pyspark.sql.tvf.TableValuedFunction#
- class pyspark.sql.tvf.TableValuedFunction(sparkSession)[source]#
Interface for invoking table-valued functions in Spark SQL.
Methods
Get all of the Spark SQL string collations.
explode
(collection)Returns a
DataFrame
containing a new row for each element in the given array or map.explode_outer
(collection)Returns a
DataFrame
containing a new row for each element with position in the given array or map.inline
(input)Explodes an array of structs into a table.
inline_outer
(input)Explodes an array of structs into a table.
json_tuple
(input, *fields)Creates a new row for a json column according to the given field names.
posexplode
(collection)Returns a
DataFrame
containing a new row for each element with position in the given array or map.posexplode_outer
(collection)Returns a
DataFrame
containing a new row for each element with position in the given array or map.range
(start[, end, step, numPartitions])Create a
DataFrame
with singlepyspark.sql.types.LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with step valuestep
.Get Spark SQL keywords.
stack
(n, *fields)Separates col1, ..., colk into n rows.
variant_explode
(input)Separates a variant object/array into multiple rows containing its fields/elements.
variant_explode_outer
(input)Separates a variant object/array into multiple rows containing its fields/elements.