching facilities, as described above
for the log window, are also available, but the caret is always moved to the end of the text when the
queue display is updated.

55.6 The queue menu

If the shift key is held down and the left button is clicked when the mouse pointer is over the text for
any message, an action menu pops up, and the first line of the queue display for the message is
highlighted. This does not affect any selected text.

If you want to use some other event for popping up the menu, you can set the MENU_EVENT
parameter in Local/eximon.conf to change the default, or set EXIMON_MENU_EVENT in the

503 The Exim monitor (55)

environment before starting the monitor. The value set in this parameter is a standard X event descrip-
tion. For example, to run eximon using ctrl rather than shift you could use

EXIMON_MENU_EVENT='Ctrl<Btn1Down>' eximon

The title of the menu is the message id, and it contains entries which act as follows:

• message log: The contents of the message log for the message are displayed in a new text window.

• headers: Information from the spool file that contains the envelope information and headers is
displayed in a new text window. See chapter 57 for a description of the format of spool files.

• body: The contents of the spool file containing the body of the message are displayed in a new text
window. There is a default limit of 20,000 bytes to the amount of data displayed. This can be
changed by setting the BODY_MAX option at compile time, or the EXIMON_BODY_MAX
option at runtime.

• deliver message: A call to Exim is made using the -M option to request delivery of the message.
This causes an automatic thaw if the message is frozen. The -v option is also set, and the output
from Exim is displayed in a new text window. The delivery is run in a separate process, to avoid
holding up the monitor while the delivery proceeds.

• freeze message: A call to Exim is made using the -Mf option to request that the message be frozen.

• thaw message: A call to Exim is made using the -Mt option to request that the message be thawed.

• give up on msg: A call to Exim is made using the -Mg option to request that Exim gives up trying
to deliver the message. A bounce message is generated for any remaining undelivered addresses.

• remove message: A call to Exim is made using the -Mrm option to request that the message be
deleted from the system without generating a bounce message.

• add recipient: A dialog box is displayed into which a recipient address can be typed. If the address
is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the address is
qualified with that domain. Otherwise it must be entered as a fully qualified address. Pressing
RETURN causes a call to Exim to be made using the -Mar option to request that an additional
recipient be added to the message, unless the entry box is empty, in which case no action is taken.

• mark delivered: A dialog box is displayed into which a recipient address can be typed. If the
address is not qualified and the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the
address is qualified with that domain. Otherwise it must be entered as a fully qualified address.
Pressing RETURN causes a call to Exim to be made using the -Mmd option to mark the given
recipient address as already delivered, unless the entry box is empty, in which case no action is
taken.

• mark all delivered: A call to Exim is made using the -Mmad option to mark all recipient addresses
as already delivered.

• edit sender: A dialog box is displayed initialized with the current sender’s address. Pressing
RETURN causes a call to Exim to be made using the -Mes option to replace the sender address,
unless the entry box is empty, in which case no action is taken. If you want to set an empty sender
(as in bounce messages), you must specify it as “<>”. Otherwise, if the address is not qualified and
the QUALIFY_DOMAIN parameter is set in Local/eximon.conf, the address is qualified with that
domain.

When a delivery is forced, a window showing the -v output is displayed. In other cases when a call to
Exim is made, if there is any output from Exim (in particular, if the command fails) a window
containing the command and the output is displayed. Otherwise, the results of the action are normally
apparent from the log and queue displays. However, if you set ACTION_OUTPUT=yes in
Local/eximon.conf, a window showing the Exim command is always opened, even if no output is
generated.

The queue display is automatically updated for actions such as freezing and thawing, unless
ACTION_QUEUE_UPDATE=no has been set in Local/eximon.conf. In this case the “Update” button
has to be used to force an update of the display after one of these actions.

504 The Exim monitor (55)

In any text window that is displayed as result of a menu action, the normal cut-and-paste facility is
available, and searching can be carried out using ^R and ^S, as described above for the log tail
window.

505 The Exim monitor (55)

56. Security considerations

This chapter discusses a number of issues concerned with security, some of which are also covered in
other parts of this manual.

For reasons that this author does not understand, some people have promoted Exim as a “particularly
secure” mailer. Perhaps it is because of the existence of this chapter in the documentation. However,
the intent of the chapter is simply to describe the way Exim works in relation to certain security
concerns, not to make any specific claims about the effectiveness of its security as compared with
other MTAs.

What follows is a description of the way Exim is supposed to be. Best efforts have been made to try to
ensure that the code agrees with the theory, but an absence of bugs can never be guaranteed. Any that
are reported will get fixed as soon as possible.

56.1 Building a more “hardened” Exim

There are a number of build-time options that can be set in Local/Makefile to create Exim binaries
that are “harder” to attack, in particular by a rogue Exim administrator who does not have the root
password, or by someone who has penetrated the Exim (but not the root) account. These options are
as follows:

• ALT_CONFIG_PREFIX can be set to a string that is required to match the start of any filenames
used with the -C option. When it is set, these filenames are also not allowed to contain the
sequence “/../”. (However, if the value of the -C option is identical to the value of CONFIGURE_
FILE in Local/Makefile, Exim ignores -C and proceeds as usual.) There is no default setting for
ALT_CONFIG_PREFIX.

If the permitted configuration files are confined to a directory to which only root has access, this
guards against someone who has broken into the Exim account from running a privileged Exim
with an arbitrary configuration file, and using it to break into other accounts.

• If a non-trusted configuration file (i.e. not the default configuration file or one which is trusted by
virtue of being listed in the TRUSTED_CONFIG_LIST file) is specified with -C, or if macros are
given with -D (but see the next item), then root privilege is retained only if the caller of Exim is
root. This locks out the possibility of testing a configuration using -C right through message
reception and delivery, even if the caller is root. The reception works, but by that time, Exim is
running as the Exim user, so when it re-execs to regain privilege for the delivery, the use of -C
causes privilege to be lost. However, root can test reception and delivery using two separate
commands.

• The WHITELIST_D_MACROS build option declares some macros to be safe to override with -D
if the real uid is one of root, the Exim run-time user or the CONFIGURE_OWNER, if defined. The
potential impact of this option is limited by requiring the run-time value supplied to -D to match a
regex that errs on the restrictive side. Requiring build-time selection of safe macros is onerous but
this option is intended solely as a transition mechanism to permit previously-working configur-
ations to continue to work after release 4.73.

• If DISABLE_D_OPTION is defined, the use of the -D command line option is disabled.

• FIXED_NEVER_USERS can be set to a colon-separated list of users that are never to be used for
any deliveries. This is like the never_users runtime option, but it cannot be overridden; the runtime
option adds additional users to the list. The default setting is “root”; this prevents a non-root user
who is permitted to modify the runtime file from using Exim as a way to get root.

56.2 Root privilege

The Exim binary is normally setuid to root, which means that it gains root privilege (runs as root)
when it starts execution. In some special cases (for example, when the daemon is not in use and there
are no local deliveries), it may be possible to run Exim setuid to some user other than root. This is
discussed in the next section. However, in most installations, root privilege is required for two things:

506 Security considerations (56)

• To set up a socket connected to the standard SMTP port (25) when initialising the listening
daemon. If Exim is run from inetd, this privileged action is not required.

• To be able to change uid and gid in order to read users’ .forward files and perform local deliveries
as the receiving user or as specified in the configuration.

It is not necessary to be root to do any of the other things Exim does, such as receiving messages and
delivering them externally over SMTP, and it is obviously more secure if Exim does not run as root
except when necessary. For this reason, a user and group for Exim to use must be defined in
Local/Makefile. These are known as “the Exim user” and “the Exim group”. Their values can be
changed by the runtime configuration, though this is not recommended. Often a user called exim is
used, but some sites use mail or another user name altogether.

Exim uses setuid() whenever it gives up root privilege. This is a permanent abdication; the process
cannot regain root afterwards. Prior to release 4.00, seteuid() was used in some circumstances, but this
is no longer the case.

After a new Exim process has interpreted its command line options, it changes uid and gid in the
following cases:

• If the -C option is used to specify an alternate configuration file, or if the -D option is used to
define macro values for the configuration, and the calling process is not running as root, the uid and
gid are changed to those of the calling process. However, if DISABLE_D_OPTION is defined in
Local/Makefile, the -D option may not be used at all. If WHITELIST_D_MACROS is defined in
Local/Makefile, then some macro values can be supplied if the calling process is running as root,
the Exim run-time user or CONFIGURE_OWNER, if defined.

• If the expansion test option (-be) or one of the filter testing options (-bf or -bF) are used, the uid
and gid are changed to those of the calling process.

• If the process is not a daemon process or a queue runner process or a delivery process or a process
for testing address routing (started with -bt), the uid and gid are changed to the Exim user and
group. This means that Exim always runs under its own uid and gid when receiving messages. This
also applies when testing address verification (the -bv option) and testing incoming message policy
controls (the -bh option).

• For a daemon, queue runner, delivery, or address testing process, the uid remains as root at this
stage, but the gid is changed to the Exim group.

The processes that initially retain root privilege behave as follows:

• A daemon process changes the gid to the Exim group and the uid to the Exim user after setting up
one or more listening sockets. The initgroups() function is called, so that if the Exim user is in any
additional groups, they will be used during message reception.

• A queue runner process retains root privilege throughout its execution. Its job is to fork a con-
trolled sequence of delivery processes.

• A delivery process retains root privilege throughout most of its execution, but any actual deliveries
(that is, the transports themselves) are run in subprocesses which always change to a non-root uid
and gid. For local deliveries this is typically the uid and gid of the owner of the mailbox; for remote
deliveries, the Exim uid and gid are used. Once all the delivery subprocesses have been run, a
delivery process changes to the Exim uid and gid while doing post-delivery tidying up such as
updating the retry database and generating bounce and warning messages.

While the recipient addresses in a message are being routed, the delivery process runs as root.
However, if a user’s filter file has to be processed, this is done in a subprocess that runs under the
individual user’s uid and gid. A system filter is run as root unless system_filter_user is set.

• A process that is testing addresses (the -bt option) runs as root so that the routing is done in the
same environment as a message delivery.

507 Security considerations (56)

56.3 Running Exim without privilege

Some installations like to run Exim in an unprivileged state for more of its operation, for added
security. Support for this mode of operation is provided by the global option deliver_drop_privilege.
When this is set, the uid and gid are changed to the Exim user and group at the start of a delivery
process (and also queue runner and address testing processes). This means that address routing is no
longer run as root, and the deliveries themselves cannot change to any other uid.

Leaving the binary setuid to root, but setting deliver_drop_privilege means that the daemon can still
be started in the usual way, and it can respond correctly to SIGHUP because the re-invocation regains
root privilege.

An alternative approach is to make Exim setuid to the Exim user and also setgid to the Exim group. If
you do this, the daemon must be started from a root process. (Calling Exim from a root process makes
it behave in the way it does when it is setuid root.) However, the daemon cannot restart itself after a
SIGHUP signal because it cannot regain privilege.

It is still useful to set deliver_drop_privilege in this case, because it stops Exim from trying to
re-invoke itself to do a delivery after a message has been received. Such a re-invocation is a waste of
resources because it has no effect.

If restarting the daemon is not an issue (for example, if mua_wrapper is set, or inetd is being used
instead of a daemon), having the binary setuid to the Exim user seems a clean approach, but there is
one complication:

In this style of operation, Exim is running with the real uid and gid set to those of the calling process,
and the effective uid/gid set to Exim’s values. Ideally, any association with the calling process’ uid/gid
should be dropped, that is, the real uid/gid should be reset to the effective values so as to discard any
privileges that the caller may have. While some operating systems have a function that permits this
action for a non-root effective uid, quite a number of them do not. Because of this lack of
standardization, Exim does not address this problem at this time.

For this reason, the recommended approach for “mostly unprivileged” running is to keep the Exim
binary setuid to root, and to set deliver_drop_privilege. This also has the advantage of allowing a
daemon to be used in the most straightforward way.

If you configure Exim not to run delivery processes as root, there are a number of restrictions on what
you can do:

• You can deliver only as the Exim user/group. You should explicitly use the user and group options
to override routers or local transports that normally deliver as the recipient. This makes sure that
configurations that work in this mode function the same way in normal mode. Any implicit or
explicit specification of another user causes an error.

• Use of .forward files is severely restricted, such that it is usually not worthwhile to include them in
the configuration.

• Users who wish to use .forward would have to make their home directory and the file itself
accessible to the Exim user. Pipe and append-to-file entries, and their equivalents in Exim filters,
cannot be used. While they could be enabled in the Exim user’s name, that would be insecure and
not very useful.

• Unless the local user mailboxes are all owned by the Exim user (possible in some POP3 or
IMAP-only environments):

(1) They must be owned by the Exim group and be writeable by that group. This implies you
must set mode in the appendfile configuration, as well as the mode of the mailbox files
themselves.

(2) You must set no_check_owner, since most or all of the files will not be owned by the Exim
user.

(3) You must set file_must_exist, because Exim cannot set the owner correctly on a newly
created mailbox when unprivileged. This also implies that new mailboxes need to be created
manually.

508 Security considerations (56)

These restrictions severely restrict what can be done in local deliveries. However, there are no restric-
tions on remote deliveries. If you are running a gateway host that does no local deliveries, setting
deliver_drop_privilege gives more security at essentially no cost.

If you are using the mua_wrapper facility (see chapter 52), deliver_drop_privilege is forced to be
true.

56.4 Delivering to local files

Full details of the checks applied by appendfile before it writes to a file are given in chapter 26.

56.5 Running local commands

There are a number of ways in which an administrator can configure Exim to run commands based
upon received, untrustworthy, data. Further, in some configurations a user who can control a .forward
file can also arrange to run commands. Configuration to check includes, but is not limited to:

• Use of use_shell in the pipe transport: various forms of shell command injection may be possible
with this option present. It is dangerous and should be used only with considerable caution.
Consider constraints which whitelist allowed characters in a variable which is to be used in a pipe
transport that has use_shell enabled.

• A number of options such as forbid_filter_run, forbid_filter_perl, forbid_filter_dlfunc and so
forth which restrict facilities available to .forward files in a redirect router. If Exim is running on a
central mail hub to which ordinary users do not have shell access, but home directories are NFS
mounted (for instance) then administrators should review the list of these forbid options available,
and should bear in mind that the options that may need forbidding can change as new features are
added between releases.

• The ${run...} expansion item does not use a shell by default, but administrators can configure use
of /bin/sh as part of the command. Such invocations should be viewed with prejudicial suspicion.

• Administrators who use embedded Perl are advised to explore how Perl’s taint checking might
apply to their usage.

• Use of ${expand...} is somewhat analogous to shell’s eval builtin and administrators are well
advised to view its use with suspicion, in case (for instance) it allows a local-part to contain
embedded Exim directives.

• Use of ${match_local_part...} and friends becomes more dangerous if Exim was built with
EXPAND_LISTMATCH_RHS defined: the second string in each can reference arbitrary lists and
files, rather than just being a list of opaque strings. The EXPAND_LISTMATCH_RHS option was
added and set false by default because of real-world security vulnerabilities caused by its use with
untrustworthy data injected in, for SQL injection attacks. Consider the use of the inlisti expansion
condition instead.

56.6 Trust in configuration data

If configuration data for Exim can come from untrustworthy sources, there are some issues to be
aware of:

• Use of ${expand...} may provide a path for shell injection attacks.

• Letting untrusted data provide a regular expression is unwise.

• Using ${match...} to apply a fixed regular expression against untrusted data may result in patho-
logical behaviour within PCRE2. Be aware of what "backtracking" means and consider options for
being more strict with a regular expression. Avenues to explore include limiting what can match
(avoiding . when [a-z0-9] or other character class will do), use of atomic grouping and pos-
sessive quantifiers or just not using regular expressions against untrusted data.

• It can be important to correctly use ${quote:...}, ${quote_local_part:...} and ${quote_<lookup-
type>:...} expansion items to ensure that data is correctly constructed.

509 Security considerations (56)

• Some lookups might return multiple results, even though normal usage is only expected to yield
one result.

56.7 IPv4 source routing

Many operating systems suppress IP source-routed packets in the kernel, but some cannot be made to
do this, so Exim does its own check. It logs incoming IPv4 source-routed TCP calls, and then drops
them. Things are all different in IPv6. No special checking is currently done.

56.8 The VRFY, EXPN, and ETRN commands in SMTP

Support for these SMTP commands is disabled by default. If required, they can be enabled by
defining suitable ACLs.

56.9 Privileged users

Exim recognizes two sets of users with special privileges. Trusted users are able to submit new
messages to Exim locally, but supply their own sender addresses and information about a sending
host. For other users submitting local messages, Exim sets up the sender address from the uid, and
doesn’t permit a remote host to be specified.

However, an untrusted user is permitted to use the -f command line option in the special form -f <> to
indicate that a delivery failure for the message should not cause an error report. This affects the
message’s envelope, but it does not affect the Sender: header. Untrusted users may also be permitted
to use specific forms of address with the -f option by setting the untrusted_set_sender option.

Trusted users are used to run processes that receive mail messages from some other mail domain and
pass them on to Exim for delivery either locally, or over the Internet. Exim trusts a caller that is
running as root, as the Exim user, as any user listed in the trusted_users configuration option, or
under any group listed in the trusted_groups option.

Admin users are permitted to do things to the messages on Exim’s queue. They can freeze or thaw
messages, cause them to be returned to their senders, remove them entirely, or modify them in various
ways. In addition, admin users can run the Exim monitor and see all the information it is capable of
providing, which includes the contents of files on the spool.

By default, the use of the -M and -q options to cause Exim to attempt delivery of messages on its
queue is restricted to admin users. This restriction can be relaxed by setting the no_prod_requires_
admin option. Similarly, the use of -bp (and its variants) to list the contents of the queue is also
restricted to admin users. This restriction can be relaxed by setting no_queue_list_requires_admin.

Exim recognizes an admin user if the calling process is running as root or as the Exim user or if any
of the groups associated with the calling process is the Exim group. It is not necessary actually to be
running under the Exim group. However, if admin users who are not root or the Exim user are to
access the contents of files on the spool via the Exim monitor (which runs unprivileged), Exim must
be built to allow group read access to its spool files.

By default, regular users are trusted to perform basic testing and introspection commands, as them-
selves. This setting can be tightened by setting the commandline_checks_require_admin option.
This affects most of the checking options, such as -be and anything else -b*.

56.10 Spool files

Exim’s spool directory and everything it contains is owned by the Exim user and set to the Exim
group. The mode for spool files is defined in the Local/Makefile configuration file, and defaults to
0640. This means that any user who is a member of the Exim group can access these files.

510 Security considerations (56)

56.11 Use of argv[0]

Exim examines the last component of argv[0], and if it matches one of a set of specific strings, Exim
assumes certain options. For example, calling Exim with the last component of argv[0] set to “rsmtp”
is exactly equivalent to calling it with the option -bS. There are no security implications in this.

56.12 Use of %f formatting

The only use made of “%f” by Exim is in formatting load average values. These are actually stored in
integer variables as 1000 times the load average. Consequently, their range is limited and so therefore
is the length of the converted output.

56.13 Embedded Exim path

Exim uses its own path name, which is embedded in the code, only when it needs to re-exec in order
to regain root privilege. Therefore, it is not root when it does so. If some bug allowed the path to get
overwritten, it would lead to an arbitrary program’s being run as exim, not as root.

56.14 Dynamic module directory

Any dynamically loadable modules must be installed into the directory defined in
LOOKUP_MODULE_DIR in Local/Makefile for Exim to permit loading it.

56.15 Use of sprintf()

A large number of occurrences of “sprintf” in the code are actually calls to string_sprintf(), a function
that returns the result in malloc’d store. The intermediate formatting is done into a large fixed buffer
by a function that runs through the format string itself, and checks the length of each conversion
before performing it, thus preventing buffer overruns.

The remaining uses of sprintf() happen in controlled circumstances where the output buffer is known
to be sufficiently long to contain the converted string.

56.16 Use of debug_printf() and log_write()

Arbitrary strings are passed to both these functions, but they do their formatting by calling the
function string_vformat(), which runs through the format string itself, and checks the length of each
conversion.

56.17 Use of strcat() and strcpy()

These are used only in cases where the output buffer is known to be large enough to hold the result.

511 Security considerations (56)

57. Format of spool files

A message on Exim’s queue consists of two files, whose names are the message id followed by -D
and -H, respectively. The data portion of the message is kept in the -D file on its own. The message’s
envelope, status, and headers are all kept in the -H file, whose format is described in this chapter.
Each of these two files contains the final component of its own name as its first line. This is insurance
against disk crashes where the directory is lost but the files themselves are recoverable.

The file formats may be changed, or new formats added, at any release. Spool files are not intended as
an interface to other programs and should not be used as such.

Some people are tempted into editing -D files in order to modify messages. You need to be extremely
careful if you do this; it is not recommended and you are on your own if you do it. Here are some of
the pitfalls:

• You must ensure that Exim does not try to deliver the message while you are fiddling with it. The
safest way is to take out a write lock on the -D file, which is what Exim itself does, using fcntl(). If
you update the file in place, the lock will be retained. If you write a new file and rename it, the lock
will be lost at the instant of rename.

• If you change the number of lines in the file, the value of $body_linecount, which is stored in the
-H file, will be incorrect and can cause incomplete transmission of messages or undeliverable
messages.

• If the message is in MIME format, you must take care not to break it.

• If the message is cryptographically signed, any change will invalidate the signature.

All in all, modifying -D files is fraught with danger.

Files whose names end with -J may also be seen in the input directory (or its subdirectories when
split_spool_directory is set). These are journal files, used to record addresses to which the message
has been delivered during the course of a delivery attempt. If there are still undelivered recipients at
the end, the -H file is updated, and the -J file is deleted. If, however, there is some kind of crash (for
example, a power outage) before this happens, the -J file remains in existence. When Exim next
processes the message, it notices the -J file and uses it to update the -H file before starting the next
delivery attempt.

Files whose names end with -K or .eml may also be seen in the spool. These are temporaries used for
DKIM or malware processing, when that is used. They should be tidied up by normal operations; any
old ones are probably relics of crashes and can be removed.

57.1 Format of the -H file

The second line of the -H file contains the login name for the uid of the process that called Exim to
read the message, followed by the numerical uid and gid. For a locally generated message, this is
normally the user who sent the message. For a message received over TCP/IP via the daemon, it is
normally the Exim user.

The third line of the file contains the address of the message’s sender as transmitted in the envelope,
contained in angle brackets. The sender address is empty for bounce messages. For incoming SMTP
mail, the sender address is given in the MAIL command. For locally generated mail, the sender
address is created by Exim from the login name of the current user and the configured qualify_
domain. However, this can be overridden by the -f option or a leading “From ” line if the caller is
trusted, or if the supplied address is “<>” or an address that matches untrusted_set_senders.

The fourth line contains two numbers. The first is the time that the message was received, in the
conventional Unix form – the number of seconds since the start of the epoch. The second number is a
count of the number of messages warning of delayed delivery that have been sent to the sender.

There follow a number of lines starting with a hyphen. These contain variables, can appear in any
order, and are omitted when not relevant.

512 Format of spool files (57)

If there is a second hyphen after the first, the corresponding data is tainted. If there is a value in
parentheses, the data is quoted for a lookup.

The following word specifies a variable, and the remainder of the item depends on the variable.

-acl <number> <length>
This item is obsolete, and is not generated from Exim release 4.61 onwards; -aclc and -aclm are
used instead. However, -acl is still recognized, to provide backward compatibility. In the old
format, a line of this form is present for every ACL variable that is not empty. The number
identifies the variable; the acl_cx variables are numbered 0–9 and the acl_mx variables are num-
bered 10–19. The length is the length of the data string for the variable. The string itself starts at
the beginning of the next line, and is followed by a newline character. It may contain internal
newlines.

-aclc <rest-of-name> <length>
A line of this form is present for every ACL connection variable that is defined. Note that there is a
space between -aclc and the rest of the name. The length is the length of the data string for the
variable. The string itself starts at the beginning of the next line, and is followed by a newline
character. It may contain internal newlines.

-aclm <rest-of-name> <length>
A line of this form is present for every ACL message variable that is defined. Note that there is a
space between -aclm and the rest of the name. The length is the length of the data string for the
variable. The string itself starts at the beginning of the next line, and is followed by a newline
character. It may contain internal newlines.

-active_hostname <hostname>
This is present if, when the message was received over SMTP, the value of $smtp_active_
hostname was different to the value of $primary_hostname.

-allow_unqualified_recipient
This is present if unqualified recipient addresses are permitted in header lines (to stop such
addresses from being qualified if rewriting occurs at transport time). Local messages that were
input using -bnq and remote messages from hosts that match recipient_unqualified_hosts set this
flag.

-allow_unqualified_sender
This is present if unqualified sender addresses are permitted in header lines (to stop such addresses
from being qualified if rewriting occurs at transport time). Local messages that were input using
-bnq and remote messages from hosts that match sender_unqualified_hosts set this flag.

-auth_id <text>
The id information for a message received on an authenticated SMTP connection – the value of the
$authenticated_id variable.

-auth_sender <address>
The address of an authenticated sender – the value of the $authenticated_sender variable.

-body_linecount <number>
This records the number of lines in the body of the message, and is present unless -spool_file_
wireformat is.

-body_zerocount <number>
This records the number of binary zero bytes in the body of the message, and is present if the
number is greater than zero.

-deliver_firsttime
This is written when a new message is first added to the spool. When the spool file is updated after
a deferral, it is omitted.

-frozen <time>
The message is frozen, and the freezing happened at <time>.

-helo_name <text>
This records the host name as specified by a remote host in a HELO or EHLO command.

513 Format of spool files (57)

-host_address <address>.<port>
This records the IP address of the host from which the message was received and the remote port
number that was used. It is omitted for locally generated messages.

-host_auth <text>
If the message was received on an authenticated SMTP connection, this records the name of the
authenticator – the value of the $sender_host_authenticated variable.

-host_lookup_failed
This is present if an attempt to look up the sending host’s name from its IP address failed. It
corresponds to the $host_lookup_failed variable.

-host_name <text>
This records the name of the remote host from which the message was received, if the host name
was looked up from the IP address when the message was being received. It is not present if no
reverse lookup was done.

-ident <text>
For locally submitted messages, this records the login of the originating user, unless it was a
trusted user and the -oMt option was used to specify an ident value. For messages received over
TCP/IP, this records the ident string supplied by the remote host, if any.

-interface_address <address>.<port>
This records the IP address of the local interface and the port number through which a message
was received from a remote host. It is omitted for locally generated messages.

-local
The message is from a local sender.

-localerror
The message is a locally-generated bounce message.

-local_scan <string>
This records the data string that was returned by the local_scan() function when the message was
received – the value of the $local_scan_data variable. It is omitted if no data was returned.

-manual_thaw
The message was frozen but has been thawed manually, that is, by an explicit Exim command
rather than via the auto-thaw process.

-N
A testing delivery process was started using the -N option to suppress any actual deliveries, but
delivery was deferred. At any further delivery attempts, -N is assumed.

-received_protocol
This records the value of the $received_protocol variable, which contains the name of the protocol
by which the message was received.

-sender_set_untrusted
The envelope sender of this message was set by an untrusted local caller (used to ensure that the
caller is displayed in queue listings).

-spam_score_int <number>
If a message was scanned by SpamAssassin, this is present. It records the value of $spam_score_
int.

-spool_file_wireformat
The -D file for this message is in wire-format (for ESMTP CHUNKING) rather than Unix-format.
The line-ending is CRLF rather than newline. There is still, however, no leading-dot-stuffing.

-tls_certificate_verified
A TLS certificate was received from the client that sent this message, and the certificate was
verified by the server.

514 Format of spool files (57)

-tls_cipher <cipher name>
When the message was received over an encrypted connection, this records the name of the cipher
suite that was used.

-tls_peerdn <peer DN>
When the message was received over an encrypted connection, and a certificate was received from
the client, this records the Distinguished Name from that certificate.

Following the options there is a list of those addresses to which the message is not to be delivered.
This set of addresses is initialized from the command line when the -t option is used and extract_
addresses_remove_arguments is set; otherwise it starts out empty. Whenever a successful delivery is
made, the address is added to this set. The addresses are kept internally as a balanced binary tree, and
it is a representation of that tree which is written to the spool file. If an address is expanded via an
alias or forward file, the original address is added to the tree when deliveries to all its child addresses
are complete.

If the tree is empty, there is a single line in the spool file containing just the text “XX”. Otherwise,
each line consists of two letters, which are either Y or N, followed by an address. The address is the
value for the node of the tree, and the letters indicate whether the node has a left branch and/or a right
branch attached to it, respectively. If branches exist, they immediately follow. Here is an example of a
three-node tree:

YY darcy@austen.fict.example
NN alice@wonderland.fict.example
NN editor@thesaurus.ref.example

After the non-recipients tree, there is a list of the message’s recipients. This is a simple list, preceded
by a count. It includes all the original recipients of the message, including those to whom the message
has already been delivered. In the simplest case, the list contains one address per line. For example:

4
editor@thesaurus.ref.example
darcy@austen.fict.example
rdo@foundation
alice@wonderland.fict.example

However, when a child address has been added to the top-level addresses as a result of the use of the
one_time option on a redirect router, each line is of the following form:

<top-level address> <errors_to address> <length>,<parent number>#<flag bits>

The 01 flag bit indicates the presence of the three other fields that follow the top-level address. Other
bits may be used in future to support additional fields. The <parent number> is the offset in the
recipients list of the original parent of the “one time” address. The first two fields are the envelope
sender that is associated with this address and its length. If the length is zero, there is no special
envelope sender (there are then two space characters in the line). A non-empty field can arise from a
redirect router that has an errors_to setting.

A blank line separates the envelope and status information from the headers which follow. A header
may occupy several lines of the file, and to save effort when reading it in, each header is preceded by
a number and an identifying character. The number is the number of characters in the header, includ-
ing any embedded newlines and the terminating newline. The character is one of the following:

<blank> header in which Exim has no special interest
B Bcc: header
C Cc: header
F From: header
I Message-id: header
P Received: header – P for “postmark”
R Reply-To: header
S Sender: header
T To: header
* replaced or deleted header

515 Format of spool files (57)

Deleted or replaced (rewritten) headers remain in the spool file for debugging purposes. They are not
transmitted when the message is delivered. Here is a typical set of headers:

111P Received: by hobbit.fict.example with local (Exim 4.00)
id 14y9EI-00026G-00; Fri, 11 May 2001 10:28:59 +0100
049 Message-Id: <E14y9EI-00026G-00@hobbit.fict.example>
038* X-rewrote-sender: bb@hobbit.fict.example
042* From: Bilbo Baggins <bb@hobbit.fict.example>
049F From: Bilbo Baggins <B.Baggins@hobbit.fict.example>
099* To: alice@wonderland.fict.example, rdo@foundation,
darcy@austen.fict.example, editor@thesaurus.ref.example
104T To: alice@wonderland.fict.example, rdo@foundation.example,
darcy@austen.fict.example, editor@thesaurus.ref.example
038 Date: Fri, 11 May 2001 10:28:59 +0100

The asterisked headers indicate that the envelope sender, From: header, and To: header have been
rewritten, the last one because routing expanded the unqualified domain foundation.

57.2 Format of the -D file

The data file is traditionally in Unix-standard format: lines are ended with an ASCII newline charac-
ter. However, when the spool_wireformat main option is used some -D files can have an alternate
format. This is flagged by a -spool_file_wireformat line in the corresponding -H file. The -D file
lines (not including the first name-component line) are suitable for direct copying to the wire when
transmitting using the ESMTP CHUNKING option, meaning lower processing overhead. Lines are
terminated with an ASCII CRLF pair. There is no dot-stuffing (and no dot-termination).

516 Format of spool files (57)

58. DKIM, SPF, SRS and DMARC

58.1 DKIM (DomainKeys Identified Mail)

DKIM is a mechanism by which messages sent by some entity can be provably linked to a domain
which that entity controls. It permits reputation to be tracked on a per-domain basis, rather than
merely upon source IP address. DKIM is documented in RFC 6376.

As DKIM relies on the message being unchanged in transit, messages handled by a mailing-list
(which traditionally adds to the message) will not match any original DKIM signature.

DKIM support is compiled into Exim by default if TLS support is present. It can be disabled by
setting DISABLE_DKIM=yes in Local/Makefile.

Exim’s DKIM implementation allows for

(1) Signing outgoing messages: This function is implemented in the SMTP transport. It can co-exist
with all other Exim features (including transport filters) except cutthrough delivery.

However, signing options may not depend on headers modified by routers, the transport or a
transport filter.

(2) Verifying signatures in incoming messages: This is implemented by an additional ACL
(acl_smtp_dkim), which can be called several times per message, with different signature
contexts.

In typical Exim style, the verification implementation does not include any default "policy". Instead it
enables you to build your own policy using Exim’s standard controls.

Please note that verification of DKIM signatures in incoming mail is turned on by default for logging
(in the <= line) purposes.

Additional log detail can be enabled using the dkim_verbose log_selector. When set, for each signa-
ture in incoming email, exim will log a line displaying the most important signature details, and the
signature status. Here is an example (with line-breaks added for clarity):

2009-09-09 10:22:28 1MlIRf-0003LU-U3 DKIM:
 d=facebookmail.com s=q1-2009b
 c=relaxed/relaxed a=rsa-sha1
 i=@facebookmail.com t=1252484542 [verification succeeded]

You might want to turn off DKIM verification processing entirely for internal or relay mail sources.
To do that, set the dkim_disable_verify ACL control modifier. This should typically be done in the
RCPT ACL, at points where you accept mail from relay sources (internal hosts or authenticated
senders).

58.1.1 Signing outgoing messages

For signing to be usable you must have published a DKIM record in DNS. Note that RFC 8301
(which does not cover EC keys) says:

rsa-sha1 MUST NOT be used for signing or verifying.

Signers MUST use RSA keys of at least 1024 bits for all keys.
Signers SHOULD use RSA keys of at least 2048 bits.

Note also that the key content (the ’p=’ field) in the DNS record is different between RSA and EC
keys; for the former it is the base64 of the ASN.1 for the RSA public key (equivalent to the private-
key .pem with the header/trailer stripped) but for EC keys it is the base64 of the pure key; no ASN.1
wrapping.

Signing is enabled by setting private options on the SMTP transport. These options take (expandable)
strings as arguments.

517 DKIM, SPF, SRS and DMARC Support
(58)

dkim_domain Use: smtp Type: string list† Default: unset

The domain(s) you want to sign with. After expansion, this can be a list. Each element in turn,
lowercased, is put into the $dkim_domain expansion variable while expanding the remaining signing
options. If it is empty after expansion, DKIM signing is not done, and no error will result even if
dkim_strict is set.

dkim_selector Use: smtp Type: string list† Default: unset

This sets the key selector string. After expansion, which can use $dkim_domain, this can be a list.
Each element in turn is put in the expansion variable $dkim_selector which may be used in the
dkim_private_key option along with $dkim_domain. If the option is empty after expansion, DKIM
signing is not done for this domain, and no error will result even if dkim_strict is set.

To do, for example, dual-signing with RSA and EC keys this could be be used:

dkim_selector = ec_sel : rsa_sel
dkim_private_key = KEYS_DIR/$dkim_selector

dkim_private_key Use: smtp Type: string† Default: unset

This sets the private key to use. You can use the $dkim_domain and $dkim_selector expansion
variables to determine the private key to use. The result can either

• be a valid RSA private key in ASCII armor (.pem file), including line breaks

• with GnuTLS 3.6.0 or OpenSSL 1.1.1 or later, be a valid Ed25519 private key (same format as
above)

• start with a slash, in which case it is treated as a file that contains the private key

• be "0", "false" or the empty string, in which case the message will not be signed. This case will not
result in an error, even if dkim_strict is set.

To generate keys under OpenSSL:

openssl genrsa -out dkim_rsa.private 2048
openssl rsa -in dkim_rsa.private -out /dev/stdout -pubout -outform PEM

The result file from the first command should be retained, and this option set to use it. Take the
base-64 lines from the output of the second command, concatenated, for the DNS TXT record. See
section 3.6 of RFC6376 for the record specification.

Under GnuTLS:

certtool --generate-privkey --rsa --bits=2048 --password='' -8 --outfile=dkim_rsa.private
certtool --load-privkey=dkim_rsa.private --pubkey-info

Note that RFC 8301 says:

Signers MUST use RSA keys of at least 1024 bits for all keys.
Signers SHOULD use RSA keys of at least 2048 bits.

EC keys for DKIM are defined by RFC 8463. They are considerably smaller than RSA keys for
equivalent protection. As they are a recent development, users should consider dual-signing (by
setting a list of selectors, and an expansion for this option) for some transition period. The
"_CRYPTO_SIGN_ED25519" macro will be defined if support is present for EC keys.

OpenSSL 1.1.1 and GnuTLS 3.6.0 can create Ed25519 private keys:

openssl genpkey -algorithm ed25519 -out dkim_ed25519.private
certtool --generate-privkey --key-type=ed25519 --outfile=dkim_ed25519.private

To produce the required public key value for a DNS record:

518 DKIM, SPF, SRS and DMARC Support
(58)

openssl pkey -outform DER -pubout -in dkim_ed25519.private | tail -c +13 | base64
certtool --load_privkey=dkim_ed25519.private --pubkey_info --outder | tail -c +13 | base64

Exim also supports an alternate format of Ed25519 keys in DNS which was a candidate during
development of the standard, but not adopted. A future release will probably drop that support.

dkim_hash Use: smtp Type: string† Default: sha256

Can be set to any one of the supported hash methods, which are:

• sha1 – should not be used, is old and insecure

• sha256 – the default

• sha512 – possibly more secure but less well supported

Note that RFC 8301 says:

rsa-sha1 MUST NOT be used for signing or verifying.

dkim_identity Use: smtp Type: string† Default: unset

If set after expansion, the value is used to set an "i=" tag in the signing header. The DKIM standards
restrict the permissible syntax of this optional tag to a mail address, with possibly-empty local part, an
@, and a domain identical to or subdomain of the "d=" tag value. Note that Exim does not check the
value.

dkim_canon Use: smtp Type: string† Default: unset

This option sets the canonicalization method used when signing a message. The DKIM RFC currently
supports two methods: "simple" and "relaxed". The option defaults to "relaxed" when unset. Note: the
current implementation only supports signing with the same canonicalization method for both headers
and body.

dkim_strict Use: smtp Type: string† Default: unset

This option defines how Exim behaves when signing a message that should be signed fails for some
reason. When the expansion evaluates to either “1” or “true”, Exim will defer. Otherwise Exim will
send the message unsigned. You can use the $dkim_domain and $dkim_selector expansion variables
here.

dkim_sign_headers Use: smtp Type: string† Default: see below

If set, this option must expand to a colon-separated list of header names. Headers with these names,
or the absence of such a header, will be included in the message signature. When unspecified, the
header names listed in RFC4871 will be used, whether or not each header is present in the message.
The default list is available for the expansion in the macro “_DKIM_SIGN_HEADERS” and an
oversigning variant is in “_DKIM_OVERSIGN_HEADERS”.

If a name is repeated, multiple headers by that name (or the absence thereof) will be signed. The
textually later headers in the headers part of the message are signed first, if there are multiples.

A name can be prefixed with either an “=” or a “+” character. If an “=” prefix is used, all headers that
are present with this name will be signed. If a “+” prefix if used, all headers that are present with this
name will be signed, and one signature added for a missing header with the name will be appended.

519 DKIM, SPF, SRS and DMARC Support

(58)

dkim_timestamps Use: smtp Type: integer† Default: unset

This option controls the inclusion of timestamp information in the signature. If not set, no such
information will be included.

Otherwise, must be an unsigned number giving an offset in seconds from the current time for the
expiry tag (e.g. 1209600 for two weeks); both creation (t=) and expiry (x=) tags will be included
unless the offset is 0 (no expiry).

RFC 6376 lists these tags as RECOMMENDED.

58.1.2 Verifying DKIM signatures in incoming mail

Verification of DKIM signatures in SMTP incoming email is done for all messages for which an ACL
control dkim_disable_verify has not been set.

Individual classes of DKIM signature algorithm can be ignored by changing the main options dkim_
verify_hashes or dkim_verify_keytypes. The dkim_verify_minimal option can be set to cease
verification processing for a message once the first passing signature is found.

Performing verification sets up information used by the authresults expansion item.

For most purposes the default option settings suffice and the remainder of this section can be ignored.

The results of verification are made available to the acl_smtp_dkim ACL, which (for complex needs)
can examine and modify them. A missing ACL definition defaults to accept. By default, the ACL is
called once for each syntactically(!) correct signature in the incoming message. If any ACL call does
not accept, the message is not accepted. If a cutthrough delivery was in progress for the message, that
is summarily dropped (having wasted the transmission effort).

To evaluate the verification result in the ACL a large number of expansion variables containing the
signature status and its details are set up during the runtime of the ACL.

Calling the ACL only for existing signatures is not sufficient to build more advanced policies. For that
reason, the main option dkim_verify_signers, and an expansion variable $dkim_signers exist.

The main option dkim_verify_signers can be set to a colon-separated list of DKIM domains or
identities for which the ACL acl_smtp_dkim is called. It is expanded when the message has been
received. At this point, the expansion variable $dkim_signers already contains a colon-separated list
of signer domains and identities for the message. When dkim_verify_signers is not specified in the
main configuration, it defaults as:

dkim_verify_signers = $dkim_signers

This leads to the default behaviour of calling acl_smtp_dkim for each DKIM signature in the mess-
age. Current DKIM verifiers may want to explicitly call the ACL for known domains or identities.
This would be achieved as follows:

dkim_verify_signers = paypal.com:ebay.com:$dkim_signers

This would result in acl_smtp_dkim always being called for "paypal.com" and "ebay.com", plus all
domains and identities that have signatures in the message. You can also be more creative in con-
structing your policy. For example:

dkim_verify_signers = $sender_address_domain:$dkim_signers

If a domain or identity is listed several times in the (expanded) value of dkim_verify_signers, the
ACL is only called once for that domain or identity.

Note that if the option is set using untrustworthy data (such as the From: header) care should be taken
to force lowercase for domains and for the domain part if identities. The default setting can be
regarded as trustworthy in this respect.

If multiple signatures match a domain (or identity), the ACL is called once for each matching
signature.

Inside the DKIM ACL, the following expansion variables are available (from most to least important):

520 DKIM, SPF, SRS and DMARC Support
(58)

$dkim_cur_signer
The signer that is being evaluated in this ACL run. This can be a domain or an identity. This is one
of the list items from the expanded main option dkim_verify_signers (see above).

$dkim_verify_status
So long as a DKIM ACL is defined (it need do no more than accept, which is the default), after all
the DKIM ACL runs have completed, the value becomes a colon-separated list of the values after
each run. The value is maintained for the MIME, PRDR and DATA ACLs.

Within the DKIM ACL, a string describing the general status of the signature. One of

• none: There is no signature in the message for the current domain or identity (as reflected by
$dkim_cur_signer).

• invalid: The signature could not be verified due to a processing error. More detail is available in
$dkim_verify_reason.

• fail: Verification of the signature failed. More detail is available in $dkim_verify_reason.

• pass: The signature passed verification. It is valid.

This variable can be overwritten using an ACL ’set’ modifier. This might, for instance, be done to
enforce a policy restriction on hash-method or key-size:

warn condition = ${if eq {$dkim_verify_status}{pass}}
 condition = ${if eq {${length_3:$dkim_algo}}{rsa}}
 condition = ${if or {{eq {$dkim_algo}{rsa-sha1}} \
 {< {$dkim_key_length}{1024}}}}
 logwrite = NOTE: forcing DKIM verify fail (was pass)
 set dkim_verify_status = fail
 set dkim_verify_reason = hash too weak or key too short

$dkim_verify_reason
A string giving a little bit more detail when $dkim_verify_status is either "fail" or "invalid". One
of

• pubkey_unavailable (when $dkim_verify_status="invalid"): The public key for the domain
could not be retrieved. This may be a temporary problem.

• pubkey_syntax (when $dkim_verify_status="invalid"): The public key record for the domain
is syntactically invalid.

• bodyhash_mismatch (when $dkim_verify_status="fail"): The calculated body hash does not
match the one specified in the signature header. This means that the message body was modified
in transit.

• signature_incorrect (when $dkim_verify_status="fail"): The signature could not be verified.
This may mean that headers were modified, re-written or otherwise changed in a way which is
incompatible with DKIM verification. It may of course also mean that the signature is forged.

This variable can be overwritten, with any value, using an ACL ’set’ modifier.

$dkim_domain
The signing domain. IMPORTANT: This variable is only populated if there is an actual signature
in the message for the current domain or identity (as reflected by $dkim_cur_signer).

$dkim_identity
The signing identity, if present. IMPORTANT: This variable is only populated if there is an actual
signature in the message for the current domain or identity (as reflected by $dkim_cur_signer).

$dkim_selector
The key record selector string.

$dkim_algo
The algorithm used. One of ’rsa-sha1’ or ’rsa-sha256’. If running under GnuTLS 3.6.0 or
OpenSSL 1.1.1 or later, may also be ’ed25519-sha256’. The "_CRYPTO_SIGN_ED25519" macro
will be defined if support is present for EC keys.

521 DKIM, SPF, SRS and DMARC Support

(58)

Note that RFC 8301 says:

rsa-sha1 MUST NOT be used for signing or verifying.

DKIM signatures identified as having been signed with historic
algorithms (currently, rsa-sha1) have permanently failed evaluation

To enforce this you must either have a DKIM ACL which checks this variable and overwrites the
$dkim_verify_status variable as discussed above, or have set the main option dkim_verify_hashes
to exclude processing of such signatures.

$dkim_canon_body
The body canonicalization method. One of ’relaxed’ or ’simple’.

$dkim_canon_headers
The header canonicalization method. One of ’relaxed’ or ’simple’.

$dkim_copiedheaders
A transcript of headers and their values which are included in the signature (copied from the ’z=’
tag of the signature). Note that RFC6376 requires that verification fail if the From: header is not
included in the signature. Exim does not enforce this; sites wishing strict enforcement should code
the check explicitly.

$dkim_bodylength
The number of signed body bytes. If zero ("0"), the body is unsigned. If no limit was set by the
signer, "9999999999999" is returned. This makes sure that this variable always expands to an
integer value. Note: The presence of the signature tag specifying a signing body length is one
possible route to spoofing of valid DKIM signatures. A paranoid implementation might wish to
regard signature where this variable shows less than the "no limit" return as being invalid.

$dkim_created
UNIX timestamp reflecting the date and time when the signature was created. When this was not
specified by the signer, "0" is returned.

$dkim_expires
UNIX timestamp reflecting the date and time when the signer wants the signature to be treated as
"expired". When this was not specified by the signer, "9999999999999" is returned. This makes it
possible to do useful integer size comparisons against this value. Note that Exim does not check
this value.

$dkim_headernames
A colon-separated list of names of headers included in the signature.

$dkim_key_testing
"1" if the key record has the "testing" flag set, "0" if not.

$dkim_key_nosubdomains
"1" if the key record forbids subdomaining, "0" otherwise.

$dkim_key_srvtype
Service type (tag s=) from the key record. Defaults to "*" if not specified in the key record.

$dkim_key_granularity
Key granularity (tag g=) from the key record. Defaults to "*" if not specified in the key record.

$dkim_key_notes
Notes from the key record (tag n=).

$dkim_key_length
Number of bits in the key. Valid only once the key is loaded, which is at the time the header
signature is verified, which is after the body hash is.

Note that RFC 8301 says:

Verifiers MUST NOT consider signatures using RSA keys of
less than 1024 bits as valid signatures.

522 DKIM, SPF, SRS and DMARC Support

(58)

This is enforced by the default setting for the dkim_verify_min_keysizes option.

In addition, two ACL conditions are provided:

dkim_signers
ACL condition that checks a colon-separated list of domains or identities for a match against the
domain or identity that the ACL is currently verifying (reflected by $dkim_cur_signer). This
condition is only usable in a DKIM ACL. This is typically used to restrict an ACL verb to a group
of domains or identities. For example:

Warn when Mail purportedly from GMail has no gmail signature
warn sender_domains = gmail.com
 dkim_signers = gmail.com
 dkim_status = none
 log_message = GMail sender without gmail.com DKIM signature

Note that the above does not check for a total lack of DKIM signing; for that check for empty $h_
DKIM-Signature: in the data ACL.

dkim_status
ACL condition that checks a colon-separated list of possible DKIM verification results against the
actual result of verification, given by $dkim_verify_status if that is non-empty or "none" if empty.

This condition may be used in DKIM, MIME, PRDR and DATA ACLs.

A basic verification might be:

deny !dkim_status = pass:none:invalid

A more complex use could be to restrict an ACL verb to a list of verification outcomes, for
example:

deny sender_domains = paypal.com:paypal.de
 dkim_signers = paypal.com:paypal.de
 dkim_status = none:invalid:fail
 message = Mail from Paypal with invalid/missing signature

The possible status keywords are: ’none’,’invalid’,’fail’ and ’pass’. Please see the documentation
of the $dkim_verify_status expansion variable above for more information of what they mean.

The condition is true if the status

(or any of the list of status values)

is any one of the supplied list.

58.2 SPF (Sender Policy Framework)

SPF is a mechanism whereby a domain may assert which IP addresses may transmit messages with
its domain in the envelope from, documented by RFC 7208. For more information on SPF see
http://www.open-spf.org, a static copy of the http://openspf.org.

Messages sent by a system not authorised will fail checking of such assertions. This includes
retransmissions done by traditional forwarders.

SPF verification support is built into Exim if SUPPORT_SPF=yes is set in Local/Makefile. The
support uses the libspf2 library https://www.libspf2.org/. There is no Exim involvement in the trans-
mission of messages; publishing certain DNS records is all that is required.

For verification, an ACL condition and an expansion lookup are provided. Performing verification sets
up information used by the authresults expansion item.

The ACL condition "spf" can be used at or after the MAIL ACL. It takes as an argument a list of
strings giving the outcome of the SPF check, and will succeed for any matching outcome. Valid
strings are:

523 DKIM, SPF, SRS and DMARC Support
(58)

pass
The SPF check passed, the sending host is positively verified by SPF.

fail
The SPF check failed, the sending host is NOT allowed to send mail for the domain in the
envelope-from address.

softfail
The SPF check failed, but the queried domain can’t absolutely confirm that this is a forgery.

none
The queried domain does not publish SPF records.

neutral
The SPF check returned a "neutral" state. This means the queried domain has published a SPF
record, but wants to allow outside servers to send mail under its domain as well. This should be
treated like "none".

permerror
This indicates a syntax error in the SPF record of the queried domain. You may deny messages
when this occurs.

temperror
This indicates a temporary error during all processing, including Exim’s SPF processing. You may
defer messages when this occurs.

invalid
There was an error during processing of the SPF lookup

You can prefix each string with an exclamation mark to invert its meaning, for example "!fail" will
match all results but "fail". The string list is evaluated left-to-right, in a short-circuit fashion.

Example:

deny spf = fail
 message = $sender_host_address is not allowed to send mail from \
 ${if def:sender_address_domain \
 {$sender_address_domain}{$sender_helo_name}}. \
 Please see http://www.open-spf.org/Why;\
 identity=${if def:sender_address_domain \
 {$sender_address}{$sender_helo_name}};\
 ip=$sender_host_address

Note: The above mentioned URL may not be as helpful as expected. You are encouraged to replace
the link with a link to a site with more explanations.

When the spf condition has run, it sets up several expansion variables:

$spf_header_comment
This contains a human-readable string describing the outcome of the SPF check. You can add it to
a custom header or use it for logging purposes.

$spf_received
This contains a complete Received-SPF: header (name and content) that can be added to the
message. Please note that according to the SPF draft, this header must be added at the top of the
header list, i.e. with

add_header = :at_start:$spf_received

See section 44.15 for further details.

Note: in case of "Best-guess" (see below), the convention is to put this string in a header called
X-SPF-Guess: instead.

$spf_result
This contains the outcome of the SPF check in string form, currently one of pass, fail, softfail,
none, neutral, permerror, temperror, or “(invalid)”.

524 DKIM, SPF, SRS and DMARC Support

(58)

$spf_result_guessed
This boolean is true only if a best-guess operation was used and required in order to obtain a
result.

$spf_smtp_comment
This contains a string that can be used in a SMTP response to the calling party. Useful for "fail".
The string is generated by the SPF library from the template configured in the main config option
spf_smtp_comment_template.

In addition to SPF, you can also perform checks for so-called "Best-guess". Strictly speaking, "Best-
guess" is not standard SPF, but it is supported by the same framework that enables SPF capability.
Refer to http://www.open-spf.org/FAQ/Best_guess_record for a description of what it means.

To access this feature, simply use the spf_guess condition in place of the spf one. For example:

deny spf_guess = fail
 message = $sender_host_address doesn't look trustworthy to me

In case you decide to reject messages based on this check, you should note that although it uses the
same framework, "Best-guess" is not SPF, and therefore you should not mention SPF at all in your
reject message.

When the spf_guess condition has run, it sets up the same expansion variables as when spf condition
is run, described above.

Additionally, since Best-guess is not standardized, you may redefine what "Best-guess" means to you
by redefining the main configuration spf_guess option. For example, the following:

spf_guess = v=spf1 a/16 mx/16 ptr ?all

would relax host matching rules to a broader network range.

A lookup expansion is also available. It takes an email address as the key and an IP address (v4 or v6)
as the database:

${lookup {username@domain} spf {ip.ip.ip.ip}}

The lookup will return the same result strings as can appear in $spf_result
(pass,fail,softfail,neutral,none,err_perm,err_temp).

58.2.1 SRS (Sender Rewriting Scheme)

SRS can be used to modify sender addresses when forwarding so that SPF verification does not object
to them. It can also be used to identify a received bounce message as likely (or not) having been
trigged by a message from the local system, and for identifying dead addresses in mailing lists. It is
one implementation of a VERP (Variable Envelope Return Path) method.

SRS operates by encoding the original envelope sender in a new sender local part and using a domain
run by the forwarding site as the new domain for the sender. Any DSN message should be returned to
this new sender at the forwarding site, which can extract the original sender from the coded local part
and forward the DSN to the originator.

This is a way of avoiding the breakage that SPF does to forwarding. The constructed local-part will be
longer than the original, leading to possible problems with very long addresses. The changing of the
sender address also hinders the tracing of mail problems.

Exim can be built to include native SRS support. To do this SUPPORT_SRS=yes must be defined in
Local/Makefile. If this has been done, the macros _HAVE_SRS and _HAVE_NATIVE_SRS will be
defined. The support is limited to SRS0-encoding; SRS1 is not supported.

To encode an address use this expansion item:

${srs_encode {<secret>}{<return path>}{<original domain>}}
The first argument should be a secret known and used by all systems handling the recipient domain
for the original message. There is no need to periodically change this key; a timestamp is also
encoded. The second argument should be given as the envelope sender address before this encod-

525 DKIM, SPF, SRS and DMARC Support

(58)

ing operation. If this value is empty the the expansion result will be empty. The third argument
should be the recipient domain of the message when it arrived at this system. All arguments are
expanded before use.

The result of the expansion is the replacement envelope-from (return path) to be used.

To decode an address use this expansion condition:

inbound_srs {<local part>}{<secret>}
The first argument should be the recipient local part as it was received. The second argument is the
site secret. Both arguments are expanded before use.

If the messages is not for an SRS-encoded recipient the condition will return false. If it is, the
condition will return true and the variable $srs_recipient will be set to the decoded (original)
value.

If the second argument is empty then the condition returns true if the first argument is in valid SRS
formet, else false. The variable $srs_recipient is not set for this case.

Example usage:

 #macro
 SRS_SECRET = <pick something unique for your site for this. Use on all MXs.>

 #routers

 outbound:
 driver = dnslookup
 # if outbound, and forwarding has been done, use an alternate transport
 domains = ! +my_domains
 transport = ${if eq {$local_part@$domain} \
 {$original_local_part@$original_domain} \
 {remote_smtp} {remote_forwarded_smtp}}

 inbound_srs:
 driver = redirect
 senders = :
 domains = +my_domains
 # detect inbound bounces which are SRS'd, and decode them
 condition = ${if inbound_srs {$local_part} {SRS_SECRET}}
 data = $srs_recipient

 inbound_srs_failure:
 driver = redirect
 senders = :
 domains = +my_domains
 # detect inbound bounces which look SRS'd but are invalid
 condition = ${if inbound_srs {$local_part} {}}
 allow_fail
 data = :fail: Invalid SRS recipient address

 #... further routers here get inbound_srs-redirected recipients
 # and any that were not SRS'd

 # transport; should look like the non-forward outbound
 # one, plus the max_rcpt and return_path options
 remote_forwarded_smtp:
 driver = smtp
 # single-recipient so that $original_domain is valid
 max_rcpt = 1

526 DKIM, SPF, SRS and DMARC Support

(58)

 # modify the envelope from, for mails that we forward
 return_path = ${srs_encode {SRS_SECRET} {$return_path} {$original_domain}}

58.3 DMARC

DMARC combines feedback from SPF, DKIM, and header From: in order to attempt to provide better
indicators of the authenticity of an email. This document does not explain the fundamentals; you
should read and understand how it works by visiting the website at http://www.dmarc.org/.

If Exim is built with DMARC support, the libopendmarc library is used.

For building Exim yourself, obtain the library from http://sourceforge.net/projects/opendmarc/ to
obtain a copy, or find it in your favorite package repository. You will need to attend to the
local/Makefile feature SUPPORT_DMARC and the associated LDFLAGS addition. This description
assumes that headers will be in /usr/local/include, and that the libraries are in /usr/local/lib.

58.3.1 Configuration

There are three main-configuration options:

The dmarc_tld_file option defines the location of a text file of valid top level domains the opendmarc
library uses during domain parsing. Maintained by Mozilla, the most current version can be
downloaded from a link at https://publicsuffix.org/list/public_suffix_list.dat. See also the
util/renew-opendmarc-tlds.sh script. The default for the option is unset. If not set, DMARC process-
ing is disabled.

The dmarc_history_file option, if set defines the location of a file to log results of dmarc verification
on inbound emails. The contents are importable by the opendmarc tools which will manage the data,
send out DMARC reports, and expire the data. Make sure the directory of this file is writable by the
user exim runs as. The default is unset.

The dmarc_forensic_sender option defines an alternate email address to use when sending a forensic
report detailing alignment failures if a sender domain’s dmarc record specifies it and you have con-
figured Exim to send them. If set, this is expanded and used for the From: header line; the address is
extracted from it and used for the envelope from. If not set (the default), the From: header is expanded
from the dsn_from option, and <> is used for the envelope from.

58.3.2 Controls

By default, the DMARC processing will run for any remote, non-authenticated user. It makes sense to
only verify DMARC status of messages coming from remote, untrusted sources. You can use standard
conditions such as hosts, senders, etc, to decide that DMARC verification should *not* be performed
for them and disable DMARC with an ACL control modifier:

control = dmarc_disable_verify

A DMARC record can also specify a "forensic address", which gives exim an email address to submit
reports about failed alignment. Exim does not do this by default because in certain conditions it
results in unintended information leakage (what lists a user might be subscribed to, etc). You must
configure exim to submit forensic reports to the owner of the domain. If the DMARC record contains
a forensic address and you specify the control statement below, then exim will send these forensic
emails. It is also advised that you configure a dmarc_forensic_sender because the default sender
address construction might be inadequate.

control = dmarc_enable_forensic

(AGAIN: You can choose not to send these forensic reports by simply not putting the
dmarc_enable_forensic control line at any point in your exim config. If you don’t tell exim to send
them, it will not send them.)

There are no options to either control. Both must appear before the DATA acl.

527 DKIM, SPF, SRS and DMARC Support

(58)

58.3.3 ACL

DMARC checks can be run on incoming SMTP messages by using the “dmarc_status” ACL con-
dition in the DATA ACL. You are required to call the “spf” condition first in the ACLs, then the
“dmarc_status” condition. Putting this condition in the ACLs is required in order for a DMARC check
to actually occur. All of the variables are set up before the DATA ACL, but there is no actual DMARC
check that occurs until a “dmarc_status” condition is encountered in the ACLs.

The “dmarc_status” condition takes a list of strings on its right-hand side. These strings describe
recommended action based on the DMARC check. To understand what the policy recommendations
mean, refer to the DMARC website above. Valid strings are:

 accept The DMARC check passed and the library recommends accepting the email
 reject The DMARC check failed and the library recommends rejecting the email
 quarantine The DMARC check failed and the library recommends keeping it for further

inspection
 none The DMARC check passed and the library recommends no specific action,

neutral
 norecord No policy section in the DMARC record for this RFC5322.From field
 nofrom Unable to determine the domain of the sender
 temperror Library error or dns error
 off The DMARC check was disabled for this email

You can prefix each string with an exclamation mark to invert its meaning, for example "!accept" will
match all results but "accept". The string list is evaluated left-to-right in a short-circuit fashion. When
a string matches the outcome of the DMARC check, the condition succeeds. If none of the listed
strings matches the outcome of the DMARC check, the condition fails.

Of course, you can also use any other lookup method that Exim supports, including LDAP, Postgres,
MySQL, etc, as long as the result is a list of colon-separated strings.

Performing the check sets up information used by the authresults expansion item.

Several expansion variables are set before the DATA ACL is processed, and you can use them in this
ACL. The following expansion variables are available:

$dmarc_status
A one word status indicating what the DMARC library thinks of the email. It is a combination
of the results of DMARC record lookup and the SPF/DKIM/DMARC processing results (if a
DMARC record was found). The actual policy declared in the DMARC record is in a separate
expansion variable.

$dmarc_status_text
Slightly longer, human readable status.

$dmarc_used_domain
The domain which DMARC used to look up the DMARC policy record.

$dmarc_domain_policy
The policy declared in the DMARC record. Valid values are "none", "reject" and "quarantine". It is
blank when there is any error, including no DMARC record.

58.3.4 Logging

By default, Exim’s DMARC configuration is intended to be non-intrusive and conservative. To facili-
tate this, Exim will not create any type of logging files without explicit configuration by you, the
admin. Nor will Exim send out any emails/reports about DMARC issues without explicit configur-
ation by you, the admin (other than typical bounce messages that may come about due to ACL
processing or failure delivery issues).

In order to log statistics suitable to be imported by the opendmarc tools, you need to:

• Configure the global option dmarc_history_file

528 DKIM, SPF, SRS and DMARC Support
(58)

• Configure cron jobs to call the appropriate opendmarc history import scripts and truncating the
dmarc_history_file

In order to send forensic reports, you need to:

• Configure the global option dmarc_forensic_sender

• Configure, somewhere before the DATA ACL, the control option to enable sending DMARC
forensic reports

58.3.5 Example

Example usage:

(RCPT ACL)
 warn domains = +local_domains
 hosts = +local_hosts
 control = dmarc_disable_verify

 warn !domains = +screwed_up_dmarc_records
 control = dmarc_enable_forensic

 warn condition = (lookup if destined to mailing list)
 set acl_m_mailing_list = 1

(DATA ACL)
 warn dmarc_status = accept : none : off
 !authenticated = *
 log_message = DMARC DEBUG: $dmarc_status $dmarc_used_domain

 warn dmarc_status = !accept
 !authenticated = *
 log_message = DMARC DEBUG: '$dmarc_status' for $dmarc_used_domain

 warn dmarc_status = quarantine
 !authenticated = *
 set $acl_m_quarantine = 1
 # Do something in a transport with this flag variable

 deny condition = ${if eq{$dmarc_domain_policy}{reject}}
 condition = ${if eq{$acl_m_mailing_list}{1}}
 message = Messages from $dmarc_used_domain break mailing lists

 deny dmarc_status = reject
 !authenticated = *
 message = Message from $dmarc_used_domain failed sender's DMARC policy, REJECT

 warn add_header = :at_start:${authresults {$primary_hostname}}

529 DKIM, SPF, SRS and DMARC Support

(58)

59. Proxies

A proxy is an intermediate system through which communication is passed. Proxies may provide a
security, availability or load-distribution function.

59.1 Inbound proxies

Exim has support for receiving inbound SMTP connections via a proxy that uses “Proxy Protocol” to
speak to it. To include this support, include “SUPPORT_PROXY=yes” in Local/Makefile.

It was built on the HAProxy specification, found at
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt.

The purpose of this facility is so that an application load balancer, such as HAProxy, can sit in front of
several Exim servers to distribute load. Exim uses the local protocol communication with the proxy to
obtain the remote SMTP system IP address and port information. There is no logging if a host passes
or fails Proxy Protocol negotiation, but it can easily be determined and recorded in an ACL (example
is below).

Use of a proxy is enabled by setting the hosts_proxy main configuration option to a hostlist; connec-
tions from these hosts will use Proxy Protocol. Exim supports both version 1 and version 2 of the
Proxy Protocol and automatically determines which version is in use.

The Proxy Protocol header is the first data received on a TCP connection and is inserted before any
TLS-on-connect handshake from the client; Exim negotiates TLS between Exim-as-server and the
remote client, not between Exim and the proxy server. The Proxy Protocol header must be received
within proxy_protocol_timeout, which defaults to 3s.

The following expansion variables are usable (“internal” and “external” here refer to the interfaces of
the proxy):

 $proxy_external_address IP of host being proxied or IP of remote interface of proxy
 $proxy_external_port Port of host being proxied or Port on remote interface of proxy
 $proxy_local_address IP of proxy server inbound or IP of local interface of proxy
 $proxy_local_port Port of proxy server inbound or Port on local interface of proxy
 $proxy_session boolean: SMTP connection via proxy

If $proxy_session is set but $proxy_external_address is empty there was a protocol error. The vari-
ables $sender_host_address and $sender_host_port will have values for the actual client system, not
the proxy.

Since the real connections are all coming from the proxy, and the per host connection tracking is done
before Proxy Protocol is evaluated, smtp_accept_max_per_host must be set high enough to handle
all of the parallel volume you expect per inbound proxy. With the option set so high, you lose the
ability to protect your server from many connections from one IP. In order to prevent your server from
overload, you need to add a per connection ratelimit to your connect ACL. A possible solution is:

 # Set max number of connections per host
 LIMIT = 5
 # Or do some kind of IP lookup in a flat file or database
 # LIMIT = ${lookup{$sender_host_address}iplsearch{/etc/exim/proxy_limits}}

 defer ratelimit = LIMIT / 5s / per_conn / strict
 message = Too many connections from this IP right now

59.2 Outbound proxies

Exim has support for sending outbound SMTP via a proxy using a protocol called SOCKS5 (defined
by RFC1928). The support can be optionally included by defining SUPPORT_SOCKS=yes in
Local/Makefile.

530 Proxy support (59)

Use of a proxy is enabled by setting the socks_proxy option on an smtp transport. The option value is
expanded and should then be a list (colon-separated by default) of proxy specifiers. Each proxy
specifier is a list (space-separated by default) where the initial element is an IP address and any
subsequent elements are options.

Options are a string <name>=<value>. The list of options is in the following table:

 auth authentication method
 name authentication username
 pass authentication password
 port tcp port
 tmo connection timeout
 pri priority
 weight selection bias

More details on each of these options follows:

• auth: Either “none” (default) or “name”. Using “name” selects username/password authentication
per RFC 1929 for access to the proxy. Default is “none”.

• name: sets the username for the “name” authentication method. Default is empty.

• pass: sets the password for the “name” authentication method. Default is empty.

• port: the TCP port number to use for the connection to the proxy. Default is 1080.

• tmo: sets a connection timeout in seconds for this proxy. Default is 5.

• pri: specifies a priority for the proxy within the list, higher values being tried first. The default
priority is 1.

• weight: specifies a selection bias. Within a priority set servers are queried in a random fashion,
weighted by this value. The default value for selection bias is 1.

Proxies from the list are tried according to their priority and weight settings until one responds. The
timeout for the overall connection applies to the set of proxied attempts.

59.3 Logging

To log the (local) IP of a proxy in the incoming or delivery logline, add “+proxy” to the log_selector
option. This will add a component tagged with “PRX=” to the line.

531 Proxy support (59)

60. Internationalisation

Exim has support for Internationalised mail names. To include this it must be built with
SUPPORT_I18N and the libidn library. Standards supported are RFCs 2060, 5890, 6530 and 6533.

If Exim is built with SUPPORT_I18N_2008 (in addition to SUPPORT_I18N, not instead of it) then
IDNA2008 is supported; this adds an extra library requirement, upon libidn2.

60.1 MTA operations

The main configuration option smtputf8_advertise_hosts specifies a host list. If this matches the
sending host and accept_8bitmime is true (the default) then the ESMTP option SMTPUTF8 will be
advertised.

If the sender specifies the SMTPUTF8 option on a MAIL command international handling for the
message is enabled and the expansion variable $message_smtputf8 will have value TRUE.

The option allow_utf8_domains is set to true for this message. All DNS lookups are converted to
a-label form whatever the setting of allow_utf8_domains when Exim is built with SUPPORT_I18N.

Both localparts and domain are maintained as the original UTF-8 form internally; any comparison or
regular-expression use will require appropriate care. Filenames created, eg. by the appendfile trans-
port, will have UTF-8 names.

HELO names sent by the smtp transport will have any UTF-8 components expanded to a-label form,
and any certificate name checks will be done using the a-label form of the name.

Log lines and Received-by: header lines will acquire a "utf8" prefix on the protocol element, eg.
utf8esmtp.

The following expansion operators can be used:

${utf8_domain_to_alabel:str}
${utf8_domain_from_alabel:str}
${utf8_localpart_to_alabel:str}
${utf8_localpart_from_alabel:str}

The RCPT ACL may use the following modifier:

control = utf8_downconvert
control = utf8_downconvert/<value>

This sets a flag requiring that envelope addresses are converted to a-label form before smtp delivery.
This is usually for use in a Message Submission Agent context, but could be used for any message.

If a value is appended it may be:

 1 mandatory downconversion
 0 no downconversion

 -1 if SMTPUTF8 not supported by destination host

If no value is given, 1 is used.

If mua_wrapper is set, the utf8_downconvert control is initially set to -1.

The smtp transport has an option utf8_downconvert. If set it must expand to one of the three values
described above, or an empty string. If non-empty it overrides value previously set (due to
mua_wrapper or by an ACL control).

There is no explicit support for VRFY and EXPN. Configurations supporting these should inspect
$smtp_command_argument for an SMTPUTF8 argument.

There is no support for LMTP on Unix sockets. Using the "lmtp" protocol option on an smtp trans-
port, for LMTP over TCP, should work as expected.

There is no support for DSN unitext handling, and no provision for converting logging from or to
UTF-8.

532 Internationalisation" (60)

60.2 MDA operations

To aid in constructing names suitable for IMAP folders the following expansion operator can be used:

${imapfolder {<string>} {<sep>} {<specials>}}

The string is converted from the charset specified by the "headers charset" command (in a filter file)
or headers_charset main configuration option (otherwise), to the modified UTF-7 encoding specified
by RFC 2060, with the following exception: All occurrences of <sep> (which has to be a single
character) are replaced with periods ("."), and all periods and slashes that are not <sep> and are not in
the <specials> string are BASE64 encoded.

The third argument can be omitted, defaulting to an empty string. The second argument can be
omitted, defaulting to "/".

This is the encoding used by Courier for Maildir names on disk, and followed by many other IMAP
servers.

Examples:

${imapfolder {Foo/Bar}} yields Foo.Bar
${imapfolder {Foo/Bar}{.}{/}} yields Foo&AC8-Bar
${imapfolder {Räksmörgås}} yields R&AOQ-ksm&APY-rg&AOU-s

Note that the source charset setting is vital, and also that characters must be representable in UTF-16.

533 Internationalisation" (60)

61. Events

The events mechanism in Exim can be used to intercept processing at a number of points. It was
originally invented to give a way to do customised logging actions (for example, to a database) but
can also be used to modify some processing actions.

Most installations will never need to use Events. The support can be left out of a build by defining
DISABLE_EVENT=yes in Local/Makefile.

There are two major classes of events: main and transport. The main configuration option event_
action controls reception events; a transport option event_action controls delivery events.

Both options are a string which is expanded when the event fires. An example might look like:

event_action = ${if eq {msg:delivery}{$event_name} \
{${lookup pgsql {SELECT * FROM record_Delivery(\
 '${quote_pgsql:$sender_address_domain}',\
 '${quote_pgsql:${lc:$sender_address_local_part}}', \
 '${quote_pgsql:$domain}', \
 '${quote_pgsql:${lc:$local_part}}', \
 '${quote_pgsql:$host_address}', \
 '${quote_pgsql:${lc:$host}}', \
 '${quote_pgsql:$message_exim_id}')}} \
} {}}

Events have names which correspond to the point in process at which they fire. The name is placed in
the variable $event_name and the event action expansion must check this, as it will be called for every
possible event type.

The current list of events is:

auth:fail after both per driver per authentication attempt
dane:fail after transport per connection
dns:fail after both per lookup
msg:complete after main per message
msg:defer after transport per message per delivery try
msg:delivery after transport per recipient
msg:rcpt:host:defer after transport per recipient per host
msg:rcpt:defer after transport per recipient
msg:host:defer after transport per host per delivery try; host errors
msg:fail:delivery after transport per recipient
msg:fail:internal after main per recipient
tcp:connect before transport per connection
tcp:close after transport per connection
tls:cert before both per certificate in verification chain
tls:fail:connect after main per connection
smtp:connect after transport per connection
smtp:ehlo after transport per connection

New event types may be added in future.

The event name is a colon-separated list, defining the type of event in a tree of possibilities. It may be
used as a list or just matched on as a whole. There will be no spaces in the name.

The second column in the table above describes whether the event fires before or after the action is
associates with. Those which fire before can be used to affect that action (more on this below).

The third column in the table above says what section of the configuration should define the event
action.

An additional variable, $event_data, is filled with information varying with the event type:

534 Events (61)

auth:fail smtp response
dane:fail failure reason
dns:fail failure reason, key and lookup-type
msg:defer error string
msg:delivery smtp confirmation message
msg:fail:internal failure reason
msg:fail:delivery smtp error message
msg:host:defer error string
msg:rcpt:host:defer error string
msg:rcpt:defer error string
tls:cert verification chain depth
tls:fail:connect error string
smtp:connect smtp banner
smtp:ehlo smtp ehlo response

The :defer events populate one extra variable: $event_defer_errno.

For complex operations an ACL expansion can be used in event_action, however due to the multiple
contexts that Exim operates in during the course of its processing:

• variables set in transport events will not be visible outside that transport call

• acl_m variables in a server context are lost on a new connection, and after smtp
helo/ehlo/mail/starttls/rset commands

Using an ACL expansion with the logwrite modifier can be a useful way of writing to the main log.

The expansion of the event_action option should normally return an empty string. Should it return
anything else the following will be forced:

auth:fail log information to write
tcp:connect do not connect
tls:cert refuse verification
smtp:connect close connection

All other message types ignore the result string, and no other use is made of it.

For a tcp:connect event, if the connection is being made to a proxy then the $host_address and $host_
port variables will be that of the proxy and not the target system.

For tls:cert events, if GnuTLS is in use this will trigger only per chain element received on the
connection. For OpenSSL it will trigger for every chain element including those loaded locally.

For dns:fail events from dnsdb lookups, a “defer_never” option does not affect the reporting of DNS_
AGAIN.

535 Events (61)

62. Adding new drivers or lookup types

The following actions have to be taken in order to add a new router, transport, authenticator, or lookup
type to Exim:

(1) Choose a name for the driver or lookup type that does not conflict with any existing name; I will
use “newdriver” in what follows.

(2) Add to src/EDITME the line:

<type>_NEWDRIVER=yes

where <type> is ROUTER, TRANSPORT, AUTH, or LOOKUP. If the code is not to be included
in the binary by default, comment this line out. You should also add any relevant comments
about the driver or lookup type.

(3) Add to src/config.h.defaults the line:

#define <type>_NEWDRIVER

(4) Edit src/drtables.c, adding conditional code to pull in the private header and create a table entry
as is done for all the other drivers and lookup types.

(5) Edit scripts/lookups-Makefile if this is a new lookup; there is a for-loop near the bottom, ranging
the name_mod variable over a list of all lookups. Add your NEWDRIVER to that list. As long as
the dynamic module would be named newdriver.so, you can use the simple form that most
lookups have.

(6) Edit Makefile in the appropriate sub-directory (src/routers, src/transports, src/auths, or
src/lookups); add a line for the new driver or lookup type and add it to the definition of OBJ.

(7) Edit OS/Makefile-Base adding a .o file for the predefined-macros, to the definition of OBJ_
MACRO. Add a set of line to do the compile also.

(8) Create newdriver.h and newdriver.c in the appropriate sub-directory of src.

(9) Edit scripts/MakeLinks and add commands to link the .h and .c files as for other drivers and
lookups.

Then all you need to do is write the code! A good way to start is to make a proforma by copying an
existing module of the same type, globally changing all occurrences of the name, and cutting out most
of the code. Note that any options you create must be listed in alphabetical order, because the tables
are searched using a binary chop procedure.

There is a README file in each of the sub-directories of src describing the interface that is expected.

536 Adding drivers or lookups (62)

Options index

Symbols
-- 30
--help 30
--version 30
-Ac 30
-Am 30
-B 30
-bd 30
-bdf 31
-be 31, 110, 507
-bem 31, 111
-bF 31, 507
-bf 32, 507
-bfd 32
-bfl 32
-bfp 32
-bfs 32
-bh 32, 393, 507
-bhc 33
-bi 33, 177
-bI:dscp 33
-bI:help 33
-bI:sieve 33
-bm 33
-bmalware 34
-bnq 34
-bP 34
-bp 35, 203
-bpa 35
-bpc 36
-bpi 36
-bpr 36
-bpra 36
-bpri 36
-bpru 36
-bpu 36
-brt 36
-brw 36
-bS 36
-bs 37
-bt 37, 225
-bV 37
-bv 38, 239, 507
-bvs 38
-bw 38
-C 39, 507
-D 39, 507
-d 40
-dd 41
-dropcr 41
-E 41
-ex 41
-F 41
-f 41, 510
 for address testing 37
 for filter testing 32
 overriding “From” line 34
-G 42
-h 42
-i 42
-L 42
-M 42, 202, 510

-m 45
-Mar 42
-MC 42
-Mc 43
-MCA 42
-MCD 42
-MCd 43
-MCG 43
-MCK 43
-MCL 43
-MCP 43
-MCp 43
-MCQ 43
-MCq 43
-MCr 43
-MCS 43
-MCs 43
-MCT 43
-MCt 43
-Mes 44
-Mf 44
-MG 44
-Mg 44
-Mmad 44
-Mmd 44
-Mrm 44
-Mset 44
-Mt 44
-Mvb 45
-Mvc 45
-Mvh 45
-Mvl 45
-N 45
-n 45
-O 45
-oA 45
-oB 45
-odb 45
-odf 46
-odi 46
-odq 46
-odqs 46
-oee 46
-oem 46
-oep 46
-oeq 46
-oew 46
-oi 47
-oitrue 47
-om 48
-oMa 47
-oMaa 47
-oMai 47
-oMas 47
-oMi 47
-oMm 47
-oMr 48
-oMs 48
-oMt 48
-oo 48
-oP 48
-oPX 48

537 Options index

-or 48
-os 48, 213
-ov 48
-oX 48
-oY 48
-p 49
-pd 49
-ps 49
-q 49, 202, 510
-qf 50
-qff 50
-qG 50
-qi 50
-ql 50
-qq 49
-qR 51
-qS 51
-R 51, 202
-r 51
-S 51
-t 52, 187
-ti 52
-tls-on-connect 52
-Tqt 51
-U 52
-v 52
-X 52
-x 52
-z 52

A
accept_8bitmime 173
acl_not_smtp 174
acl_not_smtp_mime 174, 434
acl_not_smtp_start 174
acl_smtp_auth 174
acl_smtp_connect 174
acl_smtp_data 174
acl_smtp_data_prdr 174
acl_smtp_dkim 174
acl_smtp_etrn 174
acl_smtp_expn 174
acl_smtp_helo 175
acl_smtp_mail 175
acl_smtp_mailauth 175
acl_smtp_mime 175, 434
acl_smtp_notquit 175
acl_smtp_predata 175
acl_smtp_quit 175
acl_smtp_rcpt 175
acl_smtp_starttls 175
acl_smtp_vrfy 175
acl_smtp_wellknown 176, 385
add_environment 176
address_data 225
address_retry_include_sender 311
address_test 225
admin_groups 176
allow_commands 304
allow_defer 262
allow_domain_literals 176
allow_fail 262
allow_fifo 282
allow_filter 262
allow_freeze 262

allow_localhost 312
allow_mx_to_ip 176
allow_symlink 282
allow_utf8_domains 176
auth_advertise_hosts 177
authenticated_sender 312
authenticated_sender_force 312
auto 220
auto_thaw 177
av_scanner 177, 427

B
batch_id 279, 282, 300, 305
batch_max 279, 282, 300, 305
bcc 297
bi_command 177
body_only 272
bounce_message_file 178
bounce_message_text 178
bounce_return_body 178
bounce_return_linesize_limit 178
bounce_return_message 178
bounce_return_size_limit 178
bounce_sender_authentication 178

C
callout_domain_negative_expire 179
callout_domain_positive_expire 179
callout_negative_expire 179
callout_positive_expire 179
callout_random_local_part 179
cannot_route_message 226
caseful_local_part 226
cc 298
check_ancestor 262
check_group 263, 283
check_local_user 226
check_log_inodes 179
check_log_space 179
check_owner 263, 283
check_rfc2047_length 179
check_secondary_mx 242
check_spool_inodes 179
check_spool_space 179
check_srv 242
check_string 283, 305
chunking_advertise_hosts 180
client_authz 355
client_channelbinding 355
client_condition 340
client_domain 360
client_ignore_invalid_base64 349
client_name 351
client_password 355, 360
client_secret 351
client_send 349, 363
client_set_id 341
client_spassword 355
client_username 355, 360
command 255, 300, 305
command_group 255
command_timeout 312
command_user 255
commandline_checks_require_admin 180

538 Options index

condition 227
connect_timeout 312
connection_max_messages 312
create_directory 283
create_file 283
current_directory 255, 272

D
daemon_smtp_ports 180
daemon_startup_retries 180
daemon_startup_sleep 180
dane_require_tls_ciphers 313
data 263
data_timeout 313
debug_print 228, 272
debug_store 180
delay_after_cutoff 314, 337
delay_warning 181
delay_warning_condition 142, 181
deliver_drop_privilege 181
deliver_queue_load_max 181
delivery_date_add 272
delivery_date_remove 182, 455
directory 284
directory_file 284
directory_mode 284
directory_transport 263
disable_fsync 182
disable_ipv6 165, 182
disable_logging 228, 272
dkim_canon 313, 519
dkim_domain 313, 518
dkim_hash 313, 519
dkim_identity 313, 519
dkim_private_key 313, 518
dkim_selector 313, 518
dkim_sign_headers 313, 519
dkim_strict 313, 519
dkim_timestamps 313, 520
dkim_verify_hashes 182
dkim_verify_keytypes 182
dkim_verify_min_keysizes 182
dkim_verify_minimal 183
dkim_verify_signers 183
dmarc_forensic_sender 527
dmarc_history_file 183, 527
dmarc_tld_file 527
dns_again_means_nonexist 183
dns_check_names_pattern 183
dns_cname_loops 184
dns_csa_search_limit 183
dns_csa_use_reverse 184
dns_dnssec_ok 184
dns_ipv4_lookup 184
dns_qualify_single 314
dns_retrans 184
dns_retry 184
dns_search_parents 314
dns_trust_aa 185
dns_use_edns0 185
dnssec_request_domains 228, 314
dnssec_require_domains 228, 314
domains 228
driver 228, 272, 341
drop_cr 185

dscp 314
dsn_advertise_hosts 185
dsn_from 185
dsn_lasthop 228

E
envelope_to_add 272
envelope_to_remove 186, 455
environment 305
errors_copy 186
errors_reply_to 186, 290
errors_to 229, 469, 471
escape_string 284, 305
event_action 186, 273
exim_group 186
exim_path 187
exim_user 187
exim_version 187
expn 229
extra_local_interfaces 187
extract_addresses_remove_arguments 187

F
fail_defer_domains 242
fail_verify 229
fail_verify_recipient 229
fail_verify_sender 230
fallback_hosts 230, 315
file 263, 284, 298
file_expand 298
file_format 285
file_must_exist 285
file_optional 298
file_transport 263
filter_prepend_home 264
final_timeout 315
finduser_retries 187
forbid_blackhole 264
forbid_exim_filter 264
forbid_file 264
forbid_filter_dlfunc 264
forbid_filter_existstest 264
forbid_filter_logwrite 264
forbid_filter_lookup 264
forbid_filter_perl 264
forbid_filter_readfile 264
forbid_filter_readsocket 265
forbid_filter_reply 265
forbid_filter_run 265
forbid_include 265
forbid_pipe 265
forbid_sieve_filter 265
forbid_smtp_code 265
force_command 305
freeze_exec_fail 305
freeze_signal 305
freeze_tell 188
from 298

G
gecos_name 188
gecos_pattern 188
gethostbyname 315

539 Options index

gnutls_allow_auto_pkcs11 188
gnutls_compat_mode 188, 315
group 230, 273

H
header_line_maxsize 189
header_maxsize 189
headers 298
headers_add 230, 273
headers_charset 188
headers_only 273
headers_remove 230, 273
headers_rewrite 273
helo_accept_junk_hosts 189
helo_allow_chars 189
helo_data 315
helo_lookup_domains 189
helo_try_verify_hosts 189
helo_verify_hosts 190
hide_child_in_errmsg 265
hold_domains 190
home_directory 274
host_all_ignored 248
host_find_failed 248
host_lookup 190
host_lookup_order 190
host_name_extract 316
host_reject_connection 191
hosts 246, 316
hosts_avoid_esmtp 317
hosts_avoid_pipelining 317
hosts_avoid_tls 317
hosts_connection_nolog 191
hosts_max_try 317
hosts_max_try_hardlimit 317
hosts_nopass_tls 317
hosts_noproxy_tls 318
hosts_override 318
hosts_pipe_connect 317
hosts_proxy 191
hosts_randomize 249, 318
hosts_request_ocsp 318
hosts_require_alpn 191, 318
hosts_require_auth 318
hosts_require_dane 319
hosts_require_helo 191
hosts_require_ocsp 319
hosts_require_tls 319
hosts_treat_as_local 100, 191
hosts_try_auth 319
hosts_try_chunking 319
hosts_try_dane 319
hosts_try_fastopen 319
hosts_try_prdr 320
hosts_verify_avoid_tls 317

I
ibase_servers 92, 192
ignore_bounce_errors_after 11, 192
ignore_eacces 265
ignore_enotdir 266
ignore_fromline_hosts 192
ignore_fromline_local 192
ignore_quota 300

ignore_status 306
ignore_target_hosts 231
include_directory 266
initgroups 231, 270, 274
interface 320
ipv4_only 242
ipv4_prefer 243

K
keep_environment 192
keep_malformed 193
keepalive 320

L
ldap_ca_cert_dir 193
ldap_ca_cert_file 193
ldap_cert_file 193
ldap_cert_key 193
ldap_cipher_suite 193
ldap_default_servers 193
ldap_require_cert 193
ldap_start_tls 194
ldap_version 194
limits_advertise_hosts 194
lmtp_ignore_quota 320
local_from_check 194
local_from_prefix 194
local_from_suffix 194
local_interfaces 195
local_part_prefix 232
local_part_prefix_optional 232
local_part_suffix 232
local_part_suffix_optional 233
local_parts 233
local_scan_timeout 195
local_sender_retain 195
localhost_number 9, 195
lock_fcntl_timeout 285
lock_flock_timeout 285
lock_interval 285
lock_retries 286
lockfile_mode 286
lockfile_timeout 286
log 298
log_as_local 233
log_defer_output 306
log_fail_output 306
log_file_path 195
log_output 306
log_selector 196
log_timezone 196
lookup_open_max 196

M
mailbox_filecount 286
mailbox_size 286
maildir_format 286
maildir_quota_directory_regex 286
maildir_retries 287
maildir_tag 287
maildir_use_size_file 287
maildirfolder_create_regex 287
mailstore_format 287

540 Options index

mailstore_prefix 287
mailstore_suffix 287
max_output 306
max_parallel 274
max_rcpt 320
max_username_length 196
mbx_format 287
message_body_newlines 147, 196
message_body_visible 147, 196
message_id_header_domain 196
message_id_header_text 197, 456
message_linelength_limit 321
message_logs 197
message_prefix 288, 306
message_size_limit 197, 274
message_suffix 288, 307
mode 288, 298
mode_fail_narrower 288
modemask 266
more 233, 236, 248
move_frozen_messages 197
mua_wrapper 198, 476
multi_domain 321
mx_domains 243
mx_fail_domains 243
mysql_servers 92, 198

N
never_mail 298
never_users 198
no_xxx 57
not_xxx 57
notifier_socket 198
notify_comsat 288

O
once 298
once_file_size 299
once_repeat 299
one_time 266
openssl_options 198
optional 246
oracle_servers 92, 200
owners 266
owngroups 267

P
panic_coredump 200
pass_on_timeout 233
pass_router 234
path 307
percent_hack_domains 200
perl_at_start 161, 200
perl_startup 161, 200
perl_taintmode 161, 200
permit_coredump 307
pgsql_servers 92, 200
pid_file_path 201
pipe_as_creator 307
pipe_transport 267
pipelining_advertise_hosts 201
pipelining_connect_advertise_hosts 201
port 246, 321

prdr_enable 201, 384
preserve_message_logs 201, 490
primary_hostname 99, 201
print_topbitchars 202
process_log_path 202
prod_requires_admin 202
protocol 246, 321
proxy_protocol_timeout 202
public_name 341

Q
qualify_domain 202, 267, 453
qualify_preserve_domain 267
qualify_recipient 202, 453
qualify_single 243
query 246
queue 399
queue_domains 203
queue_fast_ramp 203
queue_list_requires_admin 203
queue_only 203, 399
queue_only_file 203
queue_only_load 203
queue_only_load_latch 203
queue_only_override 204
queue_run_in_order 204
queue_run_max 204
queue_smtp_domains 204
quota 288
quota_directory 289
quota_filecount 289
quota_is_inclusive 289
quota_size_regex 289
quota_warn_message 186, 290
quota_warn_threshold 290

R
rcpt_include_affixes 274
receive_timeout 204
received_header_text 205
received_headers_max 205
recipient_unqualified_hosts 205
recipients_max 205
recipients_max_reject 206
redirect_router 234
redis_servers 92
remote_max_parallel 206
remote_sort_domains 206
repeat_use 267
reply_to 299
reply_transport 267
require_files 234
reroute 246
response_pattern 247
restrict_to_path 307
retry_data_expire 207, 337
retry_include_ip_address 322
retry_interval_max 207, 336
retry_use_local_part 235, 275
return_fail_output 307
return_message 299
return_output 308
return_path 275, 471
return_path_add 275

541 Options index

return_path_remove 207, 456
return_size_limit 207
rewrite 267
rewrite_headers 243
rfc1413_hosts 207
rfc1413_query_timeout 207
route_data 249
route_list 249
router_home_directory 235

S
same_domain_copy_routing 243, 249
search_parents 244
self 233, 236
 in dnslookup router 241
 in ipliteral router 245
 in manualroute router 251
 value of host name 153
sender_unqualified_hosts 207
senders 236
serialize_hosts 322
server_advertise_condition 341
server_channelbinding 356
server_condition 341, 346
server_debug_print 341
server_hostname 352, 356, 359
server_key 357
server_keytab 359
server_mail_auth_condition 342
server_mech 352, 356
server_param1 364
server_param2 362, 364
server_param3 362, 364
server_password 356, 360
server_prompts 346
server_realm 352, 356
server_scram_iter 357
server_scram_salt 357
server_secret 350
server_service 353, 357, 359
server_set_id 341
server_skey 357
server_socket 354
set 237
shadow_condition 276
shadow_transport 276
sieve_subaddress 267
sieve_useraddress 268
sieve_vacation_directory 268
size_addition 322
skip_syntax_errors 268
slow_lookup_log 207
smtp_accept_keepalive 207
smtp_accept_max 208
smtp_accept_max_nonmail 208
smtp_accept_max_nonmail_hosts 208
smtp_accept_max_per_connection 208
smtp_accept_max_per_host 208
smtp_accept_queue 209
smtp_accept_queue_per_connection 209
smtp_accept_reserve 209
smtp_active_hostname 209
smtp_backlog_monitor 210
smtp_banner 210, 383, 394
smtp_check_spool_space 210

smtp_connect_backlog 210
smtp_enforce_sync 210
smtp_etrn_command 143, 211, 465
smtp_etrn_serialize 211
smtp_load_reserve 211
smtp_max_synprot_errors 211
smtp_max_unknown_commands 212
smtp_ratelimit_* 414
smtp_ratelimit_hosts 212
smtp_ratelimit_mail 212
smtp_ratelimit_rcpt 212
smtp_receive_timeout 212
smtp_reserve_hosts 213
smtp_return_error_details 213
smtputf8_advertise_hosts 213
socket 300
socks_proxy 322
spamd_address 213, 432
spf_guess 213
spf_smtp_comment_template 213
split_spool_directory 214
spool_directory 214
spool_wireformat 215
sqlite_dbfile 94
sqlite_lock_timeout 215
srv_fail_domains 244
strict_acl_vars 215, 391
strip_excess_angle_brackets 215
strip_trailing_dot 215
subject 299
syntax_errors_text 269
syntax_errors_to 269
syslog_duplication 215
syslog_facility 216
syslog_pid 216
syslog_processname 216
syslog_timestamp 216
system_filter 216
system_filter_directory_transport 216
system_filter_file_transport 216
system_filter_group 216
system_filter_pipe_transport 216
system_filter_reply_transport 217
system_filter_user 217

T
tcp_nodelay 217
temp_errors 308
text 299
timeout 247, 255, 300, 308
timeout_defer 308
timeout_frozen_after 11, 217
timezone 217
tls_advertise_hosts 217
tls_alpn 218, 322
tls_certificate 218, 323
tls_crl 218, 323
tls_dh_max_bits 218
tls_dh_min_bits 323
tls_dhparam 219
tls_in_sni 373
tls_ocsp_file 220
tls_on_connect_ports 220
tls_privatekey 220, 323
tls_remember_esmtp 221

542 Options index

tls_require_ciphers 221, 323
 GnuTLS 368
 OpenSSL 367
tls_resumption_hosts 221, 323
tls_sni 323
tls_tempfail_tryclear 324
tls_try_verify_hosts 221, 324
tls_verify_cert_hostnames 324
tls_verify_certificates 221, 324
tls_verify_hosts 221, 324
to 299
translate_ip_address 237
transport 237
transport_current_directory 238
transport_filter 276
transport_filter_timeout 278
transport_home_directory 238
trusted_groups 222
trusted_users 222

U
umask 308
unknown_login 222
unknown_username 222
unseen 12, 230, 238, 458
untrusted_set_sender 222
use_bsmtp 291, 308
use_classresources 308
use_crlf 291, 309
use_fcntl_lock 291
use_flock_lock 291
use_lockfile 291
use_mbx_lock 292
use_shell 309
user 238, 278
utf8_downconvert 325
uucp_from_pattern 223, 454
uucp_from_sender 223, 454

V
verify 239
verify_only 239
verify_recipient 239
verify_sender 239

W
warn_message_file 223
wellknown_advertise_hosts 223, 385
widen_domains 244
write_rejectlog 224

543 Options index

Variables index

Symbols
$1, $2, etc. see numerical variables
$acl_smtp_notquit 386
$acl_verify_message 139, 261, 390, 394, 395, 418
$address_data 139, 153, 225, 229, 256, 406, 407
$address_file 140, 216, 263, 281
$address_pipe 140, 216, 267, 302
$auth1 357, 359
$auth1, $auth2, etc 140, 346, 357, 359, 362
$auth2 357, 359
$auth3 357
$auth4 355
$authenticated_fail_id 140, 341
$authenticated_id 140, 341, 346, 350, 362, 455, 457
$authenticated_sender 140, 342
$authentication_failed 140
$bheader_ 115
$body_linecount 141, 512
$body_zerocount 141
$bounce_recipient 141, 467
$bounce_return_size_limit 141, 467
$caller_gid 141, 149
$caller_uid 141, 149, 222
$callout_address 141, 431, 433
$compile_number 141
$config_dir 141
$config_file 141
$dkim_domain 518
$dkim_selector 518
$dkim_signers 142
$dmarc_domain_policy 528
$dmarc_status 528
$dmarc_status_text 528
$dmarc_used_domain 528
$dnslist_domain 142, 410
$dnslist_matched 142, 410
$dnslist_text 142, 410
$dnslist_value 142, 410
$domain 142, 148, 181, 186, 211, 254, 271, 279, 321,

327, 328, 329, 330, 387, 405, 448, 465
$domain_data 143, 228, 404, 451
$exim_gid 143
$exim_path 143
$exim_uid 143
$exim_version 143
$header_ 115
$headers_added 143
$home 14, 143, 226, 235, 274
$host 144, 248, 252, 254, 277, 311, 320, 323, 324,

344, 351, 372, 466
$host_address 144, 231, 237, 277, 311, 320, 323, 324,

344, 351, 372
$host_data 144, 404
$host_lookup_deferred 144, 154
$host_lookup_failed 144, 154, 190
$host_port 144
$initial_cwd 144
$inode 145, 284
$interface_address 145
$interface_port 145
$item 115, 119, 121, 133, 145
$ldap_dn 145

$lheader_ 115
$load_average 145
$local_part 13, 145, 149, 186, 226, 232, 258, 271,

279, 281, 302, 327, 328, 329, 330, 387, 396, 448,
471

$local_part_data 146, 233, 404, 451
$local_part_prefix 13, 232
 $local_part_prefix_v 146
$local_part_prefix_v 13, 232
$local_part_suffix 13, 70, 473
$local_part_suffix_v 13
$local_scan_data 146, 439
$local_user_gid 14, 146
$local_user_uid 14, 146
$localhost_number 146, 195
$log_inodes 146, 180
$log_space 146, 180
$lookup_dnssec_authenticated 146
$mailstore_basename 146
$malware_name 147, 431
$max_received_linelength 147
$message_age 147
$message_body 147, 196
$message_body_end 147, 196
$message_body_size 147
$message_exim_id 147
$message_headers 147
$message_headers_raw 147
$message_linecount 147
$message_size 148, 295, 388
$mime_anomaly_level 435
$mime_anomaly_text 435
$mime_boundary 435
$mime_charset 435
$mime_content_description 436
$mime_content_disposition 436
$mime_content_id 436
$mime_content_size 436
$mime_content_transfer_encoding 436
$mime_content_type 436
$mime_decoded_filename 436
$mime_filename 436
$mime_is_coverletter 436
$mime_is_multipart 437
$mime_is_rfc822 437
$mime_part_count 437
$original_domain 148, 271
$original_local_part 149, 226
$originator_gid 149
$originator_uid 149
$parent_domain 149
$parent_local_part 149, 226
$pid 149
$pipe_addresses 149, 277, 279, 302, 303, 309
$port 321
$primary_hostname 149, 201, 209
$qualify_domain 32, 140, 150, 421, 455, 457
$qualify_recipient 150, 267
$queue_name 150
$queue_size 150
$r_... 150
$rcpt_count 150, 388

544 Variables index

$rcpt_defer_count 150
$rcpt_fail_count 150
$received_count 150
$received_for 150
$received_ip_address 151
$received_port 151
$received_protocol 48, 151, 343
$received_time 151
$recipient_data 151
$recipient_verify_failure 151, 418
$recipients 152, 449
$recipients_count 152, 388
$recipients_list 152
$regex_match_string 152
$reply_address 152
$return_path 152, 275
$return_size_limit 152
$rheader_ 115
$router_name 152
$run_in_acl 122
$runrc 122, 153
$self_hostname 153, 236
$sender_address 153, 297, 326, 342, 387
$sender_address_data 153, 225, 407
$sender_address_domain 153, 405
$sender_address_local_part 153
$sender_data 153
$sender_fullhost 153, 488
$sender_helo_dnssec 153
$sender_helo_name 154
$sender_host_address 154, 387, 445
$sender_host_authenticated 154, 343
$sender_host_dnssec 154
$sender_host_name 154, 190
$sender_host_port 155
$sender_ident 155, 222
$sender_rcvhost 155, 488
$sender_verify_failure 155, 418
$sending_ip_address 155
$sending_port 155
$smtp_active_hostname 155, 209
$smtp_command 156, 387, 388
$smtp_command_argument 156, 388
$smtp_command_history 156
$smtp_count_at_connection_start 156
$smtp_notquit_reason 156, 386
$spf_header_comment 524
$spf_received 524
$spf_result 524
$spf_result_guessed 525
$spf_smtp_comment 525
$spool_directory 156
$spool_inodes 157, 180
$spool_space 157, 180
$thisaddress 157
$tls_bits 311
$tls_cipher 158, 311
$tls_in_bits 157
$tls_in_certificate_verified 157
$tls_in_cipher 158, 177, 343, 370
$tls_in_cipher_std 158
$tls_in_ocsp 158
$tls_in_ourcert 157
$tls_in_peercert 157
$tls_in_peerdn 158, 366, 371

$tls_in_resumption 158
$tls_in_sni 159, 373
$tls_in_ver 159
$tls_out_bits 157, 372
$tls_out_certificate_verified 158
$tls_out_cipher 158, 372
$tls_out_cipher_std 158
$tls_out_dane 158
$tls_out_ocsp 158
$tls_out_ourcert 157
$tls_out_peercert 157
$tls_out_peerdn 158, 366, 372
$tls_out_resumption 158
$tls_out_sni 159, 372
$tls_out_tlsa_usage 159
$tls_out_ver 159
$tls_peerdn 158, 311
$tls_sni 159, 311, 323
$tod_bsdinbox 159
$tod_epoch 159
$tod_epoch_l 159
$tod_full 159
$tod_log 159, 196
$tod_logfile 159
$tod_zone 159, 196
$tod_zulu 159
$transport_name 159
$value 114, 118, 121, 122, 159, 250
$verify_mode 160
$version_number 160
$warn_message_delay 160, 468
$warn_message_recipients 160, 468

S
spf_smtp_comment_template 525

545 Variables index

Concept index

Symbols
.ifdef 57
.include in configuration file 55
.include_if_exists in configuration file 55
.so building 21
@ in a domain list 62, 99
@ in a host list 102
@@ with single-key lookup 108
@[] in a domain list 100
@[] in a host list 103
@mx_any 100
@mx_primary 100
@mx_secondary 100
+caseful 109, 136
+defer_unknown 408
+exclude_unknown 408
+ignore_defer 106
+ignore_unknown 105
+include_defer 106
+include_unknown 105, 408
*@ with single-key lookup 82, 107
/dev/null 260
/etc/aliases 24
/etc/mail/mailer.conf 27
/etc/passwd 81, 226
 multiple reading of 187
/etc/userdbshadow.dat 78

Digits
4xx responses
 count of 150
 retry rules for 333
 retrying after 311
 to STARTTLS 324
8-bit characters 30, 173, 202
8BITMIME 173, 486

A
A+
 in dnsdb lookup 87
abandoning mail 44, 260
accept ACL verb 388
accept router 240
access control lists (ACLs)
 arguments 403
 at start of non-SMTP message 174
 case of local part in 396
 certificate verification 405
 conditions; list of 403
 conditions; processing 391
 customized test 403
 cutthrough routing 396
 data for message ACL 387
 data for non-message ACL 388
 default configuration 65
 description 382–426
 enabling debug logging 397
 finding which to use 386
 for non-SMTP messages 174
 format of 388
 indirect 403

access control lists (ACLs) (continued)
 introduction 8
 modifiers; list of 392
 modifiers; processing 391
 nested 403
 on SMTP connection 174
 options for specifying 382
 per-user data processing 174
 PRDR-related 174
 relay control 425
 return codes 387
 rewriting addresses in 326
 scanning for spam 405
 scanning for viruses 405
 setting DSCP value 398
 setting up for SMTP commands 174
 testing a DNS list 404, 407
 testing a local part 404
 testing a recipient 405
 testing a recipient domain 404
 testing a sender 405
 testing a sender domain 405
 testing a TLS certificate 405
 testing by regex matching 405
 testing for authentication 403
 testing for encryption 404
 testing the client host 404
 testing, customized 403
 unset options 387
 variables 390
 variables, handling unset 215
 verbs, definition of 388
 verifying header names only ASCII 405
 verifying header syntax 406
 verifying HELO/EHLO 406
 verifying host reverse lookup 407
 verifying recipient 406
 verifying sender 407
 verifying sender in the header 406
 virus scanning 405
ACL
 spf condition 523
 spf_guess condition 525
acl
 call from expansion 112
 expansion condition 131
acl ACL condition 403
add_header ACL modifier 400
adding drivers 536
additional groups 231, 274
address
 constructed 458
 copying routing 243, 249
 qualification 202, 453
 rewriting see rewriting
 sender 41
 source-routed 200
 testing 37, 229
 verification 38
 without domain 4
address duplicate, discarding 13, 261
address expansion item 124

546 Concept index

address list
 @@ lookup type 108
 case forcing 109
 empty item 106
 in a rewriting pattern 328
 in expansion condition 136
 local part starting with ! 107
 lookup for complete address 107
 patterns 106
 regular expression in 107
 split local part and domain 108
address qualification, suppressing 34
address redirection
 broken files 268
 disabling rewriting 267
 domain; preserving 267
 errors 261
 included external list 260
 local part without domain 259
 non-filter list items 258
 one-time expansion 266
 redirect router 257
 repeated for each delivery attempt 261
 to black hole 260
 to file 260
 to local mailbox 258
 to pipe 259
 while verifying 258, 423
addresses expansion item 124
admin user 176, 501, 510
 definition of 29
affix
 filter testing 32
 router precondition 13, 232
 variables 146
alias file
 backslash in 259
 broken 268
 building 29, 33
 exception to default 261
 in a redirect router 257
 one-time expansion 266
 ownership 266
 per-domain default 82
alias for host 104
ALPN
 general information 374
 require negotiation in client 318
 require negotiation in server 191
 set acceptable names for server 218
 set name in client 322
alternate configuration file 39
“and” expansion condition 138
angle brackets, excess 215
appendfile
 tainted data 281
appendfile transport 281–296
appending to a file 292
asterisk
 after IP address 461, 483
 in address list 108
 in domain list 100
 in host list 102, 104
 in lookup type 101
 in search type 83

Athena 7
AUTH
 ACL for 174, 382
 advertising 177
 advertising when encrypted 177
 configuration 54, 73
 description of 339
 in external authenticator 362
 in plaintext authenticator 346
 logging 482
 on bounce message 178
 on MAIL command 140, 175, 342, 344
 testing a server 343
 with PAM 137
authenticated ACL condition 403
authentication 339–345
 ACL checking 403
 advertising 177
 ANONYMOUS 355, 358
 bounce message 178
 Client Certificate 362, 364
 CRAM-MD5 350, 355
 DIGEST-MD5 355
 expansion item 112, 144, 343, 520, 523
 EXTERNAL 355, 357
 fail 140
 failure 140
 failure event, client 344
 failure event, server 343
 generic options 340
 GNU SASL 355
 GSSAPI 358, 359
 id 140
 id, specifying for local message 47
 Kerberos 359
 logging 482
 LOGIN 348, 355
 Microsoft Secure Password 360
 name, specifying for local message 47
 NTLM 360
 on an Exim client 344
 on an Exim server 342
 optional in client 319
 PLAIN 347, 355
 required by client 318
 results header 112
 SASL 355
 SCRAM family 355
 sender 140
 sender, specifying for local message 47
 sender; authenticated 342
 testing a server 343
 to proxy 531
 X509 362, 364
Authentication-Results: header line 112
authenticators
 cram_md5 350–351
 cyrus_sasl 352–353
 dovecot 354
 external 362–363
 gsasl 355
 heimdal_gssapi 359
 plaintext 346–349
 spa 360–361
 tls 364

547 Concept index

autoreply transport 297–299
 for system filter 217

B
background delivery 45
backlog of connections 210
backslash in alias file 259
bang paths
 not handled by Exim 4
 rewriting 331
banner for SMTP 210
base32 expansion item 125
base32d expansion item 125
base36 9
base62 9, 284
base62 expansion item 125
base62d expansion item 125
base64 decoding
 in string expansion 125
base64 encoding
 conversion from hex 127
 creating authentication test data 343
 functions for local_scan() use 444
 in encrypted password 132
 in external authenticator 362
 in header lines 116
 in plaintext authenticator 346
 in string expansion 125
base64 expansion item 125
base64d expansion item 125
batched local delivery 279
batched SMTP input 36, 466
batched SMTP output 465
batched SMTP output example 253
BATV, verifying 424
bcc recipients, verifying none 406
Bcc: header line 52, 455
BDAT
 SMTP command 319, 384
Berkeley DB library 18
 file format 78
BIN_DIRECTORY 24
binary zero
 in authentication data 343
 in header line 116
 in lookup key 77, 78, 80, 496
 in message body 141, 147
 in plaintext authenticator 346, 347
 in RFC 2047 decoding 446
bind IP address 320
black hole 260
black list (DNS) 142, 404, 407, 487
body of message
 binary zero count 141
 definition of 4
 expansion variable 147
 line count 141
 size 147
 transporting 272
 visible size 196
books about Exim 1
bool expansion condition 132
bool_lax expansion condition 132
boolean configuration values 57
Bounce Address Tag Validation see BATV

bounce message
 copy to other address 186
 customizing 178, 467
 definition of 4
 discarding 192
 failure to deliver 16
 generating 41
 including body 178
 including original 178
 line length limit 178
 recipient of 16
 redirection details; suppressing 265
 Reply-to: in 186
 sender authentication 178
 size limit 178
 when generated 16
bounce messages
 From: line, specifying 185
 success 185
bounce_message_file
 tainted data 178
broken alias or forward files 268
BSD, DBM library for 17
bug reports 3
Bugzilla 2
build directory 21
build-time options, overriding 22
building alias file 33
building DBM files 496
building Exim 17–24
 architecture type 22
 multiple OS/architectures 17
 operating system type 22
 OS-specific C header files 24
 overriding default settings 22
 pre-building configuration 19
building Eximon 24

C
CA bundle
 caching 371, 372
caching
 callout 422
 callout timeouts 179
 certificate 371, 372
 certificate authorities 371, 372
 ciphers 371, 372
 crl 371, 372
 lookup data 84
 named lists 99
 ocsp 371
 of dns lookup 86, 408
 privatekey 371, 372
 quota 422
caching callout, suppressing 420
callout
 additional parameters for 419
 cache, description of 422
 cache, suppressing 420
 caching timeouts 179
 connection timeout, specifying 420
 defer, action on 420
 full postmaster check 420
 overall timeout, specifying 420
 postmaster; checking 420

548 Concept index

callout (continued)
 “random” check 421
 sender for recipient check 421
 sender when verifying header 420
 timeout, specifying 420
 verification 418
carriage return 291, 309, 453, 460, 463
case forcing in address lists 109
case forcing in strings 127, 131
case of local parts 13, 109, 226, 396, 459
case sensitivity
 in (n)wildlsearch lookup 80
 in lsearch lookup 79
Cc: header line 52
cdb
 acknowledgment 6
 description of 77
 including support for 23
certextract
 certificate fields 112
certificate
 base64 of DER 125
 caching 371, 372
 client, location of 323
 directory for LDAP 193
 extracting fields 112, 158
 file for LDAP 193
 fingerprint 128, 129, 130
 key for LDAP 193
 references to discussion 375
 revocation list 376
 revocation list for client 323
 revocation list for server 218
 self-signed 375
 server, location of 218
 variables 157
 verification of client 221, 370, 405
 verification of server 324
certificate authorities
 caching 371, 372
Certificate-based authentication 362, 364
change log 2
checking access 495
checking disk space 179, 210
CHUNKING
 advertisement 180
 BDAT command 384
 enabling, in client 319
CIDR notation 103, 128
cipher
 logging 370, 371
 requiring specific 221, 313, 323
ciphers
 caching 371, 372
class resources (BSD) 308
Client SMTP Authorization see CSA
client, non-queueing 476
command line
 addresses with -t 187
 options 29–52
common option syntax 57
compiler
 requirements 17
 version 17
concurrent deliveries 270

condition ACL condition 403
configuration file
 alternate 39, 53
 common option syntax 57
 conditional skips 57
 default “walk through” 62–74
 editing 24
 errors in 53
 format of 54
 general description 53
 including other files 55
 leading white space in 54
 macros 55
 main section 167–224
 ownership 53
 retry section 332–338
 trailing white space in 54
configuration for building Exim 19
configuration options
 extracting 34
 hiding value of 34, 57
CONFIGURE_FILE 24, 39, 53
CONFIGURE_GROUP 53
CONFIGURE_OWNER 53
connection backlog
 monitoring 210
 set maximum 210
constructed address 458
content scanning
 at ACL time 427–437
 AV scanner failure 141
 for spam 432
 for viruses 427
 MIME parts 434
 per user 276
 specifying at build time 19
 the malware condition 427
 with regular expressions 437
continue ACL modifier 392
control ACL modifier 392, 396
control of incoming mail 382
copy of bounce message 186
copy of message (unseen option) 238
correction of invalid utf-8 sequences in strings 131
Courier 78
CR character see carriage return
cram_md5 authenticator 350–351
CRAM-MD5 authentication mechanism 350
creating directories 281
CRL see certificate revocation list
crl
 caching 371, 372
crypt() 132
crypt16() 132
crypteq expansion condition 132
CSA
 in dnsdb lookup 86
 verifying 423
CSA verification 405
current directory for local transport 238, 271
customizing
 ACL condition 403
 batching condition 279
 bounce message 178, 467
 “cannot route” message 226

549 Concept index

customizing (continued)
 failure message 260
 input scan using C function 438
 precondition 14
 Received: header 205
 SMTP banner 210
 version number 187
 warning message 223, 468
cutthrough
 logging 483
 requesting 396
cycling logs 479, 494
Cygwin 9
Cyrus 6, 137, 138, 306, 310, 312
 SASL library 352
cyrus_sasl authenticator 352–353

D
daemon 30, 38, 462
 listening IP addresses 163
 pid file path 201
 process id (pid) 30, 35, 48
 reload configuration 31
 restarting 31, 508
 starting 163
 TCP_NODELAY on sockets 217
daemon notifier socket 48
daemon startup, retrying 181
DANE 378
 attempting for certain servers 319
 logging 490
 reporting 380
 requiring for certain servers 319
 TLS ciphers 313
 transport options 319
Darwin 9
DATA
 ACL for 174
 ACLs for 382, 383
 PRDR ACL for 174
database
 lmdb 79
 lookups 76–95
 updating in ACL 392
Date: 455
DBM
 building dbm files 496
 lookup type 78
DBM libraries
 configuration for building 18, 23
 discussion of 17
dbmjz lookup type 78
dbmnz lookup type 78
DCSP
 outbound 314
de-tainting see also tainted data
 using a lookup expansion 76
 using a match_local_part expansion condition 136
 using a single-key lookup 77
 using ACL domains condition 101
 using an inlist expansion condition 134
 using appendfile create_file option 284
 using recipient verify 419
 using router check_local_user option 226
 using router domains option 13, 101

Debian
 information sources 1
 mailing list for 2
debugging
 -bh option 32
 -d option 40
 -N option 45
 enabling from an ACL 397
 from embedded Perl 162
 list of selectors 40
 memory corruption 180
 suppressing delivery 45
 UTF-8 in 41
decode ACL condition 404
def expansion condition 133
default
 ACLs 65
 configuration file “walk through” 62
 in single-key lookups 82
 retry rule 73
 routers 68
 transports 71
defer ACL verb 389
defer in system filter 449
defer, fake 398
deferred delivery, forcing 260
delay ACL modifier 393
delay warning, specifying 181
delayed delivery, logging 487
delivery
 abandoning further attempts 44
 blackhole 260
 by external agent 309
 cancelling all 44
 cancelling by address 44
 cutthrough; logging 483
 deferral 15
 delaying certain domains 190
 discard 260
 discarded; logging 483
 failure report see bounce message
 failure; logging 483
 fake; logging 484
 first 133
 forcing attempt 42
 forcing deferral 260
 forcing failure 260, 504
 forcing in queue run 50
 from given sender 51
 in detail 14
 in the background 45
 in the foreground 46
 log line format 233
 manually started – not forced 43
 maximum number of 206
 parallelism for remote 206
 parallelism for transport 274
 permanent failure 16
 problems with 26
 procmail 309
 retry in remote transports 15
 retry mechanism 15
 sorting remote 206
 suppressing immediate 46
 temporary failure 15

550 Concept index

delivery (continued)
 to file; forbidding 264
 to given domain 51
 to pipe; forbidding 265
 to single file 293
 unprivileged 181
delivery failure, long-term 337
Delivery Status Notification
 success 185, 228, 257
Delivery-date: header line 182, 272, 455
deny ACL verb 389
design philosophy 8
dialup see intermittently connected hosts
directories, multiple 214
directory creation 281, 283, 292, 294
disable DKIM verify 398
disable DMARC verify 398
discard ACL verb 389
discarded messages 483
discarding bounce message 192
disk space, checking 179, 210
distribution
 FTP site 3
 https site 3
 public key 3
 signing details 3
DKIM 517
 ACL for 174, 382
 controlling calls to the ACL 183
 disable verify 398
 log line 485
 selecting signature algorithms 182, 520
 signing 517
 verification 520
 verification logging 487
dlfunc 113
 API description 438
DMARC
 ACL condition 528
 configuration 527
 configuration options 527
 controls 527
 disable verify 398
 example 529
 logging 528
 main section options 183
 result 528
 verification 527
DNS
 as a lookup type 81, 85
 CNAME following 184
 DNSSEC 146, 153, 154, 184, 185, 190, 228, 314
 EDNS0 185
 IPv4 preference 243
 IPv6 disabling 184, 242
 IPv6 lookup for AAAA records 184
 OpenBSD 185
 pre-check of name syntax 183
 qualifying single-component names 243
 resolver options 184, 185, 243, 244
 reverse lookup 155, 189, 514
 timeout 86, 184
 “try again” response; overriding 183
 TTL 86, 408

dns
 logging slow lookups 207
DNS list
 data returned from 409
 in ACL 404, 407
 information from merged 412
 IPv6 usage 413
 keyed by domain name 408
 keyed by explicit IP address 408
 logging defer 487
 matching specific returned data 410
 multiple keys for 409
 variables set from 410
DNS resolver, debugging output 40
dnsdb lookup 85
dnsdb modifiers 85
dnslists ACL condition 404
dnslookup router 241–244
 declines 241
DNSSEC
 dns lookup 86
 MX lookup 228, 314
dnssec
 logging 487
doc/ChangeLog 2
doc/NewStuff 2
doc/spec.txt 2
documentation 1
 available formats 3
domain
 ACL checking 404
 definition of 5
 delaying delivery 190
 delivery to 51
 extraction 125
 for qualifying addresses 202
 in redirection; preserving 267
 manually routing 248
 partial; widening 244
 specifying non-immediate delivery 203
 UTF-8 characters in 176
 virtual 472
domain list
 asterisk in 100
 in expansion condition 136
 matching by lookup 101
 matching “ends with” 100
 matching literal domain name 101
 matching local IP interfaces 100
 matching MX pointers to local host 100
 matching primary host name 99
 matching regular expression 100
 patterns for 99
domain literal 100, 176
 default router 68
 recognizing format 64
 routing 245
domainless addresses 4
domains ACL condition 404
dot
 in incoming non-SMTP message 42, 47
 in local part 459
 trailing on domain 215
dovecot authenticator 354

551 Concept index

drivers
 adding new 536
 configuration format 60
 definition of 11
 instance definition 11
drop ACL verb 389
DSCP
 inbound 398
 values 33
dsearch lookup type 78
DSN
 success 185, 228, 257
duplicate addresses 13, 37, 230, 261
dynamic modules 21

E
EACCES 265
EAI 131, 532
EHLO 460, 482
 accepting junk data 189
 ACL for 175, 382, 383
 argument, setting 315
 avoiding use of 317
 forcing reverse lookup 189
 invalid data 463
 underscores in 189
 verifying 406
 verifying, mandatory 190
 verifying, optional 189
empty item in hosts list 102
encrypted ACL condition 404
encrypted strings, comparing 132
encryption
 checking in an ACL 404
 including support for 20
 on SMTP connection 217, 365–377
endpass ACL modifier 393
ENOTDIR 266
envelope from 29, 32, 41, 194, 222, 229, 275, 291,

327, 450, 454, 471
envelope sender 29, 32, 41, 194, 222, 229, 275, 291,

308, 450, 454, 471
 rewriting at transport time 327
envelope, definition of 5
Envelope-to: header line 186, 272, 279, 455
environment 35
 local transports 270–271
 pipe transport 304, 305
 set values 176
 values from 113, 192, 217
eq expansion condition 133
eqi expansion condition 133
error
 ignored 485
 in configuration file 53
 in outgoing SMTP 461
 reporting 46
 skipping bad syntax 268
escape characters in quoted strings 59
escape expansion item 125
escape8bit expansion item 125
ESMTP extensions
 8BITMIME 173
 AUTH 177, 339
 CHUNKING 180

ESMTP extensions (continued)
 DSN 185
 ETRN 211, 464
 LIMITS 194, 313, 320, 321
 PIPECONNECT 201
 PIPELINING 201, 317, 399
 PRDR 201, 320
 SIZE 197, 460
 SMTPUTF8 213, 532
 STARTTLS 217, 369, 371
 WELLKNOWN 223
ESMTP, avoiding use of 317
ETRN
 ACL for 174, 382
 command to be run 211
 logging 487
 processing 464
 serializing 211
 value of $domain 143
eval expansion item 125
events 186, 273, 534
exec failure 305
exicyclog 479, 494
exigrep 493
Exim arguments, logging 487
Exim binary, path name 187
Exim group 186
Exim monitor
 acknowledgment 7
 description 501–505
 window size 502
Exim user 187
Exim version 187
exim_checkaccess 495
exim_dbmbuild 496
exim_dumpdb 497
exim_fixdb 498
EXIM_GROUP 53
exim_lock 498
exim_monitor/EDITME 19, 501
exim_msgdate 9, 500
exim_tidydb 498
EXIM_USER 53
eximon 501
eximstats 494
exinext 496
exipick 494
exiqgrep 492
exiqsumm 493
exiscan see content scanning
exists, expansion condition 133
exiwhat 202, 491
expansion
 “and” of conditions 138
 arithmetic expression 125
 base64 decoding 125
 base64 encoding 125
 boolean parsing 132
 calling an acl 112, 131
 calling Perl from 119
 case forcing 127, 131
 character translation 124
 checking for empty variable 133
 checking header line existence 133
 combining conditions 138

552 Concept index

expansion (continued)
 conditional 117
 conditions 131–138
 conversion to base 32 125
 conversion to base 62 125
 definition of 59
 domain extraction 125
 encrypted comparison 132
 escape sequences 110
 escaping 8-bit characters 125
 escaping non-printing characters 125
 expression evaluation 125
 extracting certificate fields 112
 extracting from JSON array 115
 extracting from JSON object 114
 extracting list elements by number 117
 extracting substrings by key 113
 extracting substrings by number 114
 extracting value from environment 113
 file existence test 133
 first delivery test 133
 forall condition 133
 forall_json condition 134
 forall_jsons condition 134
 forany condition 133
 forany_json condition 134
 forany_jsons condition 134
 forced failure 111
 header insertion 115
 header wrapping 127
 hex to base64 127
 hmac hashing 116
 imap folder 117
 including literal text 110
 inserting an entire file 120
 inserting from a socket 120
 IP address 129
 IP address masking 128
 LDAP authentication test 135
 list creation 119
 list item count 127
 list sorting 123
 local part extraction 128
 lookup in 118
 MD5 hash 128
 named list 127
 negating a condition 131
 non-expandable substrings 110
 numeric comparison 131
 numeric hash 119, 128
 of lists 96
 of strings 110–160
 operators 111, 124
 “or” of conditions 138
 PAM authentication test 137
 pwcheck authentication test 137
 queue runner test 137
 quoting 128
 Radius authentication 137
 re-expansion of substring 126
 reducing a list to a scalar 121
 regular expression comparison 135
 RFC 2047 129
 RFC 2822 address handling 124
 running a command 121

expansion (continued)
 saslauthd authentication test 138
 selecting from list by condition 115
 SHA-1 hashing 129
 SHA-256 hashing 130
 SHA3 hashing 130
 statting a file 130, 264
 string comparison 133, 134, 135
 string concatenation 110
 string length 130
 string substitution 122
 string truncation 117, 127
 substring expansion 130
 substring extraction 123
 tainted data 110
 testing 31, 44, 110
 textual hash 115, 127
 UTF-8 131
 UTF-8 conversion 126
 utf-8 forcing 131
 variables 111
 variables, list of 138
 variables, set from DNS list 410
EXPN
 ACL for 174, 382
 error text, display of 260
 processing 464
 router skipping 229
 with verify_only 239
external authenticator 362–363
external local delivery 309
external transports 4
extract
 substrings by key 113
 substrings by number 114
EXTRALIBS 23

F
fail
 in system filter 449
 log line; reducing 449
failing delivery
 forcing 260
 from filter 262
failure of exec 305
fake defer 398
fake rejection 398
fakedefer 398
fakereject 398
fallback
 hosts specified on router 230
 hosts specified on transport 312, 315
 randomized hosts 318
fallover see fallback
FAQ 2
fast open, TCP
 enabling, in client 319
fifo (named pipe) 282
file
 appending 292
 existence test 133
 extracting characteristics 130
 how a message is held 10
 in redirection list 260
 inserting into expansion 120

553 Concept index

file (continued)
 journal 11
 locking 287, 292, 293
 lookups 76–95, 118
 mailbox; checking existing format 285
 MBX format 287
 requiring for router 234
 too many open 196
 transport for system filter 216
filter
 enabling use of 262
 header lines; adding/removing 450
 introduction 8
 locking out certain features 264, 265
 Sieve see Sieve filter
 specifying in redirection data 258
 system filter 216, 448–451
 testing 32
 transport filter 144, 149, 276, 303, 322, 460
 user for processing 238
filtering all mail 448–451
final cutoff
 retries, controlling 314, 337
first delivery 133
first pass routing 46, 49, 204, 399, 475
first_delivery expansion condition 133
fixed point configuration values 58
force command 305
forcing delivery 42
foreground delivery 46
format
 boolean 57
 configuration file 54
 fixed point 58
 group name 59
 integer 58
 list item in configuration 59
 message 34
 octal integer 58
 of message id 9
 spool files 512–516
 string 58
 time interval 58
 user name 59
forward file
 broken 268
 one-time expansion 266
 ownership 266
 testing 32
FreeBSD, MTA indirection 27
freeze in system filter 449
freezing messages 44, 449
 allowing in filter 262
 sending a message when freezing 188
“From” line 29, 32, 34, 41, 192, 223, 283, 288, 293,

306, 454
from_utf8 expansion item 126
From: header line 29, 455
 disabling checking of 194
 in bounces 185
frozen messages
 display 503
 forcing delivery 42, 50, 51
 forcing in ACL 399
 in queue listing 35

frozen messages (continued)
 logging skipping 489
 manual thaw; testing in filter 448
 moving 197
 sending a message when freezing 188
 spool data 513
 thawing 10, 44, 504
 timing out 217
fsync(), disabling 182
FTP site 2, 3

G
gdbm DBM library 18
ge expansion condition 134
“gecos” field, parsing 188
gei expansion condition 134
generic options 61
 router 225–239
 transport 272–278
gid (group id)
 caller 141
 Exim’s own 186
 in queryprogram router 255
 in spool file 512
 local delivery 230
 of originating user 149
 system filter 216, 448
giving up on messages 44
GnuTLS 365
 building Exim with 20
 specifying parameters for 368
greylisting 413
groups
 additional 231, 274
 name format 59
 trusted 222
gsasl authenticator 355
gt expansion condition 134
gti expansion condition 134

H
hash function
 numeric 119, 128
 textual 115, 127
header
 wrapping operator 127
header lines
 added; visibility of 401
 adding 230
 adding in an ACL 400
 adding in transport 273
 adding; in router or transport 457
 adding; in system filter 450
 Authentication-Results: 112
 Bcc: 52
 Cc: 52
 character sets 115
 decoding 115
 Envelope-to: 455
 From: 29, 455
 in expansion strings 115
 listing 45
 maximum size of 189
 Message-ID: 456

554 Concept index

header lines (continued)
 position of added lines 400
 position of removed lines 402
 Received: 456
 References: 456
 removed; visibility of 402
 removing 230, 273
 removing in an ACL 402
 removing; in router or transport 457
 removing; in system filter 450
 Resent- 454
 Return-path: 275, 456
 rewriting 243
 rewriting at transport time 327
 Sender: 29, 456
 To: 52
 transporting 273
 verifying header names only ASCII 405
 verifying syntax 406
 verifying the sender in 406
header section
 definition of 5
 maximum size of 189
headers see header lines
heimdal_gssapi authenticator 359
HELO 460, 482
 accepting junk data 189
 ACL for 175, 382, 383
 argument, setting 315
 forcing reverse lookup 189
 forcing use of 317
 invalid data 463
 underscores in 189
 verifying 406
HELO verifying
 mandatory 190
 optional 189
HELO/EHLO
 requiring 191
hex2b64 expansion item 127
hexquote expansion item 127
hiding configuration option values 34, 57
hiding named list values 98
hints database
 access by remote transport 278
 callout cache 422
 data expiry 207, 337
 DBM files used for 17
 deferred deliveries 16
 ETRN serialization 465
 maintenance 497
 not overridden by -Mc 43
 overriding retry hints 42
 quota cache 422
 remembering routing 50, 311
 retry keys 235, 275, 460
 serializing deliveries to a host 322
 tls 377
 transport concurrency control 274
 use for retrying 336
hmac 116
HOME 304
home directory
 for local transport 238, 271
 for router 235

HOST 304
host
 ACL checking 404
 alias for 104
 error 461
 for RFC 1413 calls 207
 limiting SMTP connections from 208
 list of; randomized 249, 318
 locally unique number for 195
 lookup failures 104
 lookup failures, permanent 105
 lookup failures, temporary 106
 maximum number to try 317, 325
 name in SMTP responses 209
 name of local 201
 not logging connections from 191
 rejecting connections from 191
 reserved 209
 serializing connections 322
 treated as local 191
 unqualified addresses from 205, 207
 verifying reverse lookup 407
host list
 empty string in 102
 lookup of IP address 103
 masked IP address 103
 matching host name 104, 106
 matching IP addresses 102
 mixing names and addresses in 105
 patterns in 102
 regular expression in 104
host name
 lookup, failure of 144
 lookup, forcing 190
 matched in domain list 99
hosts ACL condition 404
HP-UX 188
HTTPS download site 3

I
i18n 532
 logging 532
 utf8 address downconversion 325, 532
iconv() support 19
id of message 9
ident see RFC 1413
if, expansion item 117
ignoring faulty addresses 268
imapfolder expansion item 117
included address list 260
inclusions in configuration file 55
incoming SMTP over TCP/IP 462
incorporated code 6
incorrect utf-8 131
inetd 37, 38, 208, 462
 wait mode 38
installing Exim 24
 info documentation 25
 install script options 25
 testing the script 25
 what is not installed 25
integer configuration values 58
integer format 58
InterBase
 server list 192

555 Concept index

InterBase lookup type 81, 92
interface
 address, specifying for local message 47
 listening 163
 logging 487, 488
 network 163
intermittently connected hosts 474
internationalisation 131
 email address 532
IP address
 binding 320
 canonical form 127
 discarding 231
 for listening 163
 masking 103, 128
 normalisation 127
 testing string format 134
 translating 237
IP source routing 510
ipliteral router 245
iplookup router 246
iplsearch lookup type 79
IPv4
 preference 243
IPv6
 address scopes 165
 addresses in lists 60
 disabling 165, 182, 242
 DNS black lists 413
 DNS lookup for AAAA records 184
 including support for 21
ipv6denorm expansion item 127
ipv6norm expansion item 127
IRIX, DBM library for 17
isip expansion condition 134
isip4 expansion condition 134
isip6 expansion condition 134

J
journal file 11
JSON
 expansions 79, 114, 115, 134
 iterative conditions 134
json
 lookup type 79

K
keepalive
 on incoming connection 207
 on outgoing connection 320
Kerberos 352

L
lc expansion item 127
LDAP
 , 193
 authentication 89
 connections 89
 default servers 193
 including support for 23
 lookup type 81
 lookup, more about 87
 policy for LDAP server TLS cert presentation 193

LDAP (continued)
 protocol version, forcing 194
 query format 87
 quoting 88
 returned data formats 91
 timeout 90
 TLS cipher suite 193
 TLS client certificate file 193
 TLS client key file 193
 use for authentication 135
 whether or not to negotiate TLS 194
 with TLS 88
ldapauth expansion condition 135
le expansion condition 135
lei expansion condition 135
length expansion item 117, 127
length of login name 196
LF character see linefeed
LHLO argument setting 315
limit
 bounce message line length 178
 bounce message size 178
 hosts; maximum number tried 325
 incoming SMTP connections 208
 message size 197
 message size per transport 274
 messages per SMTP connection 208
 non-mail SMTP commands 208
 number of hosts tried 317
 number of MX tried 317
 number of recipients 205
 on retry interval 207
 open files for lookups 196
 rate of message arrival 212
 retry interval 336
 size of message header section 189
 size of one header line 189
 SMTP connections from one host 208
 SMTP syntax and protocol errors 211
 transport parallelism 274
 unknown SMTP commands 212
 user name length 196
limitations of Exim 4
limiting client sending rates 414
LIMITS
 suppressing advertising 194
line endings 453
line length
 limit 321
 maximum 147
linear search 79
linefeed 291, 309, 453, 460, 463
Linux, DBM library for 17
list
 address list 106
 caching of named 99
 count of items 127
 domain list 99
 empty item in 60
 extracting elements by number 117
 filename in 97
 host list 102
 item count 127
 iterative conditions 133, 134
 local part list 109

556 Concept index

list (continued)
 named 98
 named compared with macro 99
 negation 97
 of header lines 115
 quoting 118
 reducing to a scalar 121
 selecting by condition 115
 sorting 123
 syntax of in configuration 59
list separator
 changing 60
 newline as 60
listcount expansion item 127
listextract
 extract list elements by number 117
listing
 message body 45
 message headers 45
 message in RFC 2822 format 45
 message log 45
 messages in the queue 35
listnamed expansion item 127
lists of domains; hosts; etc. 96–109
LMDB 79
LMTP
 ignoring quota errors 300, 320
 logging confirmation 489
 over a pipe 300
 over a unix-domain socket 300
 over TCP/IP 321, 460
 processing details 460–466
lmtp transport 300
load average 181, 203, 211
 re-evaluating per message 203
load balancer
 hosts behind 316
local delivery
 definition of 5
 using an external agent 309
local host
 domains treated as 191
 MX pointing to 236, 241
 name of 201
 sending to 236, 312
local message reception 33
local part
 ACL checking 404
 case of 459
 checking in router 233
 definition of 5
 dots in 459
 in retry keys 235
 list 109
 list, in expansion condition 136
 prefix 274, 473
 starting with ! 107, 108
 suffix 274, 473
local SMTP input 37
local transports
 environment for 270–271
 uid and gid 230, 231, 238, 270
local user, checking in router 226
local_part expansion item 128
local_parts ACL condition 404

local_scan() function
 address rewriting; timing of 327
 API description 438
 available Exim functions 443
 available Exim variables 441
 building Exim to use 438
 configuration options 439
 description of 438–447
 memory handling 447
 timeout 195
 when all recipients discarded 387
Local/eximon.conf 501
Local/eximon.conf 19, 24
Local/Makefile 19, 22
lock files 26, 284
locking files 284, 285, 287, 292, 293
locking mailboxes 498
log
 8BITMIME 173, 486
 certificate verification 490
 connection identifier 487
 connection rejections 487
 cycling local files 479, 494
 DANE 490
 datestamped files 479
 delayed delivery 487
 delivery duration 487
 delivery line 233, 482
 destination 478
 distinguished name 371
 DKIM verification 487
 DNS failure in list 490
 dnslist defer 487
 dnssec 487
 dropped connection 488
 ETRN commands 487
 Exim arguments 487
 extracts; grepping for 493
 fail command log line 449
 file for each message 11
 file path for 195
 frozen messages; skipped 489
 full parentage 486
 general description 478–490
 header lines for rejection 489
 host lookup failure 487
 ident timeout 487
 incoming interface 487
 incoming proxy address 487
 incoming remote port 488
 local address and port 487, 488
 local files; writing to 479
 local interface 487, 488
 message id 488
 message log; description of 490
 message log; disabling 197
 message size on delivery 487
 millisecond timestamps 488
 non-MAIL SMTP sessions 489
 outgoing interface 487, 488
 outgoing remote port 488
 pipelining 488
 process ids in 478, 488
 process log 202
 protocol 482, 532

557 Concept index

log (continued)
 queue run 488
 queue time 488
 receive duration 488
 reception line 481
 recipients 488
 retry defer 489
 return path 489
 rewriting 486
 selectors 173, 196, 485
 sender on delivery 489
 sender reception 488
 sender verify failure 489
 size rejection 489
 smtp confirmation 489
 SMTP connections 489
 SMTP protocol error 490
 SMTP syntax error 490
 SMTP transaction; incomplete 489
 subject 490
 summary of fields 484
 syslog; writing to 480
 tail of; in monitor 502
 timezone for entries 196
 TLS cipher 370, 371, 490
 TLS peer DN 490
 TLS resumption 490
 TLS SNI 490
 to file 478
 to syslog 478
 types of 478
 unknown SMTP command 490
 writing from embedded Perl 162
log_message ACL modifier 393
log_reject_target ACL modifier 394
logging
 custom 534
 slow lookups 207
logging in ACL
 immediate 394
 specifying which log 394
LOGIN authentication mechanism 348
logwrite ACL modifier 394
lookup
 * added to type 82
 *@ added to type 82
 caching 84
 cdb 77
 dbm 78
 dbm – embedded NULs 78
 dbm – terminating zero 78
 dbmjz 78
 dbmnz 78
 default values 82
 description of 76
 DNS 81
 dnsdb 85
 dsearch 78
 in domain list 101
 in expanded string 118
 inclusion in binary 23
 InterBase 81, 92
 iplsearch 79
 json 79
 LDAP 81, 87

lookup (continued)
 lmdb 79
 lsearch 79
 lsearch – colons in keys 80
 maximum open files 196
 MySQL 81, 92
 NIS 80
 NIS+ 81, 91
 nwildlsearch 80
 Oracle 81, 92
 partial matching 83
 partial matching – changing prefix 83
 passwd 81
 PostgreSQL 81, 92
 query-style types 81
 quoting 84
 Redis 82, 92, 95
 single-key types 77
 spf 81, 525
 SQLite 94
 sqlite 82
 temporary error in 82
 types of 77
 whoson 82
 wildcard 82, 83
 wildlsearch 80
lookup modules 21
loop
 caused by fail 449
 in lookups 109
 prevention 205
 while file testing 293
 while routing 14
 while routing, avoidance of 258
lower casing 127, 496
lsearch lookup type 79
lt expansion condition 135
lti expansion condition 135

M
macro
 compared with named list 99
 description of 55
 setting on command line 39
MAIL
 ACL for 175, 382
 logging session without 489
 rewriting argument of 329
 SIZE option 463
mail hub example 253
mail loop prevention 205
mailbox
 locking, blocking and non-blocking 285
 maintenance 498
 MMDF format 283
 multiple 232, 473
 size warning 290
 specifying size of 286
 symbolic link 282, 292
 time of last read 335
maildir format 294
 description of 294
 maildirfolder file 287
 maildirsize file 287, 295
 quota; directories included in 286

558 Concept index

maildir format (continued)
 specifying 286
 time of last read 335
maildir++ 294
maildirfolder, creating 287
mailing lists 469
 closed 470
 for Exim users 2
 one-time expansion 266
 re-expansion of 470
 syntax errors in 469
mailq 29
mailstore format 294
 description of 295
 specifying 287
main configuration 167–224
main log 478
maintaining Exim’s hints database 497
malware ACL condition 405
malware scan test 34
manualroute router 248–254
mask expansion item 128
masked IP address 128
match expansion condition 135
match_address expansion condition 135
match_domain expansion condition 135
match_ip expansion condition 135
match_local_part expansion condition 136
maximum see also limit
 line length 147
MBX format, specifying 287
md5 expansion item 128
MD5 hash 128, 132
memory
 debugging 180
message
 abandoning delivery attempts 44
 adding recipients 42
 age of 147
 changing sender 44
 controlling incoming 382
 copying every 474
 discarded 483
 error 461
 forced failure 449
 format 34
 freezing 449
 frozen 10
 general processing 452–459
 header, definition of 5
 life of 10
 listing body of 45
 listing header lines 45
 listing in RFC 2822 format 45
 listing message log 45
 log file for 11, 490
 manually discarding 44
 manually freezing 44
 queueing by file existence 203
 queueing by load 203
 queueing by message count 209
 queueing by SMTP connection count 209
 queueing certain domains 203
 queueing remote deliveries 204
 queueing unconditionally 203

message (continued)
 reception 9
 size 148
 size in queue listing 35
 size issue for transport filter 322
 size limit 197
 submission 400, 452, 455, 456
 submission, ports for 63
 thawing frozen 10, 44
 transporting body only 272
 transporting headers only 273
message ACL modifier 394
 with accept 389
message body
 binary zero count 141
 in expansion 147
 line count 141
 newlines in variables 196
 size 147
 visible size 196
message ids
 details of format 9
 with multiple hosts 195
“message is frozen” 489
message logs
 disabling 197
 preserving 201
message reference
 message reference, specifying for local message 47
message sender, constructed by Exim 10
Message-ID: header line 196, 456
Microsoft Secure Password Authentication 6, 360
millisecond
 logging 488
MIME content scanning 434
 ACL for 175, 382
 returned variables 435
mime_regex ACL condition 405
mixed-case login names 459
MMDF format mailbox 283
modifiers
 dnsdb 85
monitor see Exim monitor
msglog directory 490
multiline responses, suppressing 399
multiple
 systems sharing a spool 195
multiple hosts
 sharing a spool 195
multiple mailboxes 232, 473
multiple SMTP deliveries 42, 45, 49, 50, 312, 317,

318, 475
multiple SMTP deliveries with TLS 374
multiple spool directories 214
MX record
 checking for secondary 242
 in dnsdb lookup 85, 86
 maximum tried 317
 not found 242
 pointing to IP address 176
 pointing to local host 236, 241
 required to exist 243
 security 228, 314
MySQL
 lookup type 81, 92

559 Concept index

MySQL (continued)
 server list 198

N
Nagle algorithm 217
name
 of local host 201
 of router 152
 of sender 41
 of transport 159
name server for enclosing domain 86
named lists 98
 hiding value of 98
named pipe (fifo) 282
named queues
 deliver from 50
 moving messages 44
 queue runners 51
 resource limit 204
 selecting in ACL 395
 variable 150
ndbm DBM library 17
negation
 in expansion condition 131
 in lists 97
network interface 163
new drivers, adding 536
newaliases 29
newline
 as list separator 60
 in message body variables 196
NFS 234
 checking for file existence 263
 lock file 284, 291, 292
NIS lookup type 80
 including support for 23
NIS, retrying user lookups 187
NIS+ lookup type 81, 91
 including support for 23
no_xxx see entry for xxx
non-immediate delivery 46
non-SMTP messages
 ACLs for 174, 382, 383
not-QUIT, ACL for 175
NTLM authentication 360
NUL see binary zero
number of deliveries 206
numeric comparison 131
numerical variables ($1 $2 etc)
 in manualroute router 250
numerical variables ($1 $2 etc) 139
 in cram_md5 authenticator 350
 in errors_copy 186
 in external authenticator 362
 in “From ” line handling 454
 in gecos_name 188
 in if expansion 135
 in lookup expansion 118
 in plaintext authenticator 346
 in rewriting rules 328
 in spa authenticator 360
nwildlsearch lookup type 80

O
OCSP
 stapling 376
ocsp
 caching 371
one-time aliasing/forwarding expansion 266
open files, too many 196
OpenDMARC 6
opendmarc
 acknowledgment 7
OpenSSL 365
 building Exim with 20
OpenSSL
 compatibility 198
options
 appendfile transport 282
 authenticator – extracting 35
 autoreply transport 297
 command line 29–52
 command line; terminating 30
 configuration – extracting 34
 cram_md5 authenticator (client) 350
 cram_md5 authenticator (server) 350
 dnsdb 85
 dnslookup router 242
 external authenticator (client) 363
 external authenticator (server) 362
 generic – definition of 61
 generic; for authenticators 340
 generic; for routers 225–239
 generic; for transports 272–278
 hiding name of 35
 hiding value of 34, 57
 iplookup router 246
 lmtp transport 300
 macro – extracting 35
 manualroute router 248
 pipe transport 304
 plaintext authenticator (client) 348
 plaintext authenticator (server) 346
 queryprogram router 255
 redirect router 262
 router – extracting 35
 smtp transport 311
 spa authenticator (client) 360
 spa authenticator (server) 360
 tls authenticator (server) 364
 transport – extracting 35
“or” expansion condition 138
Oracle
 lookup type 81, 92
 server list 200
os.h 24
outgoing LMTP over TCP/IP 460
outgoing SMTP over TCP/IP 460
ownership
 alias file 266
 configuration file 53
 forward file 266

P
packet radio 237
PAM authentication 137
pam expansion condition 137

560 Concept index

panic log 478
partial matching 83
pass_unscanned
 avast 428
passwd file see /etc/passwd
passwd lookup type 81
PCRE2 6, 75
 security 509
PCRE2 library 17
“percent hack” 200, 426
periodic queue running 50
Perl 200
 calling from Exim 161–162
 including support for 23
 standard output and error 162
 starting the interpreter 49
 taintmode 161
 use in expanded string 119
 use of warn 162
pid (process id)
 in log lines 478, 488
 of current process 149
 of daemon 30, 35, 48
 re-use of 9
pid file, path for 201
pipe
 duplicated 261
 in redirection list 259
 named (fifo) 282
 tainted data 302
pipe transport 302–310
 , 305
 environment for command 304, 305
 failure of exec 305
 for system filter 216
 logging output 306
 path for command 303
 permitted commands 304
 returned data 302
 temporary failure 308
 uid for 271
 with multiple addresses 279
PIPELINING
 avoiding the use of 317
 expected errors 211
 suppressing advertising 201, 399
pipelining
 early connection 201, 317, 488
 logging outgoing 488
 PIPECONNECT 201, 317
pkg-config
 authenticators 23
 GnuTLS 20
 lookups 23
 OpenSSL 20
PLAIN authentication mechanism 347
plaintext authenticator 346–349
policy control
 access control lists 382
 address verification 417
 by local scan function 438
 checking access 495
 overview 8
 rejection, returning details 213
 relay control 425

policy control (continued)
 testing 32
port
 465 and 587 63
 for daemon 180
 for message submission 63
 iplookup router 246
 logging outgoing remote 488
 logging remote 488
 receiving TCP/IP 48
 sending TCP/IP 321
PostgreSQL lookup type 81, 92
 server list 200
PRDR
 ACL for 174, 382, 384
 enabling on server 201
 enabling, optional in client 320
 use for per-user SpamAssassin profiles 433
 variable for 150, 384
preconditions
 checking 12
 definition of 11
 order of processing 13
prefix
 for local part, including in envelope 274
 for local part, used in router 232
 for partial matching 83
preserving domain in redirection 267
primary host name 99
printing characters 202
private options 61
privatekey
 caching 371, 372
privilege, running without 508
privileged user 510
process id see pid
process log path 202
process, querying 491
procmail 309
protocol, specifying for local message 48
proxy
 access via 530
 authentication 531
 client side 530
 inbound 530
 logging proxy address 487
 outbound 530
 Proxy protocol 530
 proxy protocol 191, 202
 server side 530
 SOCKS 322, 530
Proxy protocol
 proxy 530
proxy support 530
prvs expansion item 119
prvscheck expansion item 119
PTR record
 in dnsdb lookup 85
public key for signed distribution 3
pwauthd daemon 6
pwcheck daemon 6, 137
pwcheck expansion condition 137

561 Concept index

Q
query-style lookup
 definition of 77
 list of types 81
querying exim information 33
queryprogram router 255–256
queue
 count of messages on 36
 definition of 5
 delay warning 181
 delivering specific messages 50
 display in monitor 503
 double scanning 49, 203
 forcing delivery 50
 grepping 492
 initial delivery 50
 list of message IDs 36
 listing messages in 35
 local deliveries only 50
 menu in monitor 503
 moving messages 44
 named 44, 50
 routing 49
 size of 150
 summary 493
queue ACL modifier 395
queue runner 15, 29, 30
 abandoning 181
 definition of 5
 description of operation 49
 detecting when delivering from 137
 for specific recipients 51
 for specific senders 51
 logging 488
 maximum number of 204
 processing messages in order 204
 starting manually 49
 starting periodically 50
 two phase 49, 203
queue_running expansion condition 137
queueing
 forcing in ACL 399
queueing incoming messages 46, 203, 204, 209, 399
queues
 named 150, 204
QUIT, ACL for 175, 382, 385
quota
 cache, description of 422
 error testing in retry rule 335
 imposed by Exim 288
 in maildir delivery 294, 295
 maildir; directories included in 286
 system 281
 warning threshold 290
quota cache
 negative entry expiry, specifying 422
 positive entry expiry, specifying 422
quote expansion item 128
quote_local_part expansion item 128
quoting
 for list 118
 hex-encoded unprintable characters 127
 in lookups 84
 in pipe command 303
 in regular expressions 129

quoting (continued)
 in string expansions 128
 lookup-specific 129

R
Radius 137
radius expansion condition 137
random number 129
randomized host list 249, 318
rate limiting 405
 client sending 414
 count 415
 counting unique events 416
 per_* options 415
 per_addr 415
 per_cmd 415
 per_conn 415
 per_rcpt 415
 reading data without updating 415
 strict and leaky modes 416
 unique 415
RBL see DNS list
RCPT
 ACL for 65, 175, 382
 maximum number of incoming 206
 maximum number of outgoing 320
 rate limiting 212
 rewriting argument of 329
 value of $message_size 148
readfile expansion item 120
readsocket expansion item 120
Received: header line 456
 counting 205
 customizing 205
receiving mail 9
recipient
 ACL checking 405
 adding 42
 adding in local scan 442
 error 462
 extracting from header lines 52
 maximum number 205
 removing 44
 removing in local scan 442
 verifying 406
recipients ACL condition 405
redirect
 tainted data 257, 260
redirect router 257–269
redirection see address redirection
Redis lookup type 82, 92
redis lookup type 95
References: header line 456
regex ACL condition 405
regex submatch variables ($1regex $2regex etc) 152
regular expressions
 content scanning with 437
 in address list 107
 in domain list 100
 in host list 104
 in retry rules 333
 library 6, 75
 match in expanded string 135
 quoting 129
 security 509

562 Concept index

reject log 478
 disabling 224
rejection, fake 398
relaying
 checking control of 426
 control by ACL 425
 testing configuration 32
reload
 configuration 31
remote delivery, definition of 5
remove_header ACL modifier 402
removing messages 44
removing recipients 44
repeated redirection expansion 261
replacing another MTA 27
reporting bugs 3
require ACL verb 389
Resent- header line 454
Resent- header lines
 with -t 52
resolver, debugging output 40
restart
 on HUP signal 27, 31
restricting access to features 180, 202, 203, 264, 265
retry
 after long-term failure 337
 algorithms 336
 condition 133, 448
 configuration testing 36
 configuration, description of 332–338
 default rule 73
 description of mechanism 15
 final cutoff 314, 337
 fixed intervals 336
 increasing intervals 336
 intermittently working deliveries 338
 interval, maximum 336
 limit on interval 207
 parameters in rules 336
 quota error testing 335
 random intervals 336
 rules 332
 rules; sender-specific 335
 specific errors; specifying 334
 time not reached 332, 485
 timeout of data 337
 times 496
return code
 for -bm 34
 for -bS 37
 for -bt 37
 for -bv 38
 for -oee 46
 for -oem 46
 for -oep 46
 for bad configuration 53
 from run expansion 122, 153
return path see envelope sender
 changing in transport 275
 created from Sender: 457
 definition of 5
 in submission mode 453
Return-path: header line 275, 456
 removing 207
reverse DNS lookup 155, 189, 514

revocation list 376
rewriting
 addresses 10, 326–331, 459
 at transport time 273, 327
 bang paths 331
 flags 329
 header lines 243
 logging 486
 patterns 328
 replacements 329
 rules 327
 testing 36, 327
 timing of 326
 whole addresses 330
RFC 1413 33, 207
 logging timeout 487
 query timeout 207
RFC 2047 19, 330, 436, 446, 458
 binary zero in 446
 decoding 129
 disabling length check 179
 expansion operator 129
RFC 3030
 CHUNKING 180, 319, 384
RFC 7413
 TCP Fast Open 319
rfc2047 expansion item 129
rfc2047d expansion item 129
rmail 29
root privilege 506
 running without 508
router
 adding header lines 230
 carrying on after success 238
 case of local parts 226
 changing address for errors 229
 checking for local user 226
 checking senders 236
 customized precondition 227
 customizing “cannot route” message 226
 data attached to address 225
 definition of 11
 discarding IP addresses 231
 fallback hosts 230
 for verification 12
 forcing verification failure 229
 go to after “pass” 234
 home directory for 235
 IP address translation 237
 name 152
 preconditions, order of processing 13
 prefix for local part 232
 removing header lines 230
 requiring file existence 234
 restricting to specific domains 228
 restricting to specific local parts 233
 result of running 12
 running details 12
 setting group 230
 skipping for EXPN 229
 skipping when address testing 225
 start at after redirection 234
 suffix for local part 232
 timeout 233
 used only when verifying 239

563 Concept index

router (continued)
 user for filter processing 238
 variables 150, 237
routers
 accept 240
 default 68
 dnslookup 241–244
 ipliteral 245
 iplookup 246
 manualroute 248–254
 queryprogram 255–256
 redirect 257–269
routing
 by external program 255
 loops in 14, 258
 whole queue before delivery 49
rsmtp 29
Rspamd 432
run expansion item 121
runq 29
runtime configuration 53
rxquote expansion item 129

S
Samba project 6
saslauthd daemon 138
saslauthd expansion condition 138
sasldb2 78
scanning see content scanning
security
 build-time features 506
 command injection attacks 509
 data sources 509
 discussion of 506–511
 local commands 509
 MX lookup 228, 314
 regular expressions 509
seen ACL condition 405, 413
sender
 ACL checking 405
 address 41, 454
 authenticated 140
 changing 44
 constructed by Exim 10
 definition of 5
 gid 149
 host address, specifying for local message 47
 host name, specifying for local message 48
 ident string, specifying for local message 48
 name 41
 setting by untrusted user 222
 source of 37
 uid 149
 verifying 407
 verifying in header 406
sender_domains ACL condition 405
sender_retain submission option 452
Sender: header line 29, 456
 disabling addition of 194
 retaining from local submission 195
senders ACL condition 405
Sendmail compatibility
 -bi option 33
 -h option ignored 42
 -oA option 45

Sendmail compatibility (continued)
 -om option ignored 48
 -oo option ignored 48
 -t option 52, 187
 -U option ignored 52
 8-bit characters 30
 calling Exim as newaliases 29
 command line interface 4
 “From” line 34, 454, 455
serializing connections 322
set ACL modifier 395
setuid 506
 installing Exim with 24
sg expansion item 122
SHA-1 hash 129, 132
SHA-2 hash 130
SHA-256 hash 130
sha1 expansion item 129
sha2 expansion item 130
sha256 expansion item 130
sha3 expansion item 130
SHA3 hash 130
shadow transport 276
shared spool directory 195
Sieve filter 8
 capabilities 33
 configuring appendfile 281
 enabling in default router 70
 enabling use of 262
 forbidding delivery to a file 264
 “keep” facility; disabling 264
 not available for system filter 14, 216
 relative mailbox path handling 281
 specifying in redirection data 258
 syntax errors in 268
 testing 32
 vacation directory 268
 value of $address_file 140
SIGHUP 31, 508
signal
 HUP, to restart 27, 31
 to reload configuration 31
signal exit 305
SIGUSR1 491
simultaneous deliveries 270
single-key lookup
 definition of 77
 list of types 77
SIZE
 ESMTP extension 276, 322
 ESMTP extension, advertising 197
 option on MAIL command 460
size
 of bounce lines, limit 178
 of bounce, limit 178
 of mailbox 286, 290
 of message 35, 148, 322, 482, 487
 of message, limit 197, 274
 of monitor window 502
SIZE option on MAIL command 463
skipping faulty addresses 268
smart host
 example router 252, 469
 suppressing queueing 476

564 Concept index

SMTP
 authentication configuration 339–345
 batched incoming 36, 466
 batched outgoing 465
 batched outgoing; example 253
 batching over TCP/IP 461
 callout verification 418
 command history 156
 command, argument for 156
 connection backlog 210
 connection, ACL for 382, 383
 delaying delivery 46
 details policy failures 213
 encrypted connection 217
 encryption 365–377
 error codes 261, 265, 394
 errors in outgoing 461
 host name in responses 209
 incoming call count 209
 incoming connection count 208, 209
 incoming over TCP/IP 462
 input timeout 48, 212
 limiting incoming message count 208
 limiting non-mail commands 208
 limiting syntax and protocol errors 211
 limiting unknown commands 212
 listener 30
 local incoming 465
 local input 37
 logging confirmation 489
 logging connections 489
 logging incomplete transactions 489
 logging protocol error 490
 logging syntax errors 490
 multiple deliveries 42, 45, 49, 50, 312, 475
 non-mail commands 464
 outgoing over TCP/IP 460
 output flushing, disabling for callout 399, 419
 output flushing, disabling for delay 399
 passed connection 42, 45, 49, 50, 312, 461, 475
 processing details 460–466
 protocol errors 464
 rate limiting 212
 rewriting malformed addresses 329
 smtps protocol 63, 164, 365
 ssmtp protocol 63, 164, 365
 submissions protocol 63, 365
 synchronization checking 210, 398
 syntax errors 464
 syntax errors; logging 490
 testing incoming 32
 unknown command; logging 490
 unrecognized commands 464
 welcome banner 210
smtp transport 311–325
SMTPS 220
smtps protocol 63, 164, 365
SMTPUTF8
 ESMTP extension, advertising 213
 ESMTP option 532
 logging 532
SNI 373
 logging 490
 observability in client 159
 observability on server 159

SNI (continued)
 selecting server certificate based on 218
 setting in client 323
SOA record
 in dnsdb lookup 85
socket, use of in expansion 120
SOCKS
 proxy 530
Solaris
 DBM library for 17
 flock() support 291
 LDAP 87
 mail command 42
 PAM support 137
 stopping Exim on 27
sorting
 a list 123
sorting remote deliveries 206
source routing
 in email address 200
 in IP packets 510
SPA authentication 6
spa authenticator 360–361
spam ACL condition 405
spam scanning 432
 returned variables 433
SpamAssassin 432
SPF
 ACL condition 523, 525
 best guess 525
 lookup expansion 525
 verification 523
 verification variables 524
spf lookup type 81
SPF record
 in dnsdb lookup 85
spool
 number of messages 150
spool directory
 checking space 179, 210
 creating 25
 definition of 5
 file formats 215
 file locked 485
 files 510
 files that hold a message 10
 format of files 512–516
 input sub-directory 10
 path to 214
 sharing 195
 split 214
“spool file is locked” 489
spool files
 editing 512
 format of 512–516
sprintf() 511
SQL lookup types 92
sqlite
 lookup timeout 95
sqlite lookup type 82, 94
 lock timeout 215
src/EDITME 19
SRS
 decoding 526
 excoding 525

565 Concept index

SRS (continued)
 expansion item 525
 sender rewriting scheme 525
srs_encode expansion item 525
SRV record
 enabling use of 242
 in dnsdb lookup 85
 required to exist 243
SSL see TLS
SSMTP 220
ssmtp protocol 63, 164, 365
 outbound 321
STARTTLS, ACL for 175, 382
stat expansion item 130
statistics 494
statvfs function 502
“sticky” bit 26, 284
str2b64 expansion item 130
string
 case forcing 127, 131
 comparison 133, 134, 135
 expansion see expansion
 format of configuration values 58
 length in expansion 130
 list, definition of 59
 quoted 59
 testing for IP address 134
 xtext decoding 131
stripchart 501
strlen expansion item 130
subject, logging 490
submission fixups, suppressing 400
submission fixups, suppressing (command-line) 42
submission mode 400, 452, 455, 457
submissions protocol 63, 164, 365
substr expansion item 123, 130
substring extraction 123, 130
suffix for local part
 including in envelope 274
 used in router 232
symbolic link
 to build directory 17
 to exim binary 27
 to mailbox 282, 292
 to source files 21
synchronization checking in SMTP 210, 398
syntax of common options 57
syslog 478
 duplicate log lines; suppressing 215
 facility; setting 216
 pid 216
 process name; set with flag 42
 process name; setting 216
 timestamps 216
system aliases file 24
system filter 448–451
 specifying 216
 testing 31
system log 478

T
tainted data 139, 143, 145, 146, 305
 de-tainting 13, 76, 77, 101, 110, 134, 136, 226, 284,

419
 definition 110

tainted data (continued)
 dsearch result 78
 expansion 110
 expansion testing 31
 in filenames 257, 260, 281
 in lookups 85
 in pipe command 302
 message headers 116
 quoting for lookups 77
 single-key lookups 77
 sqlite file 94
 tracking 96, 110
TCP Fast Open
 enabling, in client 319
TCP_NODELAY on listening sockets 217
TCP_WRAPPERS_DAEMON_NAME 20
tcp_wrappers_daemon_name 20
TCP/IP
 logging incoming remote port 488
 logging local address and port 487, 488
 logging outgoing remote port 488
 logging proxy address 487
 setting listening interfaces 48, 163
 setting listening ports 48, 163, 180
 setting outgoing port 321
tcpwrappers, building Exim to support 20
tdb DBM library 18
terminology definitions 4
testing
 , 34
 addresses 37, 229
 filter file 32
 forward file 32
 incoming SMTP 32
 installation 26
 relay control 32
 retry configuration 36
 rewriting 36, 327
 string expansion 31, 44, 110
 system filter 31
 variables in drivers 228, 272
text forcing in strings 131
thawing messages 44, 177, 504
time interval
 decoding 130
 formatting 130
 specifying in configuration 58
time_eval expansion item 130
time_interval expansion item 130
timeout
 dns lookup 86, 184
 for local_scan() function 195
 for non-SMTP input 48, 204
 for RFC 1413 call 207
 for SMTP input 48, 212
 for transmitted SMTP data accept 315
 for transmitted SMTP data blocks 313
 frozen messages 217
 LDAP lookup 90
 mailbox locking 285, 286
 of retry data 337
 of router 233
 smtp transport command 312
 smtp transport connect 312
 SQLite 95

566 Concept index

timestamps
 millisecond, in logs 488
 syslog 216
timezone, setting 217
TLS
 advertising 217
 ALPN 191, 218, 318, 322, 374
 Application Layer Protocol Names 191, 218, 318,

322, 374
 automatic start 52
 avoiding for certain hosts 317
 broken clients 221
 certificate status 220
 client certificate revocation list 323
 client certificate verification 221, 370, 405
 client certificate, location of 323
 client private key, location of 323
 configuring an Exim client 371
 configuring an Exim server 369
 D-H bit count 218
 D-H parameters for server 219
 Diffie-Hellman minimum acceptable size 323
 EC cryptography 220
 esmtp state; remembering 221
 including support for TLS 20
 logging cipher 490
 logging peer DN 490
 logging session resumption 490
 logging SNI 490
 multiple message deliveries 317, 318, 374
 OCSP proof file 220
 on SMTP connection 365
 OpenSSL vs GnuTLS 365
 passing connection 317, 318
 requiring for certain servers 318, 319
 requiring specific ciphers 221, 323
 requiring specific ciphers (OpenSSL) 367
 requiring specific ciphers for DANE 313
 resumption 158, 221, 316, 323, 377
 revoked certificates 376
 server certificate hostname verification 324
 server certificate revocation list 218
 server certificate verification 324
 server certificate; location of 218
 Server Name Indication 159, 323, 373
 server private key; location of 220
 SNI 159, 323, 373
 specifying ciphers (GnuTLS) 368
 specifying key exchange methods (GnuTLS) 368
 specifying MAC algorithms (GnuTLS) 368
 specifying priority string (GnuTLS) 368
 specifying protocols (GnuTLS) 368
 SSL-on-connect outbound 321
 use without STARTTLS 52
tls authenticator 364
tls_certificate
 caching 371, 372
tls_crl
 caching 371, 372
tls_ocsp_file
 caching 371
tls_privatekey
 caching 371, 372
tls_require_ciphers
 caching 371, 372

tls_verify_certificate
 caching 371, 372
tmail 306
To: header line 52
too many open files 196
top bit see 8-bit characters
tr expansion item 124
trailing dot on domain 215
transport
 body only 272
 concurrency limit 274
 current directory for 272
 definition of 11
 external 4
 filter 144, 149, 276, 303, 322, 460
 filter, timeout 278
 generic options for 272–278
 group; additional 274
 group; specifying 273
 header lines only 273
 header lines; adding 273
 header lines; removing 273
 header lines; rewriting 273
 home directory for 274
 local 230, 231, 238
 local; address batching in 279
 local; current directory for 271
 local; environment for 270–271
 local; home directory for 271
 local; uid and gid 270
 message size; limiting 274
 name 159
 parallel processes 274
 return path; changing 275
 shadow 276
 user, specifying 278
transports
 appendfile 281–296
 autoreply 297–299
 default 71
 lmtp 300
 pipe 302–310
 smtp 311–325
Tru64-Unix build-time settings 22
trusted groups 222
trusted users 41, 222, 510
 definition of 29
TTL
 of dns lookup 86
TXT record
 in dnsdb lookup 85

U
uc expansion item 131
UDP communications 395
uid (user id)
 caller 141
 Exim’s own 187
 for queryprogram 255
 in spool file 512
 local delivery 238, 278, 307
 of originating user 149
 system filter 217, 448
 unknown caller 222
underscore in EHLO/HELO 189

567 Concept index

unfreezing messages 44, 177, 504
Unicode 126
unknown host name 104, 106
unprivileged delivery 181
unprivileged running 508
unqualified addresses 205, 207, 453
untrusted user setting sender 222
upgrading Exim 27
upper casing 131
USE_DB 18, 496
USE_GNUTLS 20
USE_TCP_WRAPPERS 20
user
 admin 510
 admin definition of 29
 trusted 41, 222, 510
 trusted definition of 29
 untrusted setting sender 222
user name
 format of 59
 maximum length 196
UTF-8
 conversion from 126
 expansion 131
 in debug output 41
 in domain name 176
utf-8
 utf-8 sequences 131
utf8
 address downconversion 325, 532
 mail name handling 532
utf8_domain_from_alabel expansion item 131
utf8_domain_to_alabel expansion item 131
utf8_localpart_from_alabel expansion item 131
utf8_localpart_to_alabel expansion item 131
utf8clean expansion item 131
utilities 491–500
UUCP
 example of router for 254
 “From” line 34, 192, 223, 454

V
vacation processing 474
Variable Envelope Return Paths 471
variables see expansion, variables
variables ($auth1 $auth2 etc)
 in external authenticator 362
 in tls authenticator 364
verify ACL condition 405, 406, 407
verifying
 EHLO 406
 header names only ASCII 405
 header syntax 406
 HELO 406
 not blind 406
 recipient 406
 redirection while 423
 sender 407
 sender in header 406
 suppressing error details 423
verifying address
 by callout 418
 differentiating failures 418
 options for 417
 overview 12

verifying address (continued)

 using -bv 38
VERP 471
 variable envelope return path 525
version number of Exim 37
 override 187
virtual domains 472
virus scanners
 avast 428
 clamd 428
 command line interface 429
 DrWeb 429
 f-prot6d 430
 f-protd 430
 F-Secure 430
 Kaspersky 428, 430
 mksd 430
 simple socket-connected 430
 Sophos and Sophie 430
virus scanning 427
VRFY
 ACL for 175, 382
 error text, display of 260
 processing 464

W
warn ACL verb 390, 401
 log when skipping 486
warn_message_file
 tainted data 223
warning of delay 181
 customizing the message 223, 468
website 2
welcome banner for SMTP 210
WELLKNOWN
 ACL for 382, 385
 advertisement 223
WELLKNOWN, ACL for 176
white space
 in configuration file 54
 in header lines 115
 in lsearch key 80
whoson lookup type 82
wiki 2
wildcard lookups 82, 83
wildlsearch lookup type 80
window size 502

X
X-Failed-Recipients: header line 16
X-windows 7, 501
X11 libraries, location of 23
xtext 131
xtextd expansion item 131

Z
zero, binary see binary zero

568 Concept index

	Title page
	Contents
	1. Introduction
	 1.1 Exim documentation
	 1.2 FTP site and websites
	 1.3 Mailing lists
	 1.4 Bug reports
	 1.5 Where to find the Exim distribution
	 1.6 Limitations
	 1.7 Runtime configuration
	 1.8 Calling interface
	 1.9 Terminology

	2. Incorporated code
	3. How Exim receives and delivers mail
	 3.1 Overall philosophy
	 3.2 Policy control
	 3.3 User filters
	 3.4 Message identification
	 3.5 Receiving mail
	 3.6 Handling an incoming message
	 3.7 Life of a message
	 3.8 Processing an address for delivery
	 3.9 Processing an address for verification
	 3.10 Running an individual router
	 3.11 Duplicate addresses
	 3.12 Router preconditions
	 3.13 Delivery in detail
	 3.14 Retry mechanism
	 3.14.1 Temporary delivery failure
	 3.14.2 Permanent delivery failure
	 3.14.3 Failures to deliver bounce messages

	4. Building and installing Exim
	 4.1 Unpacking
	 4.2 Multiple machine architectures and operating systems
	 4.3 PCRE2 library
	 4.4 DBM libraries
	 4.5 Pre-building configuration
	 4.6 Support for iconv()
	 4.7 Including TLS/SSL encryption support
	 4.8 Use of tcpwrappers
	 4.9 Including support for IPv6
	 4.10 Dynamically loaded lookup module support
	 4.11 The building process
	 4.12 Output from "make"
	 4.13 Overriding build-time options for Exim
	 4.14 OS-specific header files
	 4.15 Overriding build-time options for the monitor
	 4.16 Installing Exim binaries and scripts
	 4.17 Installing info documentation
	 4.18 Setting up the spool directory
	 4.19 Testing
	 4.20 Replacing another MTA with Exim
	 4.21 Running the daemon
	 4.22 Upgrading Exim
	 4.23 Stopping the Exim daemon on Solaris

	5. The Exim command line
	 5.1 Setting options by program name
	 5.2 Trusted and admin users
	 5.3 Command line options

	6. The Exim runtime configuration file
	 6.1 Using a different configuration file
	 6.2 Configuration file format
	 6.3 File inclusions in the configuration file
	 6.4 Macros in the configuration file
	 6.5 Macro substitution
	 6.6 Redefining macros
	 6.7 Overriding macro values
	 6.8 Example of macro usage
	 6.9 Builtin macros
	 6.10 Conditional skips in the configuration file
	 6.11 Common option syntax
	 6.12 Boolean options
	 6.13 Integer values
	 6.14 Octal integer values
	 6.15 Fixed point numbers
	 6.16 Time intervals
	 6.17 String values
	 6.18 Expanded strings
	 6.19 User and group names
	 6.20 List construction
	 6.21 Changing list separators
	 6.22 Empty items in lists
	 6.23 Format of driver configurations

	7. The default configuration file
	 7.1 Macros
	 7.2 Main configuration settings
	 7.3 ACL configuration
	 7.4 Router configuration
	 7.5 Transport configuration
	 7.6 Default retry rule
	 7.7 Rewriting configuration
	 7.8 Authenticators configuration

	8. Regular expressions
	9. File and database lookups
	 9.1 Examples of different lookup syntax
	 9.2 Lookup types
	 9.3 Single-key lookup types
	 9.3.1 cdb
	 9.3.2 dbm
	 9.3.3 dbmjz
	 9.3.4 dbmnz
	 9.3.5 dsearch
	 9.3.6 iplsearch
	 9.3.7 json
	 9.3.8 lmdb
	 9.3.9 lsearch
	 9.3.10 nis
	 9.3.11 (n)wildlsearch
	 9.3.12 spf

	 9.4 Query-style lookup types
	 9.4.1 dnsdb
	 9.4.2 ibase
	 9.4.3 ldap
	 9.4.4 mysql
	 9.4.5 nisplus
	 9.4.6 oracle
	 9.4.7 passwd
	 9.4.8 pgsql
	 9.4.9 redis
	 9.4.10 sqlite
	 9.4.11 testdb
	 9.4.12 whoson

	 9.5 Temporary errors in lookups
	 9.6 Default values in single-key lookups
	 9.7 Partial matching in single-key lookups
	 9.8 Lookup caching
	 9.9 Quoting lookup data
	 9.10 More about dnsdb
	 9.10.1 Dnsdb lookup modifiers
	 9.10.2 Pseudo dnsdb record types
	 9.10.3 Multiple dnsdb lookups

	 9.11 More about LDAP
	 9.11.1 Format of LDAP queries
	 9.11.2 LDAP quoting
	 9.11.3 LDAP connections
	 9.11.4 LDAP authentication and control information
	 9.11.5 Format of data returned by LDAP

	 9.12 More about NIS+
	 9.13 SQL lookups
	 9.13.1 More about MySQL, PostgreSQL, Oracle, InterBase, and Redis
	 9.13.2 Specifying the server in the query
	 9.13.3 Special MySQL features
	 9.13.4 Special PostgreSQL features
	 9.13.5 More about SQLite
	 9.13.6 More about Redis

	10. Domain, host, address, and local part lists
	 10.1 Results of list checking
	 10.2 Expansion of lists
	 10.2.1 Negated items in lists
	 10.2.2 File names in lists
	 10.2.3 An lsearch file is not an out-of-line list
	 10.2.4 Named lists
	 10.2.5 Named lists compared with macros
	 10.2.6 Named list caching

	 10.3 Domain lists
	 10.4 Host lists
	 10.4.1 Special host list patterns
	 10.4.2 Host list patterns that match by IP address
	 10.4.3 Host list patterns for single-key lookups by host address
	 10.4.4 Host list patterns that match by host name
	 10.4.5 Behaviour when an IP address or name cannot be found
	 10.4.6 Mixing wildcarded host names and addresses in host lists
	 10.4.7 Temporary DNS errors when looking up host information
	 10.4.8 Host list patterns for single-key lookups by host name
	 10.4.9 Host list patterns for query-style lookups

	 10.5 Address lists
	 10.5.1 Case of letters in address lists

	 10.6 Local part lists

	11. String expansions
	 11.1 Literal text in expanded strings
	 11.2 Character escape sequences in expanded strings
	 11.3 Testing string expansions
	 11.4 Forced expansion failure
	 11.5 Expansion items
	 11.6 Expansion operators
	 11.7 Expansion conditions
	 11.8 Combining expansion conditions
	 11.9 Expansion variables

	12. Embedded Perl
	 12.1 Setting up so Perl can be used
	 12.2 Calling Perl subroutines
	 12.3 Calling Exim functions from Perl
	 12.4 Use of standard output and error by Perl

	13. Starting the daemon and the use of network interfaces
	 13.1 Starting a listening daemon
	 13.2 Special IP listening addresses
	 13.3 Overriding local_interfaces and daemon_smtp_ports
	 13.4 Support for the submissions (aka SSMTP or SMTPS) protocol
	 13.5 IPv6 address scopes
	 13.6 Disabling IPv6
	 13.7 Examples of starting a listening daemon
	 13.8 Recognizing the local host
	 13.9 Delivering to a remote host

	14. Main configuration
	 14.1 Miscellaneous
	 14.2 Exim parameters
	 14.3 Privilege controls
	 14.4 Logging
	 14.5 Frozen messages
	 14.6 Data lookups
	 14.7 Message ids
	 14.8 Embedded Perl Startup
	 14.9 Daemon
	 14.10 Resource control
	 14.11 Policy controls
	 14.12 Callout cache
	 14.13 TLS
	 14.14 Local user handling
	 14.15 All incoming messages (SMTP and non-SMTP)
	 14.16 Non-SMTP incoming messages
	 14.17 Incoming SMTP messages
	 14.18 SMTP extensions
	 14.19 Processing messages
	 14.20 System filter
	 14.21 Routing and delivery
	 14.22 Bounce and warning messages
	 14.23 Alphabetical list of main options

	15. Generic options for routers
	16. The accept router
	17. The dnslookup router
	 17.1 Problems with DNS lookups
	 17.2 Declining addresses by dnslookup
	 17.3 Private options for dnslookup
	 17.4 Effect of qualify_single and search_parents

	18. The ipliteral router
	19. The iplookup router
	20. The manualroute router
	 20.1 Private options for manualroute
	 20.2 Routing rules in route_list
	 20.3 Routing rules in route_data
	 20.4 Format of the list of hosts
	 20.5 Format of one host item
	 20.6 How the list of hosts is used
	 20.7 How the options are used
	 20.8 Manualroute examples

	21. The queryprogram router
	22. The redirect router
	 22.1 Redirection data
	 22.2 Forward files and address verification
	 22.3 Interpreting redirection data
	 22.4 Items in a non-filter redirection list
	 22.5 Redirecting to a local mailbox
	 22.6 Special items in redirection lists
	 22.7 Duplicate addresses
	 22.8 Repeated redirection expansion
	 22.9 Errors in redirection lists
	 22.10 Private options for the redirect router

	23. Environment for running local transports
	 23.1 Concurrent deliveries
	 23.2 Uids and gids
	 23.3 Current and home directories
	 23.4 Expansion variables derived from the address

	24. Generic options for transports
	25. Address batching in local transports
	26. The appendfile transport
	 26.1 The file and directory options
	 26.2 Private options for appendfile
	 26.3 Operational details for appending
	 26.4 Operational details for delivery to a new file
	 26.5 Maildir delivery
	 26.6 Using tags to record message sizes
	 26.7 Using a maildirsize file
	 26.8 Mailstore delivery
	 26.9 Non-special new file delivery

	27. The autoreply transport
	 27.1 Private options for autoreply

	28. The lmtp transport
	29. The pipe transport
	 29.1 Concurrent delivery
	 29.2 Returned status and data
	 29.3 How the command is run
	 29.4 Environment variables
	 29.5 Private options for pipe
	 29.6 Using an external local delivery agent

	30. The smtp transport
	 30.1 Multiple messages on a single connection
	 30.2 Use of the $host and $host_address variables
	 30.3 Use of $tls_cipher and $tls_peerdn
	 30.4 Private options for smtp
	 30.5 How the limits for the number of hosts to try are used

	31. Address rewriting
	 31.1 Explicitly configured address rewriting
	 31.2 When does rewriting happen?
	 31.3 Testing the rewriting rules that apply on input
	 31.4 Rewriting rules
	 31.5 Rewriting patterns
	 31.6 Rewriting replacements
	 31.6.1 Rewriting flags
	 31.6.2 Flags specifying which headers and envelope addresses to rewrite
	 31.6.3 The SMTP-time rewriting flag
	 31.6.4 Flags controlling the rewriting process

	 31.7 Rewriting examples

	32. Retry configuration
	 32.1 Changing retry rules
	 32.2 Format of retry rules
	 32.3 Choosing which retry rule to use for address errors
	 32.4 Choosing which retry rule to use for host and message errors
	 32.5 Retry rules for specific errors
	 32.6 Retry rules for specified senders
	 32.7 Retry parameters
	 32.8 Retry rule examples
	 32.9 Timeout of retry data
	 32.10 Long-term failures
	 32.11 Deliveries that work intermittently

	33. SMTP authentication
	 33.1 Generic options for authenticators
	 33.2 The AUTH parameter on MAIL commands
	 33.3 Authentication on an Exim server
	 33.4 Testing server authentication
	 33.5 Authentication by an Exim client

	34. The plaintext authenticator
	 34.1 Avoiding cleartext use
	 34.2 Plaintext server options
	 34.3 Using plaintext in a server
	 34.4 The PLAIN authentication mechanism
	 34.5 The LOGIN authentication mechanism
	 34.6 Support for different kinds of authentication
	 34.7 Using plaintext in a client

	35. The cram_md5 authenticator
	 35.1 Using cram_md5 as a server
	 35.2 Using cram_md5 as a client

	36. The cyrus_sasl authenticator
	 36.1 Using cyrus_sasl as a server

	37. The dovecot authenticator
	38. The gsasl authenticator
	 38.1 gsasl auth variables

	39. The heimdal_gssapi authenticator
	 39.1 heimdal_gssapi auth variables

	40. The spa authenticator
	 40.1 Using spa as a server
	 40.2 Using spa as a client

	41. The external authenticator
	 41.1 External options
	 41.2 Using external in a server
	 41.3 Using external in a client

	42. The tls authenticator
	43. Encrypted SMTP connections using TLS/SSL
	 43.1 Support for the "submissions" (aka "ssmtp" and "smtps") protocol
	 43.2 OpenSSL vs GnuTLS
	 43.3 GnuTLS parameter computation
	 43.4 Requiring specific ciphers in OpenSSL
	 43.5 Requiring specific ciphers or other parameters in GnuTLS
	 43.6 Configuring an Exim server to use TLS
	 43.6.1 Requesting and verifying client certificates
	 43.6.2 Caching of static server configuration items

	 43.7 Configuring an Exim client to use TLS
	 43.7.1 Caching of static client configuration items

	 43.8 Use of TLS Server Name Indication
	 43.8.1 ALPN

	 43.9 Multiple messages on the same encrypted TCP/IP connection
	 43.10 Certificates and all that
	 43.10.1 Certificate chains
	 43.10.2 Self-signed certificates
	 43.10.3 Revoked certificates

	 43.11 TLS Resumption
	 43.12 DANE
	 43.12.1 DNS records
	 43.12.2 Interaction with OCSP
	 43.12.3 Client configuration
	 43.12.4 Observability
	 43.12.5 General

	44. Access control lists
	 44.1 Testing ACLs
	 44.2 Specifying when ACLs are used
	 44.2.1 The non-SMTP ACLs
	 44.2.2 The SMTP connect ACL
	 44.2.3 The EHLO/HELO ACL
	 44.2.4 The DATA ACLs
	 44.2.5 The SMTP DKIM ACL
	 44.2.6 The SMTP MIME ACL
	 44.2.7 The SMTP PRDR ACL
	 44.2.8 The SMTP WELLKNOWN ACL
	 44.2.9 The QUIT ACL
	 44.2.10 The not-QUIT ACL

	 44.3 Finding an ACL to use
	 44.4 ACL return codes
	 44.5 Unset ACL options
	 44.6 Data for message ACLs
	 44.7 Data for non-message ACLs
	 44.8 Format of an ACL
	 44.9 ACL verbs
	 44.10 ACL variables
	 44.11 Condition and modifier processing
	 44.12 ACL modifiers
	 44.13 Use of the control modifier
	 44.14 Summary of message fixup control
	 44.15 Adding header lines in ACLs
	 44.16 Removing header lines in ACLs
	 44.17 ACL conditions
	 44.18 Using DNS lists
	 44.18.1 Specifying the IP address for a DNS list lookup
	 44.18.2 DNS lists keyed on domain names
	 44.18.3 Multiple explicit keys for a DNS list
	 44.18.4 Data returned by DNS lists
	 44.18.5 Variables set from DNS lists
	 44.18.6 Additional matching conditions for DNS lists
	 44.18.7 Negated DNS matching conditions
	 44.18.8 Handling multiple DNS records from a DNS list
	 44.18.9 Detailed information from merged DNS lists
	 44.18.10 DNS lists and IPv6

	 44.19 Previously seen user and hosts
	 44.20 Rate limiting incoming messages
	 44.20.1 Ratelimit options for what is being measured
	 44.20.2 Ratelimit update modes
	 44.20.3 Ratelimit options for handling fast clients
	 44.20.4 Limiting the rate of different events
	 44.20.5 Using rate limiting

	 44.21 Address verification
	 44.22 Callout verification
	 44.22.1 Additional parameters for callouts
	 44.22.2 Callout caching

	 44.23 Quota caching
	 44.24 Sender address verification reporting
	 44.25 Redirection while verifying
	 44.26 Client SMTP authorization (CSA)
	 44.27 Bounce address tag validation
	 44.28 Using an ACL to control relaying
	 44.29 Checking a relay configuration

	45. Content scanning at ACL time
	 45.1 Scanning for viruses
	 45.2 Scanning with SpamAssassin and Rspamd
	 45.3 Calling SpamAssassin from an Exim ACL
	 45.4 Scanning MIME parts
	 45.5 Scanning with regular expressions

	46. Adding a local scan function to Exim
	 46.1 Building Exim to use a local scan function
	 46.2 API for local_scan()
	 46.3 Configuration options for local_scan()
	 46.4 Available Exim variables
	 46.5 Structure of header lines
	 46.6 Structure of recipient items
	 46.7 Available Exim functions
	 46.8 More about Exim's memory handling

	47. System-wide message filtering
	 47.1 Specifying a system filter
	 47.2 Testing a system filter
	 47.3 Contents of a system filter
	 47.4 Additional variable for system filters
	 47.5 Defer, freeze, and fail commands for system filters
	 47.6 Adding and removing headers in a system filter
	 47.7 Setting an errors address in a system filter
	 47.8 Per-address filtering

	48. Message processing
	 48.1 Submission mode for non-local messages
	 48.2 Line endings
	 48.3 Unqualified addresses
	 48.4 The UUCP From line
	 48.5 Header lines
	 48.5.1 Resent- header lines
	 48.5.2 Auto-Submitted:
	 48.5.3 Bcc:
	 48.5.4 Date:
	 48.5.5 Delivery-date:
	 48.5.6 Envelope-to:
	 48.5.7 From:
	 48.5.8 Message-ID:
	 48.5.9 Received:
	 48.5.10 References:
	 48.5.11 Return-path:
	 48.5.12 Sender:

	 48.6 Adding and removing header lines in routers and transports
	 48.7 Constructed addresses
	 48.8 Case of local parts
	 48.9 Dots in local parts
	 48.10 Rewriting addresses

	49. SMTP processing
	 49.1 Outgoing SMTP and LMTP over TCP/IP
	 49.1.1 Errors in outgoing SMTP

	 49.2 Incoming SMTP messages over TCP/IP
	 49.2.1 Unrecognized SMTP commands
	 49.2.2 Syntax and protocol errors in SMTP commands
	 49.2.3 Use of non-mail SMTP commands
	 49.2.4 The VRFY and EXPN commands
	 49.2.5 The ETRN command

	 49.3 Incoming local SMTP
	 49.4 Outgoing batched SMTP
	 49.5 Incoming batched SMTP

	50. Customizing bounce and warning messages
	 50.1 Customizing bounce messages
	 50.2 Customizing warning messages

	51. Some common configuration settings
	 51.1 Sending mail to a smart host
	 51.2 Using Exim to handle mailing lists
	 51.3 Syntax errors in mailing lists
	 51.4 Re-expansion of mailing lists
	 51.5 Closed mailing lists
	 51.6 Variable Envelope Return Paths (VERP)
	 51.7 Virtual domains
	 51.8 Multiple user mailboxes
	 51.9 Simplified vacation processing
	 51.10 Taking copies of mail
	 51.11 Intermittently connected hosts
	 51.12 Exim on the upstream server host
	 51.13 Exim on the intermittently connected client host

	52. Using Exim as a non-queueing client
	53. Log files
	 53.1 Where the logs are written
	 53.2 Logging to local files that are periodically "cycled"
	 53.3 Datestamped log files
	 53.4 Logging to syslog
	 53.5 Log line flags
	 53.6 Logging message reception
	 53.7 Logging deliveries
	 53.8 Discarded deliveries
	 53.9 Deferred deliveries
	 53.10 Delivery failures
	 53.11 Fake deliveries
	 53.12 Completion
	 53.13 Summary of Fields in Log Lines
	 53.14 Other log entries
	 53.15 Reducing or increasing what is logged
	 53.16 Message log

	54. Exim utilities
	 54.1 Finding out what Exim processes are doing (exiwhat)
	 54.2 Selective queue listing (exiqgrep)
	 54.3 Summarizing the queue (exiqsumm)
	 54.4 Extracting specific information from the log (exigrep)
	 54.5 Selecting messages by various criteria (exipick)
	 54.6 Cycling log files (exicyclog)
	 54.7 Mail statistics (eximstats)
	 54.8 Checking access policy (exim_checkaccess)
	 54.9 Making DBM files (exim_dbmbuild)
	 54.10 Finding individual retry times (exinext)
	 54.11 Hints database maintenance
	 54.12 exim_dumpdb
	 54.13 exim_tidydb
	 54.14 exim_fixdb
	 54.15 Mailbox maintenance (exim_lock)
	 54.16 Message Ids for humans (exim_msgdate)

	55. The Exim monitor
	 55.1 Running the monitor
	 55.2 The stripcharts
	 55.3 Main action buttons
	 55.4 The log display
	 55.5 The queue display
	 55.6 The queue menu

	56. Security considerations
	 56.1 Building a more "hardened" Exim
	 56.2 Root privilege
	 56.3 Running Exim without privilege
	 56.4 Delivering to local files
	 56.5 Running local commands
	 56.6 Trust in configuration data
	 56.7 IPv4 source routing
	 56.8 The VRFY, EXPN, and ETRN commands in SMTP
	 56.9 Privileged users
	 56.10 Spool files
	 56.11 Use of argv[0]
	 56.12 Use of %f formatting
	 56.13 Embedded Exim path
	 56.14 Dynamic module directory
	 56.15 Use of sprintf()
	 56.16 Use of debug_printf() and log_write()
	 56.17 Use of strcat() and strcpy()

	57. Format of spool files
	 57.1 Format of the -H file
	 57.2 Format of the -D file

	58. DKIM, SPF, SRS and DMARC
	 58.1 DKIM (DomainKeys Identified Mail)
	 58.1.1 Signing outgoing messages
	 58.1.2 Verifying DKIM signatures in incoming mail

	 58.2 SPF (Sender Policy Framework)
	 58.2.1 SRS (Sender Rewriting Scheme)

	 58.3 DMARC
	 58.3.1 Configuration
	 58.3.2 Controls
	 58.3.3 ACL
	 58.3.4 Logging
	 58.3.5 Example

	59. Proxies
	 59.1 Inbound proxies
	 59.2 Outbound proxies
	 59.3 Logging

	60. Internationalisation
	 60.1 MTA operations
	 60.2 MDA operations

	61. Events
	62. Adding new drivers or lookup types
	Options index
	Variables index
	Concept index

